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Abstract
Much of artificial intelligence research is focused on devis-
ing optimal solutions for challenging and well-defined but
highly constrained problems. However, as we begin creat-
ing autonomous agents to operate in the rich environments
of modern videogames and computer simulations, it becomes
important to devise agent behaviors that display the visible
attributes of intelligence, rather than simply performing op-
timally. Such visibly intelligent behavior is difficult to spec-
ify with rules or characterize in terms of quantifiable objec-
tive functions, but it is possible to utilize human intuitions to
directly guide a learning system toward the desired sorts of
behavior. Policy induction from human-generated examples
is a promising approach to training such agents. In this pa-
per, such a method is developed and tested using Lamarckian
neuroevolution. Artificial neural networks are evolved to con-
trol autonomous agents in a strategy game. The evolution is
guided by human-generated examples of play, and the system
effectively learns the policies that were used by the player to
generate the examples. I.e., the agents learn visibly intelli-
gent behavior. In the future, such methods are likely to play
a central role in creating autonomous agents for complex en-
vironments, making it possible to generate rich behaviors de-
rived from nothing more formal than the intuitively generated
examples of designers, players, or subject-matter experts.

Introduction
In the field of artificial intelligence we ordinarily seek opti-
mal solutions to difficult problems. For example, we search
for the shortest paths, lowest-cost plans, most accurate pre-
dictions, and so forth. For game applications that require-
ment may vary somewhat; for example, a game-playing AI
may need to offer various levels of competence, i.e. provide
several levels of difficulty that challenge a player by just the
appropriate amount, or it may need to be somewhat unpre-
dictable in order to maintain players’ interest.

In videogames and computer simulations, AI controllers
face a special requirement: agent behavior has to be visi-
bly intelligent. That is, the behavior of the agents must look
right to observers, sometimes even at the expense of opti-
mal performance. For example, the agents should be able
to adopt different behaviors at different times, and differ-
ent roles in a team; they should be able to generalize their
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actions to new contexts, and create novel actions in old con-
texts (Bryant 2006).

In such visible contexts it is especially important for
agents to observe some specific behavioral policy, rather
than simply optimizing their actions: Game players expect
different types of creatures to behave differently, and appro-
priately for their kind. Nor is the target design for such be-
haviors always simply “smart”; games and simulators must
sometimes model agents that behave suboptimally or even
outright foolishly, though still believably.

Experience with the AI agents in commercial videogames
suggest that directly programming such behaviors is not an
easy task. Nor is it cheap; the US Army spent millions of
dollars to acquire AI automation for the OPFOR opponent
in its OneSAF military simulator. Even when delivered and
debugged, a similar cost and delay will be faced whenever
it becomes necessary to model a new potential enemy that
follows a different operational doctrine.

Thus it is natural to consider using machine learning
methods to train the necessary controllers. However, ma-
chine learning research – like most of the rest of our AI ef-
forts – has traditionally focused on obtaining solutions that
are optimal, i.e. result in maximum values for a formally
specified reward function. However, when the goal is to gen-
erate visibly intelligent behavior in a rich environment, such
a function is very difficult to specify. The state and action
spaces are extremely large, and the goal of the learning is
inherently subjective. It may be as difficult to specify the
necessary reward function as it would be to program the tar-
get behavior directly.

Therefore it is useful to consider mechanisms for guid-
ing learning by means of human-generated examples of the
target behavior (figure 1). If learning algorithms can be de-
vised to exploit such examples in order to induce the behav-
ioral policies that created them, it will become possible to
create AI controllers for sophisticated behaviors without the
need for knowledge engineers or AI programmers. Subject-
matter experts such as game designers or intelligence offi-
cers will be able to generate appropriate examples based on
their intuitions, and the learning system will be able to dis-
till the target behavioral policy from those examples. Such a
system would offer substantial improvements over the meth-
ods now used to produce AI controllers for games and sim-
ulators, and potentially provide improved behavioral mod-
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Figure 1: Policy induction in a game context. Human exam-
ples of play can be captured by writing an observer into the game
engine, and the examples collected by the observer can be used to
help train a controller for a game agent.

elling as a result.
Computational intelligence has recently shown promise

for creating artificial intelligence in games, and neuroevolu-
tion in particular has been used to create agents that adapt
their behavior in complex simulated environments (Miikku-
lainen et al. 2006). This paper presents a mechanism for
using human-generated examples to guide neuroevolution to
visibly intelligent behavioral policies. The method is eval-
uated in a formal strategy game where its success can be
measured quantitatively. The method is shown to not simply
copy the examples, but to induce the policies behind them,
providing a promising starting point for creating visibly in-
telligent behavior for games and simulators more generally.

Background
This section provides background for the policy induction
experiments. The first subsection describes the strategy
game in which the autonomous agents operate. The neu-
roevolutionary algorithm that is normally used to train them
is then described, followed by the modification to that algo-
rithm for the policy induction experiments.

The Legion II Game/Simulator
Legion II is a discrete-state strategy game designed to test
adaptive behavior in teams of autonomous intelligent agents.
The game pits legions against barbarian warbands on a map
that represents a province of the Roman empire at an ab-
stract level (figure 2). The legions, each represented as a
single agent with an egocentric view of the world state, must
learn to protect the cities and farms of the province against
a steady influx of barbarian pillagers. Since the cities are by
far the most lucrative source of pillage it is essential to pro-
tect each with a garrison. Any legions beyond the number
required for the garrisons are free to roam the countryside to
disperse the barbarians pillaging the farms. An in situ divi-
sion of labor is necessary in order to minimize the pillaging:
if the legions merely garrison the cities, the number of bar-
barians in the countryside builds up over the course of the

Figure 2: The Legion II game. A large hexagonal playing area
is tiled with smaller hexagons in order to quantize the positions
of the game objects. Legions are shown iconically as close pairs
of men ranked behind large rectangular shields, and barbarians
as individuals bearing an axe and a smaller round shield. Each
icon represents a large body of men, i.e. a legion or a warband.
Cities are shown in white, with any occupant superimposed. All
non-city hexes are farmland, shown with a mottled pattern. The
game is a test bed for multi-agent learning methods, wherein the
legions must learn to contest possession of the playing area with
the barbarians. Animations of the Legion II game can be viewed at
http://nn.cs.utexas.edu/keyword?ATA.

game, and an unacceptable amount of pillage is inflicted on
the province.

The legions sense the game state via radial “pie-slice”
radar sensors. Separate sensor arrays are used to detect
the various game objects: cities, barbarians, and other le-
gions. Each sensor returns

∑
i

1
di

, where d is the hex-grid
generalization of Manhattan distance and i indexes all the
objects of the relevant type in the sensor’s field of view.
This sensor architecture gives only a fuzzy, alias-prone view
of the game state. However, the system works well as a
threat/opportunity indicator: a high sensor activation indi-
cates either a few objects nearby or else a greater number
at a greater distance. In order to improve the legion’s lo-
cal decision-making ability, additional point sensors are pro-
vided to indicate the presence of objects colocated with the
sensing legion, or in a directly adjacent map cell (figure 3).

In order to control the legions during a game, their scalar
sensor values, 39 in all, are fed through a feed-forward neu-
ral network with a single hidden layer of ten neurons and an
output layer of seven neurons (figure 4). A fixed-value bias
unit is also provided for each neuron. The size of the hid-
den layer was chosen by means of exploratory experiments,
but has not been formally optimized. The output neurons
are associated with the seven possible actions a legion can
take in its turn: remain stationary, or move into one of the
six adjacent map cells. This localist action unit coding is
decoded by selecting the action associated with the output

In Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI-07), pp. 801-808. Menlo Park, CA: AAAI Press.



NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

Figure 3: A legion’s sensor architecture. Each sensor array for
a legion consists of three sub-arrays. A single-element sub-array
(left) detects objects colocated in the map cell that the legion oc-
cupies. Two six-element sub-arrays detect objects in the six radial
fields of view; one only detects adjacent objects, and the other only
detects objects farther away. The legions are equipped with three
complete sensor arrays with this structure, one each for detecting
cities, barbarians, and other legions. The three 13-element arrays
are concatenated to serve as a 39-element input vector for an artifi-
cial neural network that controls the legion’s behavior (figure 4).

neuron that has the highest activation level after the sensor
signals have been propagated through the network (Bryant
& Miikkulainen 2006).

The neural networks are trained by neuroevolution, as de-
scribed below. The same network is used to control each
legion in its turn, forcing an identical control policy upon
each agent in the team. Nevertheless, it is possible to train
the network so that the legions dynamically adopt distinctive
roles in the team – garrison or rover – and act out those roles
on the basis of a sequence of egocentric decisions that are
purely local in space and time.

Neuroevolution with Enforced Sub-Populations
Genetic algorithms can be used to train artificial neural net-
works when annotated training examples and/or error gradi-
ent information are not available (Whitley 1995; Yao 1999).
Many varieties of neuroevolutionary algorithm have been
devised; this work uses neuroevolution with enforced sub-
populations (ESP) (Gomez & Miikkulainen 1999; Gomez
2003).

The ESP algorithm works by dividing genetic represen-
tations into distinct chromosomes, one per neuron in the
network, and maintaining a separate breeding population
for each chromosome. Networks are constructed for fitness
evaluation by drawing one random chromosome from each
of those populations; after the evaluation the measured fit-
ness of the network is ascribed back to each of the chro-
mosomes that were used in its construction (figure 5). The
evaluation is noisy, since a “good” neuron may be evalu-
ated in a network with one or more “bad” neurons, or vice
versa. Since the true fitness of a neuron is dependent on what
sort of neurons are available in the other populations, an im-
proved estimate of its fitness can be obtained by evaluating it
several times per generation, in a network constructed from
a different random selection of neurons each time, and av-
eraging the fitness ratings a neuron obtained in its several
evaluations. When evaluations have been obtained for all
the neurons (or equivalently, the chromosomes), breeding is
done separately for each population. Over time the popula-
tions co-evolve to provide neurons that work well together
to perform the network’s task.

Otherwise, ESP operates as ordinary direct-encoding neu-
roevolution, and evolves only the weights for a pre-specified
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Figure 4: A legion’s controller network. During play the val-
ues obtained by a legion’s sensors are propagated through an artifi-
cial neural network to create an activation pattern at the network’s
output. This pattern is then interpreted as a choice of one of the
discrete actions available to the legion. When properly trained, the
network serves as a “brain” for the legion as an intelligent agent.

network topology. For the experiments reported here, each
neuron was evaluated three times per evolutionary genera-
tion. At the end of each generation a nominal best network
was constructed by selecting the highest-fitness neuron from
each of the populations. That nominal best network was
archived iff it performed better on a validation set of games
than those tested in previous generations. At the end of a
fixed-length run, the most recently archived network was re-
turned as the output of the learning algorithm.

During breeding, 1- and 2-point crossover were used with
equal probability. Point mutations were applied with an in-
dependent 1% chance for each weight. Mutations were ap-
plied as deltas selected from the exponential distribution,
inverted to a negative delta with a 50% chance; this dis-
tribution provides small deltas with a high probability and
large deltas with a low probability, supporting both local and
global search of the solution space.

With the advent of cheap desktop supercomputers and
fast neuroevolutionary algorithms such as ESP, it has be-
come feasible to apply neuroevolution to agent control in
videogames and simulators. Networks in the breeding popu-
lation are evaluated by using them to control an agent during
a game or at some game-relevant task, and the performance
of the agent in the game or task is used as the fitness measure
for the network (Bryant & Miikkulainen 2003; Lucas 2004;
Stanley, Bryant, & Miikkulainen 2005; Miikkulainen et al.
2006; Bryant 2006).

The ESP algorithm has previously proven to be a powerful
approach to reinforcement learning for motor control tasks,
including non-Markov decision problems. It also works well
for the stateless feed-forward networks used as the agent
controllers in the Legion II game.

Lamarckian Neuroevolution
In the early Nineteenth Century, Jean-Baptiste Lamarck pro-
posed a mechanism for biological evolution whereby or-
ganisms passed their phenotypic adaptations along to their
offspring (Lamarck 1809). The suggestion has long since
been rejected, as there is no general mechanism for trans-
ferring such adaptations back into the organism’s genotype
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Figure 5: Neuroevolution with ESP. In neuroevolution with enforced sub-populations (ESP), a separate breeding population is maintained
for each neuron in a network. For the Legion II controller network there are 17 such populations, shown in this figure as {P1, P2, ..., P17}.
Networks are assembled by drawing one chromosome at random from the population associated with each position in the network and
instantiating the neurons the chromosomes represent (gray arrows). The resulting network is tested in the environment and its fitness is
ascribed back to each of the chromosomes that specified its neurons. The process is repeated until a fitness score has been determined for
every chromosome in all of the sub-populations, at which time an evolutionary generation is complete. Each population is then updated by
selective breeding with random crossovers and mutations, independently of the other populations. As generations pass, the sub-populations
co-evolve to produce chromosomes describing neurons that work well with the others in the network.

for propagation to its offspring. However, for evolutionary
algorithms it is possible to incorporate phenotypic adapta-
tion back into the genotype via reverse engineering. For ex-
ample, if an adaptation step is added to the evolutionary life
cycle in neuroevolution, any resulting modifications to a net-
work’s weights can be written back to the network’s repre-
sentation in the evolutionary population (Grefenstette 1991;
Whitley et al. 1993; Ku, Mak, & Siu 2000). This Lamarck-
ian model was used for guiding evolution with examples in
the experiments reported below.

Examples were generated by having a human play the
game according to some target behavioral policy (i.e., game
strategy). Due to the discrete-state nature of the Legion II
game, examples are easily recorded as <state, action> tu-
ples for each decision made over the course of a game. The
states were recorded in terms of the egocentric sensor val-
ues of the legion being moved, in order to be isomorphic
with the inputs that the trained legions’ controller network
would receive during autonomous play (figure 6). Since the
legions are coerced to share a common control policy, de-
spite the necessity of adopting roles in their team adaptively,
the training examples created for all the legions in a game
were pooled into a common training corpus, regardless of
the individual legions’ roles at any given time.

Since the training examples record game states in the
same form used by the controller network, and record ac-
tions as on of the discrete values obtained by decoding
the network’s outputs, the Lamarckian adaptation can be
implemented with backpropagation (Rumelhart, Hinton, &
Williams 1986). This adaptation is orthogonal to the use of
ESP: since ESP uses direct encodings for the neurons in a
network, the weight modifications resulting from the back-
propagations are simply written back into the chromosomes
that defined the current network. Such orthogonal “plug-
and-play” mechanisms are likely to play an important role
in further progress at applying computational intelligence

methods to the challenges provided by the rich environments
of videogames and computer simulations.

Experimental Evaluation
This section describes the experimental evaluation of neu-
roevolutionary policy induction in the Legion II game. The
first subsection gives details of the experimental procedures,
and the second describes the overall performance at policy
induction and the types of behavior learned.

Procedures
A family of distinctive operational doctrines, or control poli-
cies, was defined to constrain the legions’ behavior. The
doctrines are parameterized according to “level”, the max-
imum distance d ≥ 0 that a garrison is allowed to move
away from its city. Thus a garrison following doctrine L0

will never leave its city, a garrison following doctrine L1

will never move more than one map cell away from its city,
and so on. In addition, the doctrines require a garrison to
return to its city and remain there whenever there are no bar-
barians within radius d of that city.

The garrisons were also required to observe a safety con-
dition without regard to the level of doctrine in use. The
safety condition specifies that a garrison may not end its
turn with a barbarian as close to the city as the garrison,
or closer. The legion may not select a move that violates the
condition, and if a violation arises due to a barbarian’s move
the garrison must immediately return to the city if it cannot
eliminate that barbarian with its current move. A side effect
of the safety condition is that whenever there is more than
one barbarian adjacent to a city, the garrison cannot leave
the city to eliminate one of them. Otherwise one of the other
barbarians would be able to move into the city on its own
turn, and get in a turn of pillaging it before the garrison is
able to return.
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Figure 6: Training examples for the Legion II game. To train agents for the Legion II game, the captured <state, action> tuples consist
of the legion’s egocentric sensory perception of the game state and the human’s choice of a discrete action for the legion. For example, if the
human chooses to move the legion at the upper right to the west when the map is in the game state shown, the built-in observer records the
39-element pattern of the legion’s sensor activations and the discrete symbolic choice “West”.

A human played twelve example games using each doc-
trine, using different randomized starting positions for each
game. Due to the low resolution of the legions’ sensors at
d > 1, only doctrines L0 and L1 were used in the experi-
ments. The player controlled all five legions in each game,
creating a total of 1,000 contextual example moves per 200-
turn game. The examples generated by the twelfth game
in each of the two sets were reserved for test data, leaving
11,000 training examples for each of the two doctrines stud-
ied.

Controller networks were trained for 5,000 generations
with Lamarckian neuroevolution, using a single iteration of
backpropagation on the training examples for the phenotypic
adaptation. Adding backpropagation with a large number of
training examples to every candidate solution’s fitness eval-
uation can greatly increase the run time of a neuroevolution-
ary algorithm. Therefore the experiments used only a ran-
dom subset of the 11,000 available examples each time a
phenotype was trained. The general trend was that increas-
ing the sample size increased the accuracy of the policy in-
ductions, as well as the run times (Bryant 2006). Due to
space limitations, only the results for using a sample size of
5,000 are described below.

For comparison, additional controller networks were
trained using backpropagation only, using all 11,000 training
examples for 20,000 epochs. The choice of 20,000 epochs
was not intended to equalize some measure of the amount
of training provided by the two methods; rather, the choice
of 5,000 generations and 20,000 epochs put the learners far
out on the “flat” of their asymptotic learning curves, to en-
sure that undertrained networks were not used for testing and
comparison.

Results
The legions learned to perform well in the Legion II game
in all the experimental runs. However, examining success
at policy induction requires metrics for behavioral similarity
rather than for success at the target task per se.

A high-level overview of the experimental results can be
obtained by means of simple coarse-grained behavioral sim-
ilarity metrics. One such metric is the game score. Au-

tonomous agents operating under a specific doctrine (pol-
icy) can be expected to obtain game scores similar to those
obtained by a human player using the same doctrine. No-
tice that since the goal is policy induction rather than task
optimization, higher or lower game scores alone are not in-
dicators of success; successful induction of a less-effective
policy should produce worse scores than an equally success-
ful induction of a more-effective policy.

A second coarse-grained behavioral similarity metric
comes from treating the examples of play reserved from
the twelfth example game for each doctrine as a classifica-
tion problem. Autonomous agents operating under a spe-
cific doctrine (policy) can be expected to make local deci-
sions similar to those made by a player using the same doc-
trine, and thus obtain a high success rate at guessing what
the player did at any game state.

A phase space can be defined by using these two behav-
ioral similarity metrics as the axes. The results of various
methods for policy induction can then be compared visu-
ally by plotting their mean performance on the two metrics
as (x, y) points in the phase space. The results for the cur-
rent experiments are shown in figure 7. Unguided evolution
(asterisk) produces similarity results somewhat distant from
the human using either of the two doctrines, with scores in-
termediate between them and example classification failures
running at about 50%. Example-guided neuroevolution (di-
amonds) pulls the results substantially toward the human-
generated target behaviors along both axes.

The backpropagation-only results are shown for compari-
son. For both doctrines, example-guided evolution produced
results nearer the targets than backpropagation did; slightly
so for the L0 experiments (grey), and substantially so for the
L1 experiments (black).

Surprisingly, the classification-based similarity metric
show errors in the range of 15-20% regardless of the doc-
trine or learning method. That is because the “coarse simi-
larity metric” really is coarse. Some of the player’s decisions
are arbitrary even when playing in compliance with one of
the specified doctrines. For example, when moving toward a
location that requires cutting across the hex-grid on the map
at a diagonal, a zig-zag path must be used. In such cases
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Figure 7: Learning to imitate human behavior. Mean game
scores are plotted against the ability to imitate human decisions in a
previously unseen game. Circles show the mean scores obtained by
human play when using the L0 (grey) and L1 (black) operational
doctrines. Since these scores were obtained while generating the
target behaviors they have a classification error rate of 0%. The star
shows the mean results obtained with unguided neuroevolution, rel-
atively distant from both targets along both axes. Squares show
the results obtained by backpropagation and diamonds the results
obtained by Lamarckian neuroevolution. For both doctrines, the
guided evolution provided results closer to the targets than back-
propagation did.

the LRLRL. . . and RLRLR. . . alternations are equally legiti-
mate, and since the choice is underspecified by the doctrines
there is no reason to suppose that the human player preferred
one over the other. And when the training examples are not
consistent, the trained controller cannot guess what the hu-
man player actually did in any specific case that occurred in
the test data.

To go beyond the high-level overview of the results pro-
vided by the phase plot, more precise behavioral metrics are
required. The key features of the L0 and L1 doctrines are
specified in terms of rules that can be formalized for mea-
surement. During test games the rate of violations of the
safety condition or of the maximum distance a garrison is
allowed to travel from a city can be measured. The doc-
trines also have implications for the mean distance between
the cities and their garrisons over the course of a game, and
this can be measured as well.

Figure 8 shows the results for the rate of safety condi-
tion violations for legions trained for the two doctrines us-
ing unguided neuroevolution, guided neuroevolution, and
backpropagation. The figure shows that both backpropaga-
tion and guided evolution provide better conformance to the
safety condition than unguided evolution does, but for both
doctrines the guided evolution results in controllers that en-
force conformance faster at the start of a game. The con-
clusion is that guided evolution has learned the rules better.
(Cf. figure 7, where the coarse behavioral similarity metric
based on example classifications suggests that backpropaga-
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Figure 8: Learning the rules underlying the human behavior.
Left: The average number of safety condition violations is plotted
vs. game time for the L0 doctrine. Safety violations are impossible
when a garrison remains in its city, so successful learning of the L0

doctrine drives the count to zero. (The initial violation rate is high
due to the random placement of the legions.) The backpropagation-
only solution produces a similar result, but the controllers it pro-
duces are slower to eliminate the violations. Right: The same in-
formation plotted for the L1 doctrine. The violations are reduced
to a very low rate. The backpropagation-only solution produces a
similar result, but again with a slower response.

tion performed slightly better.)
Similar results were obtained when measuring the average

distances from garrisons to their cities and violation rates of
the maximum allowed distance from city to garrison, except
that guided evolution did not produce faster conformance
than backpropagation in the latter case, for the L0 doctrine
only. Thus example-guided neuroevolution provided faster
rule conformance than backpropagation did on five of the
six rule induction tests, and faster + better conformance than
unguided evolution on all six tests. The full set of plots are
given by Bryant (Bryant 2006).

Discussion and Future Work
The experiments show that Lamarckian neuroevolution is a
promising method for inducing visibly intelligent behavioral
policies in autonomous intelligent agents. This result is seen
both through coarse-grained measurements, e.g. by creating
agents that score better or worse according to the dictates
of the target policy, and through examining rule learning for
the formal rules that were merely implicit in the examples
used to guide the evolutionary process.

Future work includes the twin challenges of applying
this method in environments that are continuous in space
and time rather than discrete as in Legion II, and apply-
ing it to controllers that require memory. The continuous
space and time generally require an egocentric controller
to output motor control signals rather than a choice among
discrete actions; training such controllers with neuroevolu-
tion is already commonplace, albeit without the Lamarck-
ian mechanism (Lucas 2004; Stanley, Bryant, & Miikku-
lainen 2005). Memory can be provided by using recurrent
networks; the choice of a simple recurrent network (Elman
1990) makes it straightforward to implement the Lamar-
ckian mechanism used here with backpropagation through
time (Werbos 1990). Work in these two areas is already in
progress in the NERO game and the LagoonCraft naval sim-
ulator.
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In order to evaluate this approach to policy induction in
a wider variety of applications, more rigorous and precise
metrics for success need to be developed. For example, the
error classification metric used in the phase diagram (figure
7) suggests that backpropagation learns one aspect of the tar-
get behaviors slightly better than example-guided evolution
does, but the rule-based metrics (figure 8) suggest the oppo-
site. In order to understand that the latter is more meaning-
ful, a substantial knowledge of the details of the application
is necessary. Moreover, even though it is possible to quan-
tify performance differences using rule-based metrics – e.g.
by integrating the area between the curves for backpropa-
gation and example-guided evolution in figure 8 – it is not
clear how such quantities should be interpreted. If the area
between the curves is, say, 5.23, how much better or worse
is that, and in what way? It is possible that the usual quanti-
tative measures of performance in AI and machine learning
need to be replaced by more qualitative ones like those used
for behavior analysis in psychology.

When the Lamarckian mechanism of adaptation was
added to the ESP algorithm for neuroevolution, the other
conventions of neuroevolution remained unchanged. In par-
ticular, game scores were still used to measure fitness. In
some cases it may be advantageous to replace game scores
with a fitness function that rewards at least some of the
higher-level aspects of a target behavior, even if it is not fea-
sible to reward all the details of the desired behavior in all
contexts. For example, providing the maximum reward for
game scores that are closest to the scores obtained during the
human play rather than for the absolutely best game scores
is a simple modification that may reduce a tendency for the
optimizing effect of the evolutionary algorithm to pull the
population away from the target behavior.

Additionally, the difference in point-of-view between the
human player and the embedded agents needs to be taken
into account, and eliminated to the extent that it is possi-
ble. When generating examples for these experiments a de-
liberate effort was made to avoid basing decisions on the
“God’s-eye view” that the graphical interface provided the
player. However, it is likely that whenever moves were not
fully constrained by the doctrines, the human player made
intuitive or subconscious use of information not available
to the trained agents. Such decisions can result in aliased
sensory states with unaccountable – and thus unlearnable –
differences in the human behavior. In order to make learn-
ing as effective as possible, the human view needs to be as
similar as possible to the agents’ views.

Even beyond such technical issues, policy induction in
rich environments is a difficult challenge. Learning methods
must be powerful enough, and examples of behavior copious
enough, so that the correct inductions can be made, despite
spurious features of the environment’s state at the time an
example decision was made.

On the other hand, policy induction is itself an intelligent
capability. If an autonomous agent can use policy induction
to create an accurate model of its opponents (or allies), it
can then predict their actions in hypothetical environments,
and use those predictions to modify its own behavior. Thus
policy induction can lead to visibly intelligent behavior not

only by allowing direct imitation of such behavior, but also
by supporting the kind of in situ adaptive behavior expected
of genuinely intelligent creatures.

Related Work
This work lies within a cluster of related applications that in-
cludes user modelling, opponent modelling, social robotics,
and the use of examples simply to help machine learning on
a difficult task. Space allows only the sparsest sampling of
that work here.

Once a decision has been made to use examples for agent
training and the examples have been collected, new learn-
ing options arise. A discrete-option controller like the one
used to implement the legions’ control policy can be seen
as a simple pattern classifier. That opens up the possibility
of bringing the full weight of the field of learning classifier
systems to bear on the problem. For example, Sammut et
al. use behavioral cloning to induce a decision tree for con-
trolling an airplane in a flight simulator, by applying C4.5 to
90,000 <state,action> tuples extracted from traces of hu-
man control (Sammut et al. 1992; Bain & Sammut 1999;
Quinlan 1993). The same task is addressed by van Lent and
Laird using their rule-based KnoMic “Knowledge Mimic”
system, which applies a modified version of the Find-S al-
gorithm to a trace of <state,action> tuples (van Lent &
Laird 2001). Both sets of authors found it necessary for
a human expert to split the traces into segments according
to changing goals over the course of a flight. It is not clear
whether that requirement arose from an inherent difficulty of
the problem or from weaknesses in the power of the methods
used. However, since both operate on the same sort of data
required by example-guided evolution, future comparisons
will be straightforward.

Ng and Russell take an oblique route to the problem of
instilling behavior. Their inverse reinforcement learning
methods induce the reward function implicit in example be-
havior (Ng & Russell 2000). From the reward function or-
dinary reinforcement learning methods can then be used for
agent training, including methods that do not readily incor-
porate examples directly. Discovering an implicit reward
function may also prove useful as a method for analyzing
the tacit motivations for examples of behavior.

An extended overview of methods for learning from
demonstration in the robotics domain is given by Nicolescu,
and additional methods and applications for policy induction
are surveyed by Bryant (Nicolescu 2003; Bryant 2006).

Conclusions
In games and simulators it is not always sufficient for au-
tonomous agents to perform optimally; they also need to dis-
play behavior that “looks right” to observers. The require-
ment for such visibly intelligent behavior varies with the ap-
plication, but often includes agents that conform to some
specific strategy, doctrine, or policy. With the increasingly
rich state and action spaces in modern games, it has become
difficult to specify such policies directly. Example-guided
neuroevolution offers a possible alternative approach. It can
induce behavioral policy from examples, learning rules that
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are merely implicit in those examples. In the future it may
be possible to induce rich patterns of behavior directly from
the intuitively generated examples of game designers and
simulation subject-matter experts, making games easier to
develop and more satisfying to play, and allowing serious
games and simulators to be more accurate and realistic.
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