
Exploiting Sensor Symmetries in Example-based Training
for Intelligent Agents

Bobby D. Bryant
Department of Computer Sciences
The University of Texas at Austin

bdbryant@cs.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

risto@cs.utexas.edu

Abstract— Intelligent agents in games and simulators often
operate in environments subject to symmetric transformations
that produce new but equally legitimate environments, such as
reflections or rotations of maps. That fact suggests two hypotheses
of interest for machine-learning approaches to creating intelligent
agents for use in such environments. First, that exploiting
symmetric transformations can broaden the range of experience
made available to the agents during training, and thus result in
improved performance at the task for which they are trained.
Second, that exploiting symmetric transformations during train-
ing can make the agents’ response to environments not seen
during training measurably more consistent. In this paper the
two hypotheses are evaluated experimentally by exploiting sensor
symmetries and potential symmetries of the environment while
training intelligent agents for a strategy game. The experiments
reveal that when a corpus of human-generated training examples
is supplemented with artificial examples generated by means of
reflections and rotations, improvement is obtained in both task
performance and consistency of behavior.

Keywords: Agents, Multi-Agent Systems, Adaptive Team
of Agents, Games, Simulators, Legion II, Sensors, Symmetries,
Human-generated Examples

I. INTRODUCTION

Intelligent agents in games and simulators often operate in
geometric environments subject to reflections and rotations.
For example, a two dimensional map can be reflected across an
explorer agent or rotated about it, providing new and different
but still reasonable maps. Similarly, the visible universe can
be reflected or rotated on any of the three axes of a robotic
construction worker in deep space. A well trained general
purpose agent for deployment in such environments should
be able to operate equally well in a given environment and
its symmetric transformations. In general it is desirable for
intelligent agents to exhibit symmetrical behavior as well. That
is, if the optimal action in a given environment is to move to
the left, then the optimal action in a mirror image of that
environment would be to move to the right.

Symmetry of behavior is desirable for two reasons. First, if
a correct or optimal move can be defined for a given context,
failing to choose the symmetrical move in the symmetrical
context will be sub-optimal behavior, and will degrade an
agent’s overall performance if it ever encounters such a
context. Second, if the agent operates in an environment ob-
servable by humans, such as a game or a simulator, the humans
will expect to see “visibly intelligent” behavior, i.e., they will
expect the agent to always do the right thing because it is
smart, rather than intermittently doing the right thing because

it has been programmed or trained to manage only certain
cases.

If an agent’s controller operates by mapping sensory inputs
onto behavioral responses, the desired symmetries can be
identified by analyzing the structure of the agent and its
sensors. For example, if the agent and its sensors are both
bilaterally symmetrical then it will be desirable for the agent’s
responses to be bilaterally symmetrical as well. However, if
they are not symmetrical – e.g. for a construction robot with a
grip on one side and a tool on the other – then its optimal
behavior is asymmetrical. Thus the desirable symmetry of
behavior depends critically on the symmetry of the agent and
its sensors.

When an agent’s controller is directly programmed it is a
straightforward task to ensure that its behavior observes the
desired symmetries. However, when a controller is trained
by machine learning there is no guarantee that it will learn
symmetrical behavior. Therefore it will be useful to devise
machine learning methods that encourage behavioral invariants
across relevant symmetries in agents trained by those methods.

This paper reports initial results on solving the symmetry
challenge with supervised learning. A controller is trained for
agents that operate in an environment that supports multiple
symmetries of reflection and rotation. Human-generated ex-
amples of appropriate contextual behavior are used for the
training, and artificial examples are generated from the human
examples to expose the learner to symmetrical contexts and
the appropriate symmetrical moves. This training mechanism
addresses both of the motivations for symmetrical behavioral
invariants, i.e. it improves the agents’ task performance and
also provides measurable improvements in the symmetry of
their behavior with respect to their environment, even in
environments not seen during training.

The learning environment and the structure of the agents’
sensors and controller are described in the following section,
then the training methodology and experimental results are
explained in section III. The experimental results are discussed
in section IV, along with a look at future directions for the
research.

II. THE LEARNING ENVIRONMENT

The use of artificial examples generated by exploiting
symmetries was tested in a game/simulator called Legion II,
which is a slight modification of the Legion I game described
in [1]. Legion II is a discrete-state strategy game designed

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.



as a test bed for multi-agent learning problems, with legions
controlled by artificial neural networks acting as the intelligent
agents in the game.

A. The Legion II game/simulator

The Legion II game/simulator is played on a map that
represents a province of the Roman empire, complete with
several cities and a handful of legions for its garrison (figure
1). Gameplay requires the legions to minimize the pillage
inflicted on the province by a steady stream of randomly
appearing barbarian warbands. The barbarians collect a small
amount of pillage each turn they spend in the open countryside,
but a great deal each turn they spend in one of the cities.

Fig. 1. The Legion II game. A large hexagonal playing area is tiled with
smaller hexagons in order to quantize the positions of the game objects.
Legions are shown iconically as close pairs of men ranked behind large
rectangular shields, and barbarians as individuals bearing an axe and a smaller
round shield. Each icon represents a large body of men, i.e. a legion or a
warband. Cities are shown in white, with any occupant superimposed. All
non-city hexes are farmland, shown with a mottled pattern. The game is a
test bed for multi-agent learning methods, whereby the legions must learn
to contest possession of the playing area with the barbarians. (An animation
of the Legion II game can be viewed at http://nn.cs.utexas.edu/
keyword?ATA.)

The game is parameterized to provide enough legions to
garrison all the cities and have a few left over, which can
be used to disperse any warbands they find prowling the
countryside. The original purpose of this parameterization was
to require the legions to learn an on-line division of labor
between garrisoning the cities and patrolling the countryside,
in a multi-agent cooperative architecture called an Adaptive
Team of Agents [1]. The game is used here to test the use of
training examples generated from symmetries, because it is a
challenging learning task that offers multiple symmetries in
its environment.

The Legion II map is in the shape of a large hexagon,
divided into small hexagonal cells to discretize the placement
of game objects such as legions and cities (figure 1). Moves

are taken in sequential turns. During a turn each legion makes
a move, and then each barbarian makes a move. All moves
are atomic, i.e. during a game agent’s move it can either elect
to remain stationary for that turn or else move into one of the
six hexagons of the map tiling adjacent to its current position.

Only one agent, whether legion or barbarian, can occupy
any map cell at a time. A legion can bump off a barbarian by
moving into its cell as if it were a chess piece; the barbarian is
then removed from play. Barbarians cannot bump off legions:
they can only hurt the legions by running up the pillage score.
Neither legions nor barbarians can move into a cell occupied
by one of their own kind, nor can they move off the edge of
the map.

A game is started with the legions and cities placed at
random positions on the map; the combinatorics allow a vast
number of distinct game setups. The barbarians enter play
at random unoccupied locations, one per turn. If the roving
legions do not eliminate them they will accumulate over time
until the map is almost entirely filled with barbarians, costing
the province a fortune in goods lost to pillage.

Fig. 2. A legion’s sensor fields. A legion’s sensor array divides the world into
six symmetrical “pie slices”, centered on the legion itself (black lines). The
objects i falling within a slice are detected as the scalar aggregate

P
i 1/di,

where d is the hexagonal Manhattan distance to the object (white arrow). For
any given sensory input the symmetries in the sensor architecture allow a set
of six 60◦ rotations about the legion, plus a reflection of each rotation, for
a total of twelve isomorphic sensory views of the world. If a legion makes
the optimal move in all circumstances, then a reflection and/or rotation of
its sensory inputs produces a corresponding reflection and/or rotation in its
choice of moves. This behavioral invariant allows artificial training examples
to be constructed from reflections and rotations of human-generated training
examples.

Play continues for 200 turns, with the losses to pillage
accumulated from turn to turn. At the end of the game the
legions’ score is the amount of pillage lost to the barbarians,
rescaled to the range [0, 100] so that the worst possible score
is 100. Lower scores are better for the legions, because they
represent less pillage. The learning methods described in this
paper allow the legions to learn behaviors that reduce the score

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.

http://nn.cs.utexas.edu/keyword?ATA
http://nn.cs.utexas.edu/keyword?ATA


to around 6 when tested on a random game setup never seen
during training (i.e. to reduce pillage to about 6% of what the
province would suffer if they had sat idle for the entire game).

The barbarians are programmed to follow a simple strategy
of approaching cities and fleeing legions, with a slight prefer-
ence for the approaching. The are not very bright, which suits
the needs of the game and perhaps approximates the behavior
of barbarians keen on pillage.

B. Agent sensors and controllers

The legions must be trained to acquire appropriate behav-
iors. They are provided with sensors that divide the map up
into six pie slices centered on their own location (figure 2).
All the relevant objects i in a pie slice are sensed as a single
scalar value, calculated as

∑
i 1/di. This design provides only

a fuzzy, alias-prone sense of what is in each sector of the
legion’s field of view, but it works well as a threat/opportunity
indicator: a few barbarians nearby will be seen as a sensory
signal similar to what would be seen of a large group of
barbarians further away.

NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

Fig. 3. A legion’s sensor architecture. Each sensor array for a legion consists
of three sub-arrays as shown here. A single-element sub-array (left) detects
objects colocated in the map cell that the legion occupies. Two six-element
sub-arrays detect objects in the six radial fields of view; one only detects
adjacent objects, and the other only detects objects farther away. The legions
are equipped with three complete sensor arrays with this structure, one each
for detecting cities, barbarians, and other legions. The three 13-element arrays
are concatenated to serve as a 39-element input layer for an artificial neural
network that controls the legion’s behavior (figure 4). Artificial reflections
and rotations of a legion’s view of the world can be generated on demand
by appropriate permutations of the activation values of the sensors in the
sub-arrays.

There is a separate sensor array for each type of object in
play: cities, barbarians, and other legions. There are additional
sensors in each array to provide more detail about what is in
the map cells adjacent to the sensing legion, or colocated in
the legion’s own cell (figure 3). In practice only a city can
be in the legion’s own cell, but for simplicity the same sensor
architecture is used for all three object types.

The scalar sensor values, 39 in all, are fed into a feed-
forward neural network with a single hidden layer of ten
neurons and an output layer of seven neurons (figure 4). The
output neurons are associated with the seven possible actions a
legion can take in its turn: remain stationary, or move into one
of the six adjacent map cells. This localist action unit coding
is decoded by selecting the action associated with the output
neuron that has the highest activation level after the sensor
signals have been propagated through the network.

The Legion II sensor architecture allows reflections and
rotations of the world about a legion’s egocentric viewpoint.
The transformations can be represented by permutations of the
values in the sensors. For example, a north-south reflection

X NE E SE SW W NW

Hidden
Layer
Neurons

Key:

Neuron

Scalar

S
ig

na
l P

ro
pa

ga
tio

n

Output
Neurons

Controller Outputs

Sensor Inputs (39 elements)
...

Fig. 4. A legion’s controller network. During play the values obtained by a
legion’s sensors are propagated through an artificial neural network to create
an activation pattern at the network’s output. This pattern is then interpreted as
a choice of one of the discrete actions available to the legion. When properly
trained, the network serves as the controller for the legion as an intelligent
agent.

can be implemented by swapping the northwest (NW) sensor
values with the southwest (SW), and the NE with the SE.
Similarly, a 60◦ clockwise rotation can be implemented by
moving the sensor values for the eastern (E) sector to the
southeastern (SE) sensor, for the SE to the SW, etc., all the
way around the legion. The legions’ choices of action for a
reflected or rotated sensory input can be reflected or rotated
by the same sort of swapping. For example, a 60◦ clockwise
rotation would convert the choice of a NE move to an E move.
The option to remain stationary is not affected by reflections
or rotations: if a legion correctly chooses to remain stationary
with a given sensory input, it should also remain stationary
for any reflection or rotation of that input.

III. EXPERIMENTAL EVALUATION

Experiments were designed to test two hypotheses: first, that
exploiting symmetric transformations can broaden the range of
experience made available to the agents during training, and
thus result in improved performance at their task; and second,
that exploiting symmetric transformations during training can
make the agents’ response to environments not seen during
training measurably more consistent. These hypotheses were
tested by training sets of networks with human-generated
examples, with or without supplementary examples created by
reflecting and/or rotating them, and then applying appropriate
metrics to the trained agents’ performance and behavior during
runs on a set of test games.

After a summary of the experimental methodology in sec-
tion III-A, the first hypothesis is examined in section III-B and
the second in section III-C.

A. Experimental methodology

Examples of human play were generated by providing
Legion II with a user interface and playing 12 games, with the
game engine recording the sensory input and associated choice
of action for each of the 1,000 legion moves during a game.
Each game was played from a different randomized starting
setup in order to provide a greater diversity of examples.

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.



In an Adaptive Team of Agents all of the agents have
identical control policies [1]. This design is implemented in
Legion II by using the same neural network to control each
legion. Such uniform control means that all the examples
recorded for the various legions during play can be pooled
into a single set for training a controller network.

Artificial examples were created by the training program at
run time, by permuting fields in the human-generated examples
according to the patterns described in section II-B above. Since
the legions in Legion II have no distinguished orientation, all
the reflections were generated by flipping the sensory input
and choice of move from north to south. When both reflections
and rotations were used, the N-S reflection was applied to each
rotation, to create a full set of twelve distinct training examples
from each original.

The four possibilities of using vs. not using reflections
and/or rotations define four sets of training examples. The
choice between these sets defines four training methods for
comparison. The four methods were used to train the standard
Legion II controller network (figure 4) with backpropagation
[2]. Training was repeated with from one to twelve games’
worth of examples for each method. Due to the relatively large
number of examples available, the learning rate η was set to
the relatively low value of 0.001. On-line backpropagation
was applied for 20,000 iterations over the training set, to
ensure that none of the networks were undertrained, and the
presentation order of the examples was reshuffled between
each iteration.

After every tenth iteration of backpropagation across the
training set the network in training was tested against a
validation set, and saved if its performance was better than at
any prior test on that set. At the end of the 20,000 iterations the
most recently saved network was returned as the output of the
training algorithm; this network provides better generalization
than the network at the end of the training run, which may
suffer from overtraining.

Validation was done by play on a set of actual games
rather than by classifying a reserved set of test examples,
so all the example moves were available for use in training.
The validation set consisted of ten games with randomly
generated setup positions and barbarian arrival points; they
were reproduced as needed by saving the internal state of a
random number generator at the start of training and restoring
it each time it was necessary to re-create the validation set.
Strict accounting on the number of random numbers consumed
during play ensured that the same validation set was created
each time.

Each differently parameterized training regime – method
× number of games’ examples used – was repeated 31
times with a different seed for the random number generator
each time, producing a set of 31 networks trained by each
parameterization. The seed controlled the randomization of the
network’s initial weights and generation of the validation set
for that run. The 31 independent runs satisfy the requirement
of a sample size of at least 30 when using parametric statistical
significance tests [3], plus one extra so that there is always a

clearly defined median performer if ever a single run needs to
be singled out as “typical” for plotting or analysis.

After training, each network was tested by play on set of 31
test games, created randomly like the validation sets, but using
a different seed to ensure independence from them. Unlike
the validation games, the same 31 test games were used to
evaluate every network. The test score for a training run was
defined as the average score its network obtained on those 31
games. Thus there were 31 independent training runs for each
parameterization, and the network produced by each training
run was tested on a constant set of 31 games. The results of
these tests are presented in the following sections.

B. Effect on performance

The first experiment illustrates the effect of adding artifi-
cially generated training examples on the performance of the
controller networks. Networks were trained by each method on
from one to twelve games’ worth of examples. As described
in section III-A, each game provided 1,000 human-generated
examples, and the reflections and rotations greatly increased
this number.

2 4 6 8 10 12

0
5

10
15

Number of Example Games

A
ve

ra
ge

 T
es

t S
co

re

Human examples only
Human + reflections
Human + rotations
Human + both

Fig. 5. Effect of generated examples on performance. Lines show the
average test score for 31 runs of each method vs. the number of example
games used for training. (Lower scores are better.) Each game provided 1,000
human-generated examples; reflections increased the number of examples to
2,000 per game, rotations to 6,000, and both together to 12,000. All three
symmetry-exploiting methods provided significant improvement over the base
method throughout the range of available examples, albeit by a diminishing
amount as more human examples were made available.

The results of the experiment, summarized in figure 5,
show that an increase in the number of example games gen-
erally improved learning when the human-generated examples
alone were used for training, although with decreasing returns
as more games were added. The three methods using the
artificially generated examples improved learning over the

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.



use of human examples alone, regardless of the number of
games used; each of the three provided statistically significant
improvement at the 95% confidence level everywhere. The
improvement was very substantial when only a few example
games were available, and the best performance obtained
anywhere was when both reflections and rotations were used
with only five games’ worth of examples.

Rotations alone provided almost as much improvement as
reflections and rotations together, and at only half the training
time, since it only increased the number of exmples per game
to 6,000 rather than 12,000. Thus in some circumstances
using rotations alone may be an optimal trade-off between
performance and training time. Reflections alone increased
training only to 2000 examples per game, 1/3 of what rotations
alone provided, but with substantially less improvement in per-
formance when fewer than six example games were available.

It is worthwhile to understand how much of the improved
performance resulted from the increased number of training
examples provided by the reflections and rotations, vs. how
much resulted from the fact that the additional examples were
reflections and rotations per se. A second experiment exam-
ined this distinction by normalizing the number of examples
used by each method. For example, when a single example
game was used in the first experiment, the human-example-
only method had access to 1,000 examples, but the method
using both reflections and rotations had access to 12 × 1,000
examples. For this second experiment the various methods
were only allowed access to the same number of examples,
regardless of how many could be created by reflections and
rotations.

It was also necessary to control for the structural variety
of the examples. Such variety arises from the fact that each
training game is played with a different random set-up – most
importantly, with randomized locations for the cities. In some
games the cities are scattered, while in other games they are
placed near one another. This sort of variety is very beneficial
to generalization: the games in the test set may not be similar
to any of the individual games in the human-generated training
set, but agents exposed to a greater variety of set-ups during
training learn to manage previously unseen situations better.
Thus if the training example count is normalized by using the
12,000 human-generated examples from the twelve example
games, to be compared against training with the 12,000
examples generated by applying reflections and rotations to
the 1,000 human-generated examples from a single example
game, the latter method will have less structural variety in its
training examples, and its generalization will suffer.

So the second experiment controlled for both count and
structural variety by selecting examples at random, without
replacement, from the full set of 12,000 human-generated
examples available for use. When the method of using human-
generated examples alone selected n examples at random, the
method using reflections selected n/2 examples and doubled
the count by reflecting, the method using rotations selected
bn/6c examples and multiplied the count by six by rotating,
and the method using both reflections and rotations selected

bn/12c examples and multiplied the count by twelve by
reflecting and rotating. Since each method drew its randomly
selected examples from the full set of the 12,000 available
human-generated examples, each sampled the full structural
variety of the examples. The divisions equalized the counts,
to within rounding errors.

2 4 6 8 10 12

0
5

10
15

Number of Examples (thousands)

A
ve

ra
ge

 T
es

t S
co

re

Human examples only
Human with reflections
Human with rotations
Human with both

Fig. 6. Effect of reflections and rotations on performance. Lines show the
average test score for 31 runs of each method vs. the number of examples used
for training, when the examples used by the four methods were controlled
for count and structural variety. The tight clustering of the performance
curves shows that most of the improvements obtained by using reflections
and rotations in the the first experiment (figure 5) were the result of the
increased number of training examples they provided, rather than being the
result of the use of reflections and rotations per se.

The results of the experiment, shown in figure 6, show
little difference in the performance of the four methods when
their training examples are controlled for count and structural
variety. Thus most of the improvements obtained in the first
experiment were the result of the increased number of training
examples generated by the reflections and rotations, rather than
by the fact that the additional examples were reflections or
rotations per se.

C. Effect on behavioral consistency

Further experiments reveal the effect of artificially generated
examples on the detailed behavior of the legions. As described
in section I, a perfectly trained legion will show behavior that
is invariant with respect to reflections and rotations. That is, if
its sensory view of the world is reflected and/or rotated, then
its response will be reflected and/or rotated the same way.

Although legion controllers trained by machine learning
techniques are not guaranteed to provide perfect play, training
them with reflected and/or rotated examples should make them
behave more consistently with respect to reflections and rota-
tions of their sensory input. This consistency can be measured

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.



2 4 6 8 10 12

0
5

10
15

20

Number of Example Games

A
ve

ra
ge

 C
on

si
st

en
cy

 E
rr

or
 R

at
e 

(%
)

Human examples only
Human + reflections
Human + rotations
Human + both

Fig. 7. Effect of generated examples on consistency. Lines show the
average consistency error rates for 31 runs of each method, vs. the number
of example games used for training. (Lower rates are better.) All three
symmetry-exploiting methods provided a significant improvement in consis-
tency throughout the range of available examples.

when playing against the test set by generating reflections and
rotations of the sensory patterns actually encountered during
the test games, and making a side test of how the legions
respond to those patterns. These responses are discarded after
testing, so that they have no effect on play. For each move
in a test game a count is made of how many of the twelve
possible reflections and rotations result in a move that does not
conform to the desired behavioral invariant. Each such failure
is counted as a consistency error, and at the end of the test a
consistency error rate can be calculated.

Since the perfect move for a legion is not actually known,
the consistency errors are counted by deviation from a majority
vote. That is, for each reflection and/or rotation of a sensory
input, a move is obtained from the network and then un-
reflected and/or un-rotated to produce an “absolute” move.
The 12 absolute moves are counted as votes, and the winner
of the vote is treated as the “correct” move for the current game
state [4]. The reflections and rotations that do not produce a
move that corresponds to the same reflection or rotation of the
“correct” move are counted as consistency errors.

All of the networks produced by the performance experi-
ments described in section III-B were tested to examine the
effect of the various training regimes on behavioral consis-
tency. The results, summarized in figure 7, show that the three
methods using reflections and rotations reduce consistency
errors substantially in comparison to the base method of using
only the human-generated examples, regardless of how many
example games are used. In every case the improvements were
statistically significant at the 95% confidence level. The best

2 4 6 8 10 12

0
5

10
15

20

Number of Examples (thousands)

A
ve

ra
ge

 C
on

si
st

en
cy

 E
rr

or
 R

at
e 

(%
)

Human examples only
Human with reflections
Human with rotations
Human with both

Fig. 8. Effect of reflections and rotations on consistency. Lines show the
average consistency error rates for 31 runs of each method vs. the number
of examples used for training, when the examples used by the four methods
were controlled for count and structural variety. The substantial gaps between
the lines show that much of the improvement obtained by using reflections
and rotations in the the third experiment (figure 7) were the result of the use
of reflections and rotations per se, rather than merely being a result of the
increased number of training examples they provided.

consistency was obtained when both reflections and rotations
were used, and as with the performance experiment (figure 5),
a local minimum was obtained when relatively few training
games were used (six in this case). The consistency error rate
for this optimal method is approximately flat thereafter.

Again, it is worthwhile to understand how much of the
reduced consistency error rate resulted from the increased
number of training examples provided by the reflections and
rotations, vs. how much resulted from the fact that the addi-
tional examples were reflections and rotations per se. Thus
the networks from the normalization experiment were also
tested for behavioral consistency. The results, shown in figure
8, show the familiar trend of improvement as the number of
training examples increases, but also show very substantial
differences between the four methods, even when their training
examples are controlled for count and structural variety. Thus
much of the improvement in the consistency error rate in the
uncontrolled experiment (figure 7) can be attributed to the fact
that the generated examples used reflections and/or rotations
per se, rather than simply resulting from the increased number
of training examples.

IV. DISCUSSION AND FUTURE WORK

The experiments show that training intelligent agents for
games and simulators can benefit from the extra examples
artificially generated from reflections and rotations of available
human-generated examples. In accord with the hypotheses

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.



stated in section III, the technique results in agents that score
better in the game and behave more consistently.

The improved performance scores were shown to result
primarily from the increased number of training examples
provided by the reflections and rotations, but the improved
behavioral consistency resulted largely from the fact that those
examples were reflections and rotations per se. In principle,
reflections and rotations per se could improve performance
scores as well, by providing a more systematic coverage of the
input space. However, in Legion II, the base method already
provided over 80% consistency with respect to reflections and
rotations when only a single game’s examples were used for
training (figure 7). The agents quickly learned the symmetries
necessary for the situations that had the most impact on their
game scores. Further improvements in behavioral consistency
provided polish, but had no substantial impact on the scores. In
other domains the base coverage may be more idiosyncratic,
so that reflections and rotations per se would significantly
improve performance.

The combination of both reflections and rotations provided
the best results throughout. That method provided the best per-
formance and consistency when relatively few example games
were made available for training, five and six games respec-
tively. This is a very promising result, because it suggests that
good training can be obtained without excessive human effort
at generating examples. Rapid learning from relatively few
examples will be important for training agents in a Machine
Learning Game [5], where a player trains game agents by
example at run time, and for simulations where agents must
be re-trained to adapt to changed environments, doctrines, or
opponent strategies. Future work will thus investigate whether
rapid learning from relatively few examples is seen in other
applications, and also whether a greatly increased number of
human-generated examples will ever converge to the same
optimum.

The number of examples that can be generated from sym-
metries depends critically on the sensor geometry of the agent
being trained. The number of radial sensors may vary with the
application and implementation, providing a greater or lesser
number of rotations. However, if radial sensors do not all
encompass equal arcs then rotations may not be possible at
all. For example, the agents in the NERO video game [5] also
use “pie slice” sensors, but with narrower arcs to the front
than to the rear, in order to improve their frontal resolution.
There is therefore no suitable invariant for the rotation of the
NERO agents’ sensors.

However, the NERO agents, and probably most mechanical
robots as well, have a bilateral symmetry that allows applying
the behavioral invariant for reflections across their longitudinal
axis. The results presented in this paper show that artificially
generated examples provide significant training benefits even
when only reflections are used, especially when relatively few
human-generated examples are available (figures 5 and 7).
Thus the methods examined here should prove useful even
in situations with far more restrictive symmetries than in
the Legion II game. On the other hand, agents operating in

three-dimensional environments, such as under water or in
outer space, may have a greater number of symmetries to be
exploited, offering even greater advantage for these methods.
Future work will also investigate the effect of exploiting
symmetries in boardgames with symmetrical boards, such
as Go, where an external player-agent manipulates passive
playing pieces on the board.

Supervised learning is not always the best way to train
agents for environments such as Legion II. Work in progress
shows that training with neuroevolution ([6], [7], [8], [5]),
using on-line gameplay for fitness evaluations, can produce
controller networks that perform somewhat better than those
produced by backpropagation in the experiments reported here.
However, evolutionary results can sometimes be improved
by combining evolution with supervised learning. Thus an
obvious avenue of future work is to use examples artificially
generated from sensor symmetries with methods such as
Baldwinian or Lamarckian evolution ([9], [10]) in order to
improve performance and behavioral consistency, the way
they benefited ordinary backpropagation in the experiments
reported in this paper.

V. CONCLUSIONS

Intelligent agents with sense-response controllers often have
symmetries in their sensor architecture, and it is then possible
to define behavioral invariants that would be observed across
those symmetries by perfectly trained agents. This observa-
tion suggests that symmetrical invariants of sense-response
behavior can be exploited for training the agents, making
their responses more symmetrical and effective. This paper
shows that both types of improvement are obtained in a game-
like test environment, and suggests that further attempts to
exploit sensor symmetries may provide similar benefits in
other environments and with other learning methods.

ACKNOWLEDGMENTS

This research was supported in part by the Digital Media
Collaboratory at the IC2 Institute at the University of Texas
at Austin. The images used in Legion II’s animated display
are derived from graphics supplied with the game Freeciv,
http://www.freeciv.org/.

REFERENCES

[1] B. D. Bryant and R. Miikkulainen, “Neuroevolution for adaptive
teams,” in Proceeedings of the 2003 Congress on Evolutionary
Computation (CEC 2003), vol. 3. Piscataway, NJ: IEEE, 2003,
pp. 2194–2201. [Online]. Available: http://www.cse.unr.edu/∼bdbryant/
papers/bryant-2003-cec.pdf

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
MA: MIT Press, 1986, pp. 318–362.

[3] R. R. Pagano, Understanding Statistics in the Behavioral Sciences,
2nd ed. St. Paul, MN: West Publishing, 1986.

[4] B. D. Bryant, “Virtual bagging for an evolved agent controller,” 2006,
manuscript in preparation.

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.

http://www.freeciv.org/
http://www.cse.unr.edu/~bdbryant/papers/bryant-2003-cec.pdf
http://www.cse.unr.edu/~bdbryant/papers/bryant-2003-cec.pdf


[5] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time
neuroevolution in the NERO video game,” IEEE Transactions
on Evolutionary Computation, vol. 9, no. 6, pp. 653–668,
2005. [Online]. Available: http://www.cse.unr.edu/∼bdbryant/papers/
stanley-2005-tec.pdf

[6] J. Branke, “Evolutionary algorithms for neural network design
and training,” in Proceedings 1st Nordic Workshop on Genetic
Algorithms and Its Applications, J. T. Alander, Ed. Vaasa, Finland:
University of Vaasa Press, 1995, pp. 145 – 163. [Online]. Available:
http://citeseer.nj.nec.com/branke95evolutionary.html

[7] X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999. [Online]. Available:
ftp://www.cs.adfa.edu.au/pub/xin/yao ie3proc online.ps.gz

[8] F. Gomez, “Robust non-linear control through neuroevolution,” Ph.D.
dissertation, Department of Computer Sciences, The University of Texas
at Austin, 2003.

[9] R. K. Belew and M. Mitchell, Eds., Adaptive Individuals in
Evolving Populations: Models and Algorithms. Reading, MA:
Addison-Wesley, 1996. [Online]. Available: http://www.santafe.edu/sfi/
publications/Bookinforev/ipep.html

[10] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution,
the Baldwin effect and function optimization,” in Proceedings of the
International Conference on Evolutionary Computation, Y. Davidor, H.-
P. Schwefel, and R. Maenner, Eds., vol. 866, Jerusalem, Israel, October
1994.

Copyright 2006 IEEE. In Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG’06), pp. 90-97. Piscataway, NJ: IEEE Press.

http://www.cse.unr.edu/~bdbryant/papers/stanley-2005-tec.pdf
http://www.cse.unr.edu/~bdbryant/papers/stanley-2005-tec.pdf
http://citeseer.nj.nec.com/branke95evolutionary.html
ftp://www.cs.adfa.edu.au/pub/xin/yao_ie3proc_online.ps.gz
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html

	I Introduction
	II The learning environment
	II-A The Legion II game/simulator
	II-B Agent sensors and controllers

	III Experimental evaluation
	III-A Experimental methodology
	III-B Effect on performance
	III-C Effect on behavioral consistency

	IV Discussion and future work
	V Conclusions
	References

