
Neuroevolution for Adaptive Teams
Bobby D. Bryant andRisto Miikkulainen

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
{bdbryant,risto }@cs.utexas.edu

Abstract- We introduce the Adaptive Team of Agents
(ATA), a system of homogeneous agents with identical
control policies which nevertheless adopt heterogeneous
roles appropriate to their environment. ATAs have ap-
plications in domains such as games, and can be evolved
through neuroevolution. In this paper we show how
ATAs can be evolved to solve the problem posed by a
simple strategy game and discuss their application to
richer environments.

1 Introduction

Multi-agent systems are a commonplace in social, political,
and economic enterprises. Each of these domains consists
of multiple autonomous parties cooperating or competing at
some task. Multi-agent systems are often formalized for en-
tertainment as well, with instances ranging from team sports
to computer games. Games have previously been identified
as a possible “killer application” for artificial intelligence
(Laird and van Lent 2000), and a game involving multiple
autonomous agents is a suitable platform for research into
multi-agent systems as well.

Multi-agent systems can be composed either of homo-
geneous agents or of heterogeneous agents. Heterogeneous
teams are often used for complex tasks (e.g., Balch 1998;
Haynes and Sen 1997; Yong and Miikkulainen 2001). How-
ever, heterogeneous teams of sub-task specialists are brittle:
if one specialist fails then the whole team may fail at its
task. Moreover, when the agents in a team are programmed
or trained for a pre-specified division of labor the team may
perform inefficiently if the size of the team changes – for
example, if more agents are added to speed up the task – or
if the scope of the task changes dynamically.

We therefore propose teams constructed ofhomogeneous
agents, each capable of adopting any role required by the
team’s task and capable of switching roles to optimize the
team’s performance in its current context. We call such a
team anAdaptive Team of Agents(ATA). An ATA is a homo-
geneous team that self-organizes a division of labor so that
it behaves like a heterogeneous team. It performs this divi-
sion of labor without direction from a human operator, and
can change the division dynamically as conditions change.

An ATA is robust because there are no critical task spe-
cialists that cannot be replaced by other members of the

team; an ATA is flexible because individual agents can
switch roles whenever they observe that a sub-task is not
receiving sufficient attention. If necessary, an agent can al-
ternate between roles continuously in order to ensure that
sufficient progress is made on all sub-tasks. For many kinds
of task an ATA could be successful even if there were fewer
agents than the number of roles demanded by the task.

The optimal implementation for an ATA architecture de-
pends on the task domain and the nature of the agents. Ar-
tificial neural networks (ANNs) are a good implementation
choice in general, for several reasons: they are a univer-
sal computing architecture (Cybenko 1989; Siegelmann and
Sontag 1994), they are fast, they generalize and tolerate
noisy inputs, and they are robust in the face of damage or
incomplete inputs.

For many multi-agent tasks the correct input-output
mappings for the agents’ controllers are not known, so it
is not possible to program them or train them with super-
vised learning methods. However, networks can be evolved
to perform a task in its actual context, discovering optimal
mappings in the process (Yao 1995; Potter and De Jong
1995; Moriarty 1997).

In this paper we demonstrate that this approach is feasi-
ble: it is possible to evolve an ATA with ANN controllers
for a non-trivial strategy game. In section 2 we describe
the game designed for the experiment. In section 3 we de-
scribe the neuroevolutionary algorithm used to train the con-
trollers, and in section 4 we describe the experimental de-
sign and results. In section 5 we discuss how ATAs could be
evolved for richer environments such as commercial com-
puter games.

2 TheLegion-I Game

In order to test the feasibility of the ATA approach to multi-
agent systems we designed a simple discrete-state strategy
game that we callLegion-I. The game requires several le-
gions to work together to minimize the economic depreda-
tion done to their province by an influx of barbarians.

The legionary and barbarian ’units’ are autonomous
agents in the game, each unit representing either a legion or
a barbarian warband. The legions are the learning agents;
the warbands follow pre-programmed behavior to pose a
challenge for the legions. We enforce identical control poli-

Copyright 2003 IEEE. InProceedings of the 2003 Congress on Evolutionary Computation CEC2003, Vol. 3, pp. 2194-2201



Figure 1: The Legion-I game. The large hexagonal playing
area is tiled with small hexagons in order to quantize the po-
sitions of the game objects. Legions are shown iconically as
close pairs of men ranked behind large rectangular shields, and
warbands as individuals bearing an axe and a smaller round
shield; each icon represents a large body of men, i.e. a legion
or a warband. The cities are shown in white, mostly obscured
by the legions that occupy them. All non-city hexes are farm-
land, shown with a mottled pattern. We use the game as a test
bed for multi-agent learning methods, training the legions to
contest possession of the playing area with the barbarians.

cies for all the legions and induce an ATA by creating a
game environment that requires them to pursue two separate
goals simultaneously, leading to a division of labor among
them.

2.1 Structure of the game

The game is played on a map that is divided into cells by
tiling the plane with hexagons (figure 1). Several randomly
selected cells are designated as cities and the remaining are
left to represent the surrounding farmland. The cells are also
used to quantize the locations of the legions and warbands
during play.

Play is conducted in turns. During a turn each unit can
either remain stationary or move to an adjacent cell. Within
a turn each legion selects its move and then each warband
selects its move; each unit’s move is implemented immedi-
ately, before play proceeds to the next unit.

Only one unit may be in any map cell after a move. The
warbands are not able to eliminate or displace other units,
so a warband may only remain stationary or move into an
unoccupied adjacent cell. However, a legion eliminates a
warband from play if it moves into the warband’s cell, so a
legion may either remain stationary or move into any adja-
cent cell that is not occupied by another legion.

A game begins with several legions placed in randomly
selected cells on the map. These cells are selected inde-
pendently of the choice of cells for the cities. There are
no warbands in play at the beginning of the game; instead,
the warbands enter play at random times and random map
locations.

At the end of each turn a pillage rate is calculated. The
barbarians are awarded 100 points of plunder for each city
they occupy and one point for each cell of farmland. These
amounts are accumulated over the course of the game to
give the final game score. From the legions’ perspective,
lower game scores are better.

For the experiment reported in section 4 we used a
hexagonal map with 21 horizontal rows of cells and 21 cells
from corner to corner on the diagonals, giving a total of 331
cells. Three of the cells were designated as cities and five
legions were provided for the defense of the province. The
barbarians entered at an average rate of one warband per
turn, and the games lasted for 200 turns.

2.2 Game scores

The scoring was designed to require the legions to garri-
son the cities: after a few barbarians are in play each un-
garrisoned city can be expected to result in the loss of 100
points of plunder each turn. The length of the game and
barbarian appearance rate were chosen so that the number
of warbands in play would ramp up from zero to 200, giv-
ing anaverageof about 100 in play over the course of the
game. Thus the barbarians can accumulate an average of
about 400 points of plunder per turn, 300 for the three cities
and about 100 more for the other barbarians milling about
the countryside. (The expected value is 397 points per turn,
but the randomized arrivals make the number vary slightly
from game to game.)

If the legions are content to garrison the cities and take
no other action against the barbarians then their province
will still suffer an average of 100 points of pillage per turn
over the course of the game, a reduction of the pillage rate
to 25% of the worst case. Since our goal was to train the
legions as an ATA we provided five legions for a game with
three cities: if the legions partition their behavior so that
three garrison the cities and the rest eliminate barbarians in
the countryside then the team can reduce the pillage rate to
less than25% of the worst case. This is the target division
of labor that the game was designed to elicit.

Notice that there is noa priori expectation that the le-
gions will be able to completely suppress the pillaging.
Since the warbands appear at random locations and move at
the same speed as the legions it becomes increasingly dif-
ficult for the legions to eliminate them as their density on
the map decreases. Thus the performance of the legions is
ultimately limited to an equilibrium condition between the



Figure 2:Barbarian sensor geometry.Black lines show the
borders of the six sensory fields of view for one warband near
the northwest corner of the map. The borders emanate from
the center of the warband’s cell and out through its six cor-
ners. Game objects in cells split by a border are reckoned to
be in the field to the clockwise of that border. White arrows
show the hexagonal Manhattan distances to each of the three
legions in the warband’s southeastern sensory field of view.
These lines are traced from center to center of the hexagonal
map cells along a shortest path between the sensing barbarian
and the sensed object. All the distances are digested to a single
numeric value for each field of view, giving the warband only a
fuzzy sense of its world.

number of legions in play, the rate of appearance of the war-
bands, and the size of the map. (In practice we find that the
legions can reduce the pillage rate to about 10% of the worst
case, when the game parameters are set as described above.)

2.3 The warbands’ controllers

The barbarian warbands are preprogrammed for a behavior
that is aggressive enough to serve as a foil for the legions
to learn against. Any time a warband starts its move in a
city it remains stationary for the current turn, since no move
will increase the amount of plunder it obtains. Otherwise it
consults its sensors to decide on a direction to move.

A warband has two egocentric sensor arrays, one to de-
tect cities and another to detect legions. Each array consists
of six elements, one for each of the six “pie slice” fields of
view induced by the hexagonal map grid and centered on
the warband. At the start of a warband’s turn its sensor ele-
ments are loaded with the values

∑
i

1
di

for objectsi of the
correct type within each element’s field of view, wheredi is
the Manhattan distance to the object as traced on a hexago-
nal grid (figure 2).

The two sensor arrays are then treated as “motivation”

arrays, with the city sensor attracting the warband and the
legion sensor repelling it. The elements of the legion sen-
sor are first permuted to invert their geographic sense and
then the two motivation arrays are combined asMfinal =
Mcities + 0.9Mlegions. The0.9 factor slightly reduces a
warband’s tendency to flee the legions so that it will take
some risks to plunder the cities. The direction correspond-
ing to the maximal element inMfinal is the warband’s
choice for its current move.

The selected move is not made if the game rules forbid
it. If the adjacent map cell in the chosen direction is already
occupied by a legion or another warband then the warband
remains stationary for the current turn instead. If the se-
lected move would take the warband off the edge of the map
thenMfinal is examined to see what the second choice for
a move would be, and that move is made instead. If that sec-
ond choice is also an illegal move then the warband remains
stationary without considering further choices.

The net effect of the barbarian control algorithm is that
the warbands will approach cities and flee legions, with a
slight preference for approaching the cities. As a result the
warbands will enter any ungarrisoned city and crowd around
cities that are already occupied, but will flee the legions in
the countryside so long as crowds of other warbands do not
obstruct their flight.

2.4 The legions’ controllers

The legions are controlled by artificial neural networks that
map their sensory inputs onto a choice of actions. In or-
der to conform to the definition of an ATA each legion must
use an identical controller network. In practice we reuse the
same network for each legion in turn; this method ensures
that each legion has an identical control policy and any in-
dividual differences in their behavior arise purely from the
differences in their sensory inputs.

Since we demand more subtle behavior from the legions
than from the barbarians we provided them with more elab-
orate sensors (figure 3). Each legion is provided with three
egocentric sensor arrays for detecting cities, barbarians, and
other legions. Each of the legions’ sensor arrays divides the
map into six “pie slices” just as the warbands’ sensors do,
but the legions’ sensors also divide the map into two con-
centric rings. The inner ring only detects the presence of
game objects in the map cells immediately adjacent to the
sensing legion, and the outer ring detects any game objects
farther away. The sensor elements in the inner ring are set to
1.0 if a game object of the appropriate type is in the adjacent
map cell, or 0.0 otherwise. The sensor elements in the outer
ring are set to

∑
i

1
di

for the appropriate game objectsi, just
as for the barbarians’ sensors, except that any objects in the
cells adjacent to the legion are excluded from the sum.

A 13th sensor element for each of the three arrays de-



NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

Figure 3: Legion sensor architecture. Each sensor array
for the legions each consists of three sub-arrays. A single-
element sub-array detects objects colocated in the map cell that
the legion occupies. Two more six-element sub-arrays detect
objects in six radial fields of view just as the barbarian’s sen-
sors do (figure 2), except that one only detects adjacent objects
and the other only detects objects further away. The legions
are equipped with three complete sensor arrays, one each for
detecting cities, barbarians, and other legions. The three 13-
element arrays are concatenated to serve as a 39-element input
layer for an artificial neural network that controls the legion’s
behavior (figure 4).

tects the presence of a game object in the legion’s own cell.
This sensor proved to be necessary so that the legions could
detect when they are in a city. It is not needed for other
types of objects, but was provided on all three sensor arrays
to keep their structures uniform.

After a legion’s sensory inputs have been calculated, all
the element values from the three sensor arrays are concate-
nated into a flat 39-element array to serve as the input for the
artificial neural network that controls the legion. The net-
work is a fully-connected feed-forward network with a sin-
gle hidden layer (figure 4). Preliminary experiments showed
that a hidden layer of six neurons works well on theLegion-I
problem.

A legion’s controller network has eight units in its output
layer, representing the choicesStay, Go, and the six cardinal
directions imposed by the hexagonal tiling of the map. After
a sensory input has been propagated through the network the
activations at the network’s output layer are decoded by a
two-step process. If the activation of theStayunit is higher
than the activation of theGo unit then the legion remains
stationary for the current turn. Otherwise the six outputs
associated with the cardinal directions are examined to find
which has the highest activation level, and a move is taken
in that direction. If the move is off the map or onto another
legion then the legion remains stationary instead.

This concludes our description of the game and the
agents’ controllers. In the next section we describe the
method used to train the legions to behave as an adaptive
team.

3 The Learning Algorithm

The legions’ controllers are trained using neuroevolution
with enforced sub-populations (ESP), a method that has
been shown to be powerful for learning control tasks
(Gomez and Miikkulainen 1999; Gomez 2003; Gomez and

Key:

Neuron

Scalar

Stay Go NE E SE SW W NW

Output Neurons

S
ig

na
l P

ro
pa

ga
tio

n

Controller Outputs

Hidden Layer Neurons

Sensory Inputs (39 elements)
...

Figure 4:Controller network. The values obtained by a le-
gion’s sensors are propagated through an artificial neural net-
work to create an activation pattern at the network’s output. The
activation pattern is then interpreted as a choice of one of the
discrete moves available to the legion. When properly trained
the network serves as the ’brain’ for an intelligent agent.

Miikkulainen 2003). ESP is an extension of the earlier
SANE algorithm, which has also been shown to work well
for various discrete-state applications such as the gameGo
(Moriarty and Miikkulainen 1997; Moriarty 1997).

3.1 Neuroevolution with ESP

ESP is a direct-encoding neuroevolutionary algorithm, i.e. it
specifies a network’s weights directly in the chromosomes.
Its major innovation is that the chromosomes only encode
the weights for individual neurons rather than complete net-
works, and a separate sub-population is maintained for each
neuron in the network (figure 5). The sub-populations are
kept separate during breeding.

The evolutionary fitness of the neurons is determined
by selecting a random neuron from each sub-population,
combining the selected neurons to form a complete net-
work, evaluating the performance of the network on the tar-
get task, and finally ascribing the network’s score back to
each neuron that participated in the evaluation. This process
is repeated during a generation until all the neurons have
been evaluated. As generations pass the sub-populations
co-evolve to produce neurons that “cooperate” in a good so-
lution when assembled into a network.

3.2 Application of ESP to theLegion-I problem

To represent the legions’ controllers we used six sub-
populations of chromosomes, one for each neuron in the
hidden layer. We used flat arrays of floating point num-
bers for the chromosomes, representing the concatenation
of a single neuron’s input and output weights. Each sub-
population consisted of 500 chromosomes. (In general
larger populations produce better results, but the run time
of the algorithm is approximately proportional to the pop-
ulation size. With 500 chromosomes our run time was just
under 24 hours on a 1.0 GHz machine.)



Stay Go NE E SE SW W NW

...

...

P1

P2

...P6

Sensory Inputs (39 elements)

Controller Outputs

Hidden Layer Neurons

Output Neurons

...

Breeding Populations

...

Figure 5:Neuroevolution with ESP.In neuroevolution with enforced sub-populations a separate breeding population is maintained
for each neuron in a network, shown here as{P1, P2, . . . , P6} for the six populations providing neurons for the hidden layer of
our controller network. (Our chromosomes represent both input and output weights for the neurons in the hidden layer, so the
neurons in the output layer do not require any additional genetic representations.) Networks are assembled by drawing one neuronal
chromosome at random from each sub-population. The resulting network is tested and its fitness is ascribed back to each of its
component neurons. The process is repeated until a fitness has been determined for every neuron in all the populations for the current
evolutionary generation. As generations pass the sub-populations co-evolve to produce neurons that work well with the others in a
network.

The populations were initialized with a random float-
ing point value for each weight in each chromosome. The
values were generated in an exponential distribution with a
mean and standard deviation of 1.0, yielding a large number
of small weights and a small number of large weights. Each
random weight was inverted to a negative number on a 50%
chance, to give a symmetrical distribution.

Networks were evaluated on complete 200-turn games
of Legion-I using the game parameters described in section
2. The evaluations dominated the learning algorithm’s run
time, though they became faster as the legions learned the
game, since progress at eliminating barbarians left fewer
agents in play to be moved each turn. Near the end of train-
ing the games could be played at a rate of about three per
second. Every neuron was evaluated three times per gen-
eration by playing three games with different sequences of
random numbers, in order to simultaneously average out the
luck of the neurons selected for the network plus any differ-
ences in the inherent difficulty of the game setups.

At the end of each generation the chromosomes were up-
dated by breeding strictly within each sub-population. Mat-
ings were made with a preference for using the more fit neu-
rons, but there was a slight possibility of using even the least
fit neurons as well. This preference was implemented by
sorting the neurons according to their fitness and then re-
placing each neuronin situwith a newly bred neuron, start-
ing with the worst and working up to the best. Each neuron
was replaced by breeding two neurons randomly selected
from those that had not yet been replaced, so that the better
neurons had more opportunities to contribute their genes to
the next generation.

Crossovers were either 1-point or 2-point, each with a
50% chance. After crossover each weight was mutated with

a 1% chance. Mutations were applied as additions to the
current value, using deltas with the same distribution that
was used to generate the original chromosomes’ weights.

This design for the evolutionary algorithm allowed us
to apply ESP to the problem of training the legions as an
adaptive team. In the next section we describe the learning
experiment done with these arrangements.

4 The Experiment

In this section we describe the experimental procedures and
results obtained on theLegion-IATA problem.

4.1 Experimental discipline

The evolutionary algorithm was run for 250 generations, re-
sulting in 375,000 games played during a run. Auxiliary
runs out to 1000 generations showed continued very slow
improvements in performance, but most of the learning was
done even before 250 generations, allowing us to select that
as the stopping point for the formal experiment. We sus-
pect that the legions’ performance approaches the optimum
equilibrium-state performance asymptotically.

As a sanity check we repeated the learning algorithm five
times with five different seeds for the random number gener-
ator. The seeds controlled the generation of the populations’
initial weights, all randomized breeding decisions, and the
generation of the game setups used for training and valida-
tion. We used independently generated training and valida-
tion games for the five runs to make the runs as independent
as possible, in order to obtain five independent samples of
the learning algorithm’s performance on the problem.

At the end of each generation in a run a nominal best net-
work was created by selecting the most fit neuron from each



Figure 6:Progress in learning.Two end-of-game screenshots show the legions’ performance before and after training.Left: Before
training the legions move haphazardly, drift to an edge of the map, or sit idle throughout the game, thereby failing to garrison the cities
and allowing large concentrations of barbarians to accumulate in the countryside.Right:After training the legions have learned to split
their behavior so that three are deployed as garrisons for the three cities while the other two move to destroy most of the barbarians
pillaging the countryside. The desired adaptive behavior has been induced in the team.

sub-population and assembling them together as a complete
network. Thisnominal best network may not actually be
the best possible network that could be assembled from the
available neurons; the nominal network was used in lieu of
searching the6500 possible combinations of neurons to find
the actual best network.

The nominal best network for each generation was tested
against a 25-game validation set to measure the progress
of the learning algorithm, and the network was saved if
it yielded the best average score of any generation so far.
At the end of a run the nominal best network that had per-
formed best on the validation set was returned as the con-
troller produced by that run, regardless of which generation
had produced it.

The resulting controller networks can be evaluated either
qualitatively or quantitatively. Either way, it is clear that all
five runs evolved networks capable of a dynamic division of
labor among the legions.

4.2 Qualitative results

The performance of the controller networks was evaluated
qualitatively by observing the real-time animations of game
play. In every case that we have examined the legions begin
the game with a general rush toward the cities, but within a
few turns negotiate a division of labor so that some of the le-
gions enter the cities and remain there as garrisons while the
others begin to chase down barbarian warbands in the coun-
tryside. The only time the cities are not garrisoned promptly
is when two of them mask the third from the legions’ low-
resolution sensors. However, even in those cases the third

city is garrisoned as soon as one of the roaming legions pur-
sues a barbarian far enough to one side to have a clear view
of the third city so that it can “notice” that it is ungarrisoned.

The legions also show surprisingly persistent long-term
behavior for memoryless agents. It is extremely rare to see
a well trained legion abandon a city that it has occupied;
garrison duty almost always lasts the entire length of the
game. The roaming legions also give an appearance of pur-
poseful behavior, often moving in a straight line halfway
across the map to disperse some concentration of barbarians
spotted from afar. On one occasion a legion was observed
to approach a city and make two smooth loops around it,
then move away after having dispersed or destroyed all the
barbarians crowded about the city. The roaming legions do
spend a disproportionate amount of time near the cities be-
cause that is where the barbarians concentrate, but it is rare
to see a non-garrison legion spend multiple turns adjacent
to a garrisoned city as if hoping to get in.

A feel for these qualitative behaviors can be obtained
by comparing end-of-game screenshots taken early and late
during a training run, as shown in figure 6.

4.3 Quantitative results

The performance of each run was evaluated quantitatively
on a 25-game test set of games similar to the validation sets,
but generated with a different random seed. The same test
set was used for each of the five runs.

The scores on the games in the test set show that all five
runs produced controllers that allowed the legions to reduce
pillaging well below the 25% rate obtainable by garrisoning



A B C D E

6
8

10
12

14
16

Independent Runs

S
co

re
s 

on
 T

es
t S

et

Figure 7: Performance on the test set.Boxplots show the
distribution of scores on the 25 games of the test set for the
adaptive teams produced by five independent runs of the learn-
ing algorithm, labeledA throughE. (A box shows the median
and quartiles of the scores and whiskers show the extremes.
Half the scores lie with the bounds of the box and a quarter
lie within the range of each whisker. Asymmetries indicate the
degree of skew to the set of scores.) Scores are shown as a
percentage of the maximum amount of pillage that the barbar-
ians could inflict without any legions present. The mean score
over all the test games was 9.96%, and even the worst score
among all the test games (16.58%) was a substantial improve-
ment over the pillage rate obtainable by simply garrisoning the
cities (25%).

the cities and taking no further actions against the barbarians
(figure 7).

We also used the common test set to observe the progress
of learning in each of the five runs. The learning curves
show the familiar pattern of diminishing returns seen in
many machine learning experiments, with fast initial learn-
ing tapering off into slower steady progress (figure 8). There
was very little variety in the speed of learning between the
five runs, and no stair-step pattern to suggest that the le-
gions’ two modes of behavior were learned sequentially.
(Observations confirm that the legions begin chasing barbar-
ians even before they have learned to garrison all the cities.)

Observations and measurements both show that the le-
gions learned to behave as an adaptive team in all five runs,
allowing us to conclude that our neuroevolutionary method
can endow agents with the necessary intelligence for adap-
tive behavior, at least for a problem ofLegion-I’s complex-
ity. We now turn to the prospects of inducing ATAs in more
complex environments.

5 Discussion and Future Work

The experiment described above shows that Adaptive Teams
of Agents are a feasible approach to multi-agent problems,
and that they can be created by neuroevolutionary methods.

0 50 100 150 200 250

0
20

40
60

80
10

0

Generation

A
ve

ra
ge

 S
co

re
 o

n 
Te

st
 S

et

Figure 8:Learning curves. The plot shows learning progress
for the five independent runs as measured on the common test
set. Each point shows the average score on the 25 games of
the set. To reduce clutter we plot points only for the genera-
tions where progress was made on the validation set. (The plots
are not monotonic because progress on the validation set does
not strictly imply progress on the test set.) The horizontal line
shows the 25% pillage rate obtainable by garrisoning the cities
only. All the runs were performing substantially better than the
25% threshold by generation 80, and continued to show slow
improvements thereafter. Runs out to 1000 generations show
continued very slow improvement, suggesting that the legions
are refining their task asymptotically as evolution continues.

We must now evaluate the prospects of creating and apply-
ing ATAs at the scale, complexity, and “messiness” of real-
world applications.

In further preliminary experiments we have found that
adding additional modes of behavior to theLegion-I envi-
ronment, such as road-building, makes the task much harder
to learn. Promising approaches to the more difficult prob-
lem include the use of shaping (Randløv 2000; Gomez and
Miikkulainen 1997) or simulated annealing (Lozano et al.
1999) to boost learning power as the demands on the agents’
behavior are increased.

Another challenge is the construction of adequate sen-
sory representations for richer environments. The ATAs in
Legion-I learned their task with only a very fuzzy repre-
sentation of their environment, but other domains can be
expected to require more detailed representations. More-
over, some domains will require representations for recur-
sive symbolic relationships such as “in” and “on”. Process-
ing such relationships may require us to draw on techniques
developed for natural language processing in artificial neu-
ral networks (Elman 1990; Miikkulainen 1996).

We therefore expect the development of ATAs for richer
environments to lead to productive basic research, and to
practical applications in computer gaming as well. In com-
mercial computer games there is a constant need for im-
proved intelligent agents. Many games include sets of



agents that would work well as adaptive teams. For exam-
ple, games in the popular civilization-building genre usually
offer a settler or pioneer unit type, deployed in a number that
varies over the course of the game, each functionally iden-
tical but capable of many disparate activities that must be
pursued in building a competitive civilization. Application
of our methodology to such domains can be expected to un-
cover challenges and solutions that extend the state of the art
for learning-based multi-agent systems, and the improved
ability to implement robust game intelligences through ma-
chine learning methods will help game companies meet in-
creased consumer expectations economically.

We have shown that the Adaptive Team of Agents is a
feasible concept, and that neuroevolution is a practical way
of training adaptive agents for some environments. We an-
ticipate that ATAs will soon find real-world applications in
the gaming industry, and that scaling this new agent archi-
tecture to the needs of commercial applications will stimu-
late the invention of powerful new techniques for inducing
sophisticated behavior in autonomous intelligent agents.

Acknowledgments

This research was supported in part by the National Science
Foundation under grant IIS-0083776 and the Texas Higher
Education Coordinating Board under grant ARP-003658-
476-2001.

The images used inLegion-I’s animated display are de-
rived from graphics supplied with the gameFreeciv. See
http://www.freeciv.org/ for credits.

Bibliography

Balch, T. (1998).Behavioral Diversity in Learning Robot
Teams. PhD thesis, Georgia Institute of Technology.
Technical Report GIT-CC-98-25.

Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function.Mathematics of Control, Signals,
and Systems, 2(4):303–314.

Elman, J. L. (1990). Finding structure in time.Cognitive
Science, 14:179–211.

Gomez, F. (2003).Learning Robust Nonlinear Control with
Neuroevolution. PhD thesis, Department of Computer
Sciences, The University of Texas at Austin.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolu-
tion of complex general behavior.Adaptive Behavior,
5:317–342.

Gomez, F., and Miikkulainen, R. (1999). Solving non-
Markovian control tasks with neuroevolution. InPro-
ceedings of the 16th International Joint Conference

on Artificial Intelligence. Denver, CO: Morgan Kauf-
mann.

Gomez, F., and Miikkulainen, R. (2003). Active guid-
ance for a finless rocket using neuroevolution. InPro-
ceeedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2003). San Francisco, CA:
Morgan Kaufmann.

Haynes, T. D., and Sen, S. (1997). Co-adaptation in a
team. International Journal of Computational Intel-
ligence and Organizations.

Laird, J. E., and van Lent, M. (2000). Human-level AI’s
killer application: Interactive computer games. InPro-
ceedings of the 17th National Conference on Artificial
Intelligence. Cambridge, MA: MIT Press.

Lozano, J. A., Larrãnaga, P., Grãna, M., and Albizuri, F. X.
(1999). Genetic algorithms: bridging the convergence
gap.Theoretical Computer Science, 229(1–2):11–22.

Miikkulainen, R. (1996). Subsymbolic case-role analysis of
sentences with embedded clauses.Cognitive Science,
20:47–73.

Moriarty, D. E. (1997). Symbiotic Evolution of Neural
Networks in Sequential Decision Tasks. PhD thesis,
Department of Computer Sciences, The University of
Texas at Austin. Technical Report UT-AI97-257.

Moriarty, D. E., and Miikkulainen, R. (1997). Form-
ing neural networks through efficient and adaptive co-
evolution.Evolutionary Computation, 5:373–399.

Potter, M. A., and De Jong, K. A. (1995). Evolving neural
networks with collaborative species. InProceedings of
the 1995 Summer Computer Simulation Conference.

Randløv, J. (2000). Shaping in reinforcement learning by
changing the physics of the problem. InProc. 17th
International Conf. on Machine Learning, 767–774.
Morgan Kaufmann, San Francisco, CA.

Siegelmann, H. T., and Sontag, E. D. (1994). Analog com-
putation via neural networks.Theoretical Computer
Science, 131(2):331–360.

Yao, X. (1995). Evolutionary artificial neural networks. In
Kent, A., and Williams, J. G., editors,Encyclopedia of
Computer Science and Technology, vol. 33, 137–170.
Marcel Dekker Inc.

Yong, C. H., and Miikkulainen, R. (2001). Cooperative co-
evolution of multi-agent systems. Technical Report
AI01-287, Department of Computer Sciences, The
University of Texas at Austin.

http://www.freeciv.org/
http://www.cs.cmu.edu/~trb/papers/thesis/
http://www.cs.cmu.edu/~trb/papers/thesis/
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#gomez.adaptive-behavior.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#gomez.adaptive-behavior.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#gomez.ijcai99.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#gomez.ijcai99.ps.Z
file:citeseer.nj.nec.com/lozano98genetic.html
file:citeseer.nj.nec.com/lozano98genetic.html
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#miikkulainen.subsymbolic-caseroles.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#miikkulainen.subsymbolic-caseroles.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#moriarty.diss.tr257.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#moriarty.diss.tr257.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#moriarty.ec98.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#moriarty.ec98.ps.Z
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#moriarty.ec98.ps.Z
http://citeseer.nj.nec.com/518848.html
http://citeseer.nj.nec.com/518848.html
file:citeseer.nj.nec.com/siegelmann94analog.html
file:citeseer.nj.nec.com/siegelmann94analog.html
file:citeseer.nj.nec.com/article/yao93evolutionary.html
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#yong.tr287.ps.gz
http://www.cs.utexas.edu/users/nn/pages/publications/abstracts.html#yong.tr287.ps.gz

	1 Introduction
	2 The Legion-I Game
	2.1 Structure of the game
	2.2 Game scores
	2.3 The warbands' controllers
	2.4 The legions' controllers

	3 The Learning Algorithm
	3.1 Neuroevolution with ESP
	3.2 Application of ESP to the Legion-I problem

	4 The Experiment
	4.1 Experimental discipline
	4.2 Qualitative results
	4.3 Quantitative results

	5 Discussion and Future Work

