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Abstract— An evolved agent controller is used to produce
multiple votes for its choice of actions by presenting it with
rotations and reflections of its actual sensory inputs. Since the
agent’s behavior with respect to the orientation of its various
sensors must be learned independently, the votes can be treated as
independently learned opinions on the optimal choice of actions,
i.e. a form of Breiman’s bagging. The mechanism is tested on
neural controllers for agents trained by neuroevolution in a game-
like simulator, and is found to improve their task performance
as well as ensuring perfect symmetry of behavior with respect
to orientations of the environment.
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I. INTRODUCTION

Bagging – a portmanteau word for bootstrap aggregation –
refers to the use of voting among independently trained pattern
classifiers to improve classification rates [1]. Such voting
helps because independent training of the classifiers results
in different weak spots for each; where one produces a wrong
classification, others may produce the correct one. When a
majority of the voters produce the correct classification on a
given pattern the errors of the minority are negated, and if
this is a sufficiently common occurrence the classification rate
for the aggregate improves upon the rates of its individual
participants.

Intuition suggests that what works for pattern classifiers
should also work for agent controllers. Indeed, for agents that
choose between discrete actions a controller can be viewed
as a type of pattern classifier: features of the system state
observed by the agent are “classified” according to the most
appropriate action to be taken when that state is encountered.
Learning control becomes a special case of a learning classifier
system, and many of the techniques developed for the latter –
such as bagging – can be expected to be immediately useful
for the former.

Intelligent agents in games and simulators often operate in
geometric environments subject to reflections and rotations.
For example, a two dimensional map can be reflected across
an explorer agent or rotated about it, providing a new and
different but still plausible map. Similarly, the visible universe
can be reflected or rotated on any of the three axes of a robotic
construction worker in deep space. A well trained general
purpose agent for deployment in such environments should
be able to operate equally well in a given environment and
its symmetric transformations. In general it is desirable for
intelligent agents to exhibit symmetrical behavior as well. That
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is, if the optimal action in a given environment is to move to
the left, then the optimal action in a mirror image of that
environment would be to move to the right.

Thus symmetry of behavior is desirable for two independent
reasons. First, if a correct or optimal move can be defined
for a given context, failing to choose the symmetrical move
in the symmetrical context will be sub-optimal behavior,
and will degrade an agent’s overall performance if it ever
encounters such a context. Second, if the agent operates in
an environment observable by humans, such as a game or a
simulator, the humans will expect to see “visibly intelligent”
behavior, i.e., they will expect the agent to always do the
right thing because it is smart, rather than intermittently doing
the right thing because it has been programmed or trained to
manage only certain cases [2].

If an agent’s controller operates by mapping sensory inputs
onto behavioral responses, the desired symmetries can be
identified by analyzing the structure of the agent and its
sensors. For example, if the agent and its sensors are both
bilaterally symmetrical then it will be desirable for the agent’s
responses to be bilaterally symmetrical as well. However, if
they are not symmetrical – e.g. for a construction robot with a
grip on one side and a tool on the other – then its optimal
behavior is asymmetrical. Thus the desirable symmetry of
behavior depends critically on the symmetry of the agent
and its sensors, as well as on potential symmetries in the
environment.

When agents are trained by machine learning methods there
is not, in the general case, any guarantee that they will learn
behaviors that are invariant across rotations and reflections:
the behaviors with respect to the orientation of its sensors
must be learned independently. In earlier work the symmetry
of behavior for agents trained by supervised learning was
improved by using rotations and reflections to extend a set
of training examples [3]. Overall performance improved as
well, but it was shown that most of the improvement could
be credited to the mere increase in the number of training
examples, rather than to the fact that those examples were
symmetrical transformations of the original set.

In the work reported here, symmetries are exploited to
produce bagging for evolutionary reinforcement learning. A
controller is trained for agents that operate in an environment
that supports multiple symmetries of reflection and rotation.
Whenever an agent must make a decision, rotations and
reflections of its actual sensory input are processed by the
agent’s controller in addition to that actual input, and the
controller’s choice of actions for each case is un-rotated or
un-reflected and then counted as a vote. This results in a
type of bagging: since the agents’ behaviors with respect to
its various possible orientations are learned independently,
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their controllers do not reliably produce invariant decisions
for symmetrical transformations of their inputs. Voting can
exploit these independent evaluations for the controller just
as in bagging for a learning classifier system. However, since
only a single controller is actually in use, which is virtualized
into additional “independently trained” controllers via the
presentation of rotated and reflected inputs, the method is
called virtual bagging (VB).

This mechanism addresses both of the motivations for sym-
metrical behavioral invariants, i.e. it improves both the agents’
task performance and the symmetry of their responses to
their inputs. Unlike the supervised learning method described
previously, virtual bagging ensures absolute consistency of
behavior with respect to sensory inputs: any input is a member
of an equivalence class of rotations and reflections, each of
which will produce exactly the same set of votes, and thus an
invariant choice of behaviors with respect to the environment.
Performance-wise, virtual bagging provides the best results yet
obtained by the various methods that have been applied to the
game used for testing it.

The learning environment used to test virtual bagging,
and the structure of the agents’ sensors and controller, are
described in the following section. Then the learning mecha-
nism, experimental methodology, and experimental results are
presented in section III. Those results are discussed in section
IV, along with a look at future directions for the research.

II. THE LEARNING ENVIRONMENT

Virtual bagging was tested in a game/simulator called
Legion II, a discrete-state strategy game designed as a test
bed for multi-agent learning problems. The game requires a
group of legions to learn to contest the control of a province
against a horde of barbarian warbands. Legion II has been
used previously for experiments in real-time adaptation of
behavioral roles in a team [4], stochastic control to reduce
the predictability of game agents [5], inductive behavioral
modelling [6], and the exploitation of sensor symmetries in
supervised learning, as described above [3]. Legion II is
described briefly below; see [2] for a full treatment.

A. The Legion II game/simulator

The Legion II game/simulator is played on a map that
represents a province of the Roman empire, complete with
several cities and a handful of legions for its garrison (figure
1). Gameplay requires the legions to minimize the pillage
inflicted on the province by a steady stream of randomly
appearing barbarian warbands. The barbarians collect a small
amount of pillage each turn they spend in the open countryside,
but a great deal each turn they spend in one of the cities.

The game is parameterized to provide enough legions to
garrison all the cities and have a few left over, which can
be used to disperse any warbands they find prowling the
countryside. The original purpose of this parameterization was
to require the legions to learn a dynamic division of labor
between garrisoning the cities and patrolling the countryside,
in a multi-agent cooperative architecture called an Adaptive

Fig. 1. The Legion II game. A large hexagonal playing area is tiled with
smaller hexagons in order to discretize the positions of the game objects.
Legions are shown iconically as close pairs of men ranked behind large rectan-
gular shields, and barbarians as individuals bearing an axe and a smaller round
shield. Each icon represents a large body of men, i.e. a legion or a warband.
Cities are shown in white, with any occupant superimposed. All non-city hexes
are farmland, shown with a mottled pattern. The game is a test bed for multi-
agent learning methods, whereby the legions must learn to contest possession
of the playing area with the barbarians. (An animation of the Legion II game
can be viewed at http://nn.cs.utexas.edu/keyword?ATA.)

Team of Agents (ATA) [4]. The game is used here to test
virtual bagging, because it is a challenging learning task that
offers multiple symmetries in its environment. Though the
specific choice of multi-agent architectures is orthogonal to
the evaluation of virtual bagging, the ATA continues in use
here, and is enforced by the simple expedient of using the
same controller for each of the legions in play.

The Legion II map is in the shape of a large hexagon,
divided into small hexagonal cells to discretize the placement
of the game objects: legions, barbarians, and cities (figure 1).
Moves are taken in sequential turns. During a game turn each
legion makes a move, and then each barbarian makes a move.
All moves are atomic, i.e. during a game agent’s move it can
either elect to remain stationary for that turn or else move
into one of the six hexagons of the map tiling adjacent to its
current position.

Only one agent, whether legion or barbarian, can occupy
any map cell at a time. A legion can bump off a barbarian by
moving into its cell as if it were a chess piece; the barbarian is
then removed from play. Barbarians cannot bump off legions;
they can only hurt the legions by running up the pillage score.
Neither legions nor barbarians can move into a cell occupied
by one of their own kind, nor can they move off the edge
of the map. Either type of mobile agent can move into the
stationary cities.

A game is started with the legions and cities placed at
random positions on the map; the combinatorics allow a vast
number of distinct game setups. The barbarians enter play

Copyright 2010 IEEE. In Proceedings of the IEEE 2010 Conference on Computational Intelligence and Games (CIG’10), pp. 99-106. Piscataway, NJ: IEEE Press.



at random unoccupied locations, one per turn. If the roving
legions do not eliminate them they will accumulate over time
until the map is almost entirely filled with barbarians, costing
the province a fortune in goods lost to pillage.

Play continues for 200 turns, with the losses to pillage
accumulated from turn to turn. At the end of the game the
legions’ score is the amount of pillage lost to the barbarians,
rescaled to the range [0, 100] so that the worst possible score
is 100. Lower scores are better for the legions, because they
represent less pillaging. The methods described in this paper
allow the legions to learn behaviors that reduce the score to
around 3 or 4 when tested on a random game setup never seen
during training, i.e. to reduce pillage to about 3%-4% of what
the province would have suffered if they had sat idle for the
entire game.

The barbarians are programmed to follow a simple strategy
of approaching cities and fleeing legions, with a slight pref-
erence for the approaching. The are not very bright, but such
behavior suits the needs of the game and perhaps approximates
the behavior of barbarians keen on pillage.

B. Agent sensors and controllers

The legions must be trained to acquire appropriate behav-
iors. They are provided with sensors that divide the map up
into six pie slices centered on their own location (figure 2).
All the relevant objects i in a pie slice are sensed as a single
scalar value, calculated as

∑
i 1/di. This design provides only

a fuzzy, alias-prone sense of what is in each sector of the
legion’s field of view, but it works well as a threat/opportunity
indicator: a few barbarians nearby will be seen as a sensory
signal similar to what would be seen of a larger group of
barbarians further away.

There is a separate sensor array for each type of object in
play: cities, barbarians, and other legions. There are additional
sensors in each array to provide more detail about what is in
the map cells adjacent to the sensing legion, or colocated in
the legion’s own cell (figure 3, next page). In practice only
a city can be in the legion’s own cell, but for simplicity the
same sensor architecture is used for all three object types.

The scalar sensor values, 39 in all, are fed into a feed-
forward neural network with a single hidden layer of ten
neurons and an output layer of seven neurons (figure 4,
next page). The output neurons are associated with the seven
possible actions a legion can take in its turn: remain stationary,
or move into one of the six adjacent map cells. When virtual
bagging is not in use, this localist action unit coding is decoded
by selecting the action associated with the output neuron that
has the highest activation level after the sensor signals have
been propagated through the network. The modified decoding
methods for virtual bagging are described in the next section.

The Legion II sensor architecture allows reflections and
rotations of the world about a legion’s egocentric viewpoint.
Such transformations can be represented by permutations of
the values in the sensors. For example, a north-south reflection
can be implemented by swapping the northwest (NW) sensor
values with the southwest (SW), and the NE with the SE.

Fig. 2. A legion’s sensor fields. A legion’s sensor array divides the world into
six symmetrical “pie slices”, centered on the legion itself (black lines). The
objects i falling within a slice are detected as the scalar aggregate

P
i 1/di,

where d is the hexagonal Manhattan distance to the object (white arrow). Note
that for any given sensory input the symmetries in the sensor architecture
allow a set of six 60◦ rotations about the legion, plus a reflection of each
rotation, for a total of twelve isomorphic sensory views of the world, each a
plausible game state in some game. If a legion makes the optimal move in all
circumstances, then a reflection and/or rotation of its sensory inputs produces a
corresponding reflection and/or rotation in its choice of moves. This desirable
behavioral invariant can be exploited to generate artificial training examples
from actual examples, as reported in previous work, or can serve as the basis
for virtual bagging as reported here.

Similarly, a 60◦ clockwise rotation can be implemented by
moving the sensor values for the eastern (E) sector to the
southeastern (SE) sensor, for the SE to the SW, etc., all the
way around the legion. The legions’ choices of action for a
reflected or rotated sensory input can be reflected or rotated
by the same sort of swapping. For example, a 60◦ clockwise
rotation would convert the choice of a NE move to an E move.
The option to remain stationary is not affected by reflections
or rotations: if a legion correctly chooses to remain stationary
with a given sensory input, it should also remain stationary
for any reflection or rotation of that input.

NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

Fig. 3. A legion’s sensor architecture. Each sensor array for a legion consists
of three sub-arrays as shown here. A single-element sub-array (left) detects
objects colocated in the map cell that the legion occupies. Two six-element
sub-arrays detect objects in the six radial fields of view; one only detects
adjacent objects, and the other only detects objects farther away. The legions
are equipped with three complete sensor arrays with this structure, one each
for detecting cities, barbarians, and other legions. The three 13-element arrays
are concatenated to serve as a 39-element input layer for an artificial neural
network that controls the legion’s behavior (figure 4). Artificial reflections
and rotations of a legion’s view of the world can be generated on demand
by appropriate permutations of the activation values of the sensors in the
sub-arrays.
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Fig. 4. A legion’s controller network. During play the values obtained by a
legion’s sensors are propagated through an artificial neural network to create
an activation pattern at the network’s output. This pattern is then interpreted as
a choice of one of the discrete actions available to the legion. When properly
trained, the network serves as the controller for the legion as an autonomous
intelligent agent.

III. EXPERIMENTAL EVALUATION

Virtual bagging was evaluated experimentally in the Legion
II environment. Two basic mechanisms were considered: dis-
crete virtual bagging (DVB) and continuous virtual bagging
(CVB). In DVB a vote of “1” is cast for the most highly
activated output for each of the various rotations and reflec-
tions of the actual sensory input, and “0” for all other outputs.
After un-rotating/un-reflecting the votes back to the original
orientation, the action corresponding to the output with the
most accumulated votes is chosen for the agent’s current move.
In the event of a tie, one of the tied actions is selected at
random.

In CVB every output of the network receives a fractional
vote equal to the activation level of its neuron, for each of the
various rotations and reflections of the actual sensory input.
These fractional votes are un-rotated/un-reflected back to the
original orientation, and summed across all the rotations and
reflections of the current input. The action corresponding to
the output with the highest sum is then chosen for the agent,
and ties are again broken by a random selection.

Autonomous intelligent agents in other applications are very
commonly bilaterally symmetrical but not rotationally sym-
metrical. Therefore CVB, which proved to be more effective
than DVB, was further tested for its effectiveness when using
reflections but no rotations, as would be necessary for such
agents.

Finally, intuition suggests that an agent may benefit from
using virtual bagging when it is deployed post-training, even if
VB was not used during training. Likewise, the use of bagging
during evolutionary training may produce controllers that are
superior, even if it is not used when they are deployed post-
training. Therefore CVB was additionally tested for both of
those cases.

The mechanics of the underlying neuroevolutionary algo-
rithm are given in section III-A. Then a summary of the higher-
level experimental methodology is given in section III-B, and
the effectiveness of the various forms of virtual bagging is
examined in section III-C.

A. Neuroevolution with enforced sub-populations

All the methods described here used a minor variant of Neu-
roevolution with Enforced Sub-Populations (NE-ESP) [7], [8].
ESP works by maintaining an independent breeding population
for each neuron’s position in a network. Fitness evaluations are
obtained by drawing one neuron at random from each sub-
population and assembling them into a complete controller
network (figure 5). The controller is tested, and the fitness
score for the entire network is ascribed back to each neuron
that participated in it.

The fitness so obtained is somewhat noisy, because the
fitness measured for a “good” neuron can be brought down
by one or more “bad” neurons used in the same network,
or vice versa. This noise is reduced by performing repeated
evaluations with different groupings of neurons, and reporting
each neuron’s individual average of its evaluation scores as its
fitness for the current evolutionary generation.

A full treatment of ESP can be found in [7] or [8]. The usage
presented here differs from the original in that (a) since a feed-
forward network is being evolved, the breeding neurons have
representations only for their input weights, rather than for
both inputs and outputs, and (b) for the repeated evaluations
the algorithm enforced exactly three evaluations for each
neuron, rather than repeated random associations until some
minimum number of evaluations had been obtained for each.
The use of input-weights-only is also the primary difference
between Legion II and the original Legion game reported in
[4].

All the runs reported here used a population size of 1000
(for each sub-population). A soft-selection method replaced
each member of the sub-populations in order from the worst
to the best, selecting two equally or better ranked neurons at
random to breed a replacement for the current neuron. This
allows poor-performing neurons to be selected for breeding,
albeit with an strong overall bias toward using the better-
performing neurons during breeding. Note that the mecha-
nism also ensures that the best performer of a generation is
represented in the new generation (via breeding with itself),
although with a chance of mutations.

Within a sub-population the neurons were represented by
simple vectors of floating-point input weights and a bias value.
Breeding was done by either 1-point or 2-point crossover,
chosen at an independent 50% chance for each breeding
pair. After breeding, each value in the resulting representation
was subjected to an independent 10% chance of mutation.
Mutations were deltas chosen from an exponential distribution
(probability density function λe−λx, x > 0, and λ = 5),
and added to the current value for the weight; the delta was
inverted to a negative with a 50% chance. Note that this
mechanism produces small deltas with high probability and
large deltas with low probability.

B. Experimental methodology

As noted in previous work, evolutionary learning in the
Legion II game is noisily asymptotic – longer runs produce
better results, albeit with diminishing returns [6]. No fixpoint
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Fig. 5. Neuroevolution with Enforced Sub-Populations (ESP). In ESP a separate breeding population (P1-P17) is maintained for each neuron’s position in
the network. A network is constructed by drawing one neuron at random from each sub-population and assembling them according to a predefined architecture
(grey arrows). Once a network has been evaluated for evolutionary fitness, that fitness value is ascribed back to each neuron that participated in the evaluation.

for evolutionary learning has been detected on any experiments
using Legion II to date. Therefore learning was continued for
5,000 generations for all the methods described here, to put
the learners well out on the “flat” of their learning curve and
ensure that undertrained networks were not used for testing
and comparison. A typical learning curve is shown in fig. 6.
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Fig. 6. A typical evolutionary learning curve for Legion II. The plot
shows performance on the test set vs. generation for the median performer
of 31 networks trained without virtual bagging. Lower scores are better. The
tics under the curve indicate the generations when progress was made on
the validation set; the curve is not monotonic because improvement on the
validation set does not strictly predicate improvement on the test set. For this
5,000-generation run, the last improvement on the validation set was made at
generation 4,450. Long runs are used because progress is roughly asymptotic,
and it is essential to avoid using undertrained networks for comparing the
methods under investigation.

Each method was tested on 31 independent runs, with
independence achieved by using a different seed for the
random number generator that controls both the neuroevolu-
tionary algorithm and the choice of game set-ups for learning.
Each of these runs provides a controller network that can be
tested to provide a single sample point for statistical analysis.
Statisticians generally recommend a minimum sample size of
30 such measurements when the distribution is not known to
be normal (e.g. [9]); in the present work this was increased to

31 for the number of independent runs, so that there would
always be a clearly defined median performer to serve as a
principled choice when a specific “typical” example is needed
(e.g., as in figure 6).

Each run used a non-repeating sequence of games for
the evolutionary evaluations. The games differed in their
placement of the cities, starting locations of the legions, and
locations of the barbarians’ arrivals. Such set-ups can be
repeated by carefully marshalling the consumption of random
numbers and resetting the relevant generators before starting
a game. Thus it is possible to use a nominally “same game”
to test all the neurons in a population. The actual course of
play still varies because the different controllers make the
legions behave differently, and the details of the barbarian
behavior depend on where the legions happen to be when it is
a barbarian’s turn to move. However, fairness of comparison is
maintained by equivalence of the starting positions of the cities
and legions and the placement of the barbarians upon entry.
Thus each neuron was evaluated for fitness while participating
in a network that played “the same game” that all the other
neurons played.

In order to improve the estimate of a controller network’s
generalized fitness, a different game was used for each of
the three evaluations the neurons underwent during each
generation. Different games were used for the evaluations in
succeeding generations. This overall sequence of games was
generated independently for each run by means of a different
seed for the random number generator that created the games,
so that the sample of performance measures obtained by the
31 runs is a sample over all possible training sets, rather than
on a single training set.

At the end of each generation a nominal best network
was defined by choosing the best-rated neuron from each
sub-population. That network was tested on a validation set
of 10 game set-ups, chosen randomly and independently for
each of the 31 runs, but used repeatedly at each generation
throughout a given run. If the nominal best network performed
better on this validation set than the nominal best network
from any previous generation, it was deemed to be the best
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network found so far. At the end of a run, the most recent of
such networks was returned by the algorithm as the controller
produced by the run.

Notice that both the unbounded sets of training games and
the fixed validation sets are part of the training algorithm,
and are thus specific to an individual run. The training games
were used to provide an evaluation of neurons for selection
and breeding, and the validation set games were used to select
which generation’s nominal best network had the best gener-
alization properties. However, for comparing results between
independent runs it is necessary to use a fixed test set that is
common to all of them. For this a set of 31 games was created
by using a separate random number generator initialized with
the same seed for every run. To avoid biases this seed was
different from the seeds that controlled the selection of games
in the various runs, and, in fact, different from any seed used
during the development of the test bed and tuning of the
learning parameters.

In principle the test set is to be used for a post hoc evaluation
of the networks produced by the various independent runs. In
practice it is convenient to use the test set during a run in
order to produce a learning curve. No biases are introduced,
because no algorithmic decisions are based on the result of
evaluations on the test set games; such evaluations merely
produce a number that is spilled to a file for later plotting.

As illustrated by figure 6, at each generation during a run
when the nominal best network produced an improved score
on the validation set, that network was also evaluated on the
test set for plotting. Note that for a given run the performance
against the validation set is monotonic due to the “best so far”
mechanism. However, improvement on the validation set does
not guarantee improvement on the test set, so the evaluations
against the test set are not always monotonically improving.
Since no training decisions can be based on evaluations against
the test set, the test results obtained by the validation set’s
“best so far” mechanism were reported as the performance of
the network produced by the learning algorithm, even if by
chance better test scores were obtained at some earlier stage
of training.

The average of the game scores on the 31 test games is
reported as the performance of a controller, and consequently
as the performance of a method on a single run. The collection
of these scalars for the 31 runs for each method are plotted
below for the various experiments, and used as the samples
for inferential statistical analysis.

C. Effect on performance

A first experiment examined the relative effectiveness of
virtual bagging versus the base neuroevolutionary method
that does not exploit sensor symmetries. Both discrete and
continuous VB were evaluated, and they took advantage of the
full set of 12 rotations × reflections possible with a hexagonal
map grid and corresponding six-sided sensor array.

The experiment shows that both methods of virtual bagging
produced more effective agents than the base method, with
CVB being the most effective (figure 7). The mean game

scores achieved by the three methods were 4.511 for the
base method, 3.401 for DVB, and 2.906 for CVB – recall
that lower scores are better. The improvement of DVB over
the base method was statistically significant at the 95%
confidence level on the one-tailed Welch Two Sample t-test
(p = 2.038 × 10−07), as was the improvement of CVB over
DVB (p = 6.352× 10−11).
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Fig. 7. The effect of virtual bagging on performance. Boxplots show
the means, quartiles, and extremes for 31 independent runs of the learning
experiment without bagging (left), with discrete-vote virtual bagging (DVB,
center), and with continuous-vote virtual bagging (CVB, right). Lower scores
are better. Both methods of voting provided statistically significant improve-
ment over the base non-bagging method, but the continuous-vote method also
provided a statistically significant improvement over the discrete-vote method.

Thus the experiment reveals that both methods of virtual
bagging provide improved performance over the base non-
bagging method on the Legion II problem, with CVB being
the more effective of the two.

A second experiment further examined continuous virtual
bagging to see whether it would still be useful for the
common case of controllers for agents that can exploit bilateral
symmetry but not rotational symmetry.

When both rotations and reflections are used, the same set
of 12 is obtained regardless of which axis is used for the
reflections. However, when the rotations are not used, different
axes of reflection will give different sets of inputs. Since the
agents in Legion II do not have any distinguished orientation
other than for their graphical displays, all the reflections for
this experiment were arbitrarily made by a north-south flip of
the sensory input and choice of move.

The experiment shows that using CVB without the rotations
still provides an improvement over the base method, though
not as substantial an improvement as when both rotations and
reflections are used (figure 8). The mean performance for
CVB without rotations was 3.439, vs. the 4.511 base case
and 2.906 for CVB with both rotations and reflections. The
improvement of CVB without reflections over the base method
was statistically significant at the 95% confidence level on the
one-tailed Welch Two Sample t-test (p = 5.461× 10−07), but
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the improvement of CVB using both rotations and reflections
was also statistically significant over the reflections-only case
(p = 9.976× 10−08).
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Fig. 8. The effects of rotations and reflections. Continuous-vote virtual
bagging was evaluated with reflections only (center), as would be necessary
for bilateral agents whose behavior would not be symmetric with respect
to rotations of their sensory inputs. The results of the experiment without
bagging (left) and with continuous-vote virtual bagging using both rotations
and reflections (right) are shown again for comparison. The reflections-only
method did not perform as well as when both rotations and reflections were
used, but it still provided a statistically significant improvement over the base
non-bagging method.

Thus the experiment reveals that both these methods of
continuous virtual bagging provide improved performance
over the base non-bagging method on the Legion II problem,
though with the case of using both rotations and reflections
being more effective than the case of using reflections only.

A final experiment examined the following conjectures. If
VB is effective when used for both training and deployment,
might it not also be effective if it were used during training, but
not during deployment? Or similarly, might it not be effective
if it were used during deployment, but not during training?

These conjectures are motivated by the fact that VB re-
quires additional computation time over the base non-bagging
method. For time-critical applications it would be useful to
apply VB during training and omit it during deployment, if
most of the advantages were still obtainable. Or, if computa-
tion time is not a bottleneck during deployment, it would be
useful to speed up training by omitting the bagging then, and
applying it only during deployment.

To evaluate the first conjecture continuous virtual bagging
was applied during training (i.e., on both the training and
validation set games) but disabled when testing on the test set.
To evaluate the second conjecture CVB was disabled during
training but applied when the resulting neural controllers were
tested against the test set.

Unfortunately, the experiment showed that neither method
was effective on the Legion II game, with both producing
results that were worse than the base method (figure 9). The

lack of effectiveness in the deployment-only case is especially
surprising, since the arguments that motivated the use of virtual
bagging in Section I would seem to be applicable in this
situation as well.
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Fig. 9. The effects of training and testing. Continuous-vote virtual bagging
was evaluated when used for training but not for testing (left), for testing but
not for training (center), and for both. Neither perform as well as when both
are used, or even as well as the non-bagging method (cf. figure 7). Note that
the y-axis is compressed in comparison to the previous plots.

IV. DISCUSSION AND FUTURE WORK

The experiments show that virtual bagging can be useful
for at least some control applications. It provides the best
performance scores of any of the various methods used on the
Legion II game to date. It also fully enforces the symmetrical
behavior invariance, which could only be approximated by
a closely related supervised learning method (cf. [3]). Its
costs are the computational overhead of calculating the various
rotations and reflections of the inputs and of processing each
by the controller. Though network propagations on modern
computer architectures are very fast, this n-fold multiplication
of the effort could be prohibitive in applications that involve
large numbers of agents or require computational resources
for other tasks.

The continuous-vote method of virtual bagging was found
to outperform the discrete-vote method. This is probably a
result of exploiting the fact that neural networks can express
confidence values in their choices via the activation levels of
their various outputs [10]. Notice that while artificial neural
networks were used for the current experiments, they are
not strictly necessary for virtual bagging. Any mechanism
that maps sensory inputs onto a choice of outputs should
suffice. However, the superiority of CVB over DVB suggests
that virtual bagging will be most effective if that mechanism
represents the choice of outputs with graduated values rather
than an all-or-nothing choice.

The current work has made use of stateless feed-forward
networks for the controllers. Using virtual bagging with recur-
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rent networks or other state-based controllers will require ad-
ditional care. Presumably it will suffice to maintain a separate
image of the current internal state for each rotation/reflection
being used, so that computation can be continued from each
of those distinctive states at the next time step, independently
for each of the various rotations/reflections. However, this is
a conjecture that will need to be evaluated experimentally.

Virtual bagging faces a bigger challenge in its application
to continuous-output controllers, as opposed to the discrete-
choice controllers used in the Legion II game. For example,
if an agent’s controller specifies the angle and velocity of a
motion to be undertaken, it may suffice to use a mean value
calculated by the various rotations and reflections – if the
values are well clustered. However, if some of the values
represent a choice to go around the left side of an obstacle
and others represent a choice to go around the right side,
a simple averaging could be disastrous. Thus the concept of
virtual bagging will require further development before it can
be applied to continuous-output controllers.

The benefits of using both rotations and reflections, vs.
reflections only, suggests a “more is better” factor in the
application of virtual bagging. Thus it may be profitable to
examine the effectiveness of the technique in applications with
a higher degree of rotational symmetry (e.g., octagonal sensor
geometries) or a higher degree of reflectional symmetry (e.g.,
agents operating in deep water or deep space). Moreover, the
technique should have applications other than controllers with
egocentric sensors. For example, board games such as Go
have state spaces that still make sense under rotations and
reflections, so virtual bagging may be immediately applicable
to existing Go-playing agents.

Finally, it can be observed that it may be possible to leverage
the advantages of virtual bagging by adding on the similar
but weaker advantages of supervised learning with artificially
created training examples created by means of rotation and
reflection, such as previously described in [3]. One potential
mechanism for the combination is Lamarckian evolution [11],
[12]. Lamarckian neuroevolution has already been applied to
the Legion II game for experiments in inductive player mod-
elling, but using it to combine virtual bagging and artificially
generated examples is still a matter for future investigation.

V. CONCLUSIONS

Intelligent agents with sense-response controllers often have
symmetries in their sensor architecture, and it is then possible
to define behavioral invariants that would be observed across
those symmetries by perfectly trained agents. This observa-
tion suggests that symmetrical invariants of sense-response
behavior can be exploited by agents’ controllers, making their
responses more symmetrical and effective. This paper shows
that exploiting such symmetries via virtual bagging yields
both types of improvement in a game-like test environment,
and suggests that exploiting sensor symmetries may provide
similar benefits in other environments and with other learning
and control methods.
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