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Abstract— The first-person-shooter Quake II is used as a
platform to test neuro-visual control and retina input layouts.
Agents are trained to shoot a moving enemy as quickly as
possible in a visually simple environment, using a neural
network controller with evolved weights. Two retina layouts are
tested, each with the same number of inputs: first, a graduated
density retina which focuses near the center of the screen and
blurs outward; second, a uniform retina which focuses evenly
across the screen. Results show that the graduated density retina
learns more successfully than the uniform retina.

I. INTRODUCTION

RAW visual input is important for many applications in
robotics and simulation. A large amount of information

about the surrounding world can be collected merely from a
simple camera image. Very complex behaviors can be per-
formed by a human using only raw vision as input. Humans
can remotely control camera-mounted vehicles and play a
large variety of complex computer games using a simple two-
dimensional image as visual input. Despite its usefulness,
many real-time Artificial Intelligence (AI) controllers do not
use visual input, but rather use a large array of other sensors,
such as GPS, range-finding, and light sensors. This is due
largely to the complexity of processing raw visual input as
useful data.

There have been many neural network applications that use
visual input for static image processing, but less that use it for
real-time dynamic processing. In research by Pomerleau, a
neural network was trained using back-propagation to drive a
car using a 30x32 grayscale visual input [1]. This experiment
worked well, and could train in real-time. Shumeet Baluja ex-
tended the experiment to use an evolutionary computational
model for learning, rather than back-propagation, with the
results that the system learned more robust control, but with
the drawback that it learned offline rather than in real-time
[2]. Floreano et al. used a genetic algorithm to train a simple
recurrent network that used active vision to race a car around
a track in a realistic driving simulator [3].

Experiments have also tested using vision for controlling
agents in a virtual world. Many of these experiments use
Synthetic Vision, which processes the visual input before
sending it to the controller. This preprocessing might include
extra-dimensional data so that every pixel contains a color
value, a distance-from-agent value, and an entity identifier
value, as in the case of the behavioral animation experiment
by Renault et al., which made a hand-coded agent that could
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navigate down corridors and avoid obstacles [4]. In research
by Enrique et al., the visual input was re-rendered as two
separate color-coded views: one which color coded polygons
according to their angles, and color-coded entities by their
object i.d.; and the other which displayed a color according
to the object’s velocity [5]. While Synthetic Vision may be
useful, it requires extra computational time and information
that might not be ascertainable in a real world environment;
it also loses the simplicity of having a single camera as input.
In an experiment by Kohl et al., a controller in an auto-racing
simulator used only a raw visual gray-scale input array of
20x14 pixels and NeuroEvolution of Augmenting Topologies
(NEAT) to evolve a vehicle warning system [6]. They were
then able to successfully transfer this technique to a real
robot with a mounted camera.

Much AI research has been performed using first person
shooters (FPS), which are 3-Dimensional games where the
player is usually given the task to survive in a hostile
environment and shoot all the enemies. Zanetti and El Rhalibi
trained neural networks for Quake III, using neuroevolution
and the location coordinates, angles, and weapon information
from pre-recorded demos of human players to train the agent
to maneuver through the map, perform combat, and collect
items [7]. Similar research was performed by Bauckhage
et al. for Quake II [8]. Thurau et al. used a Neural Gas
method in Quake II to train agent way-point navigation, also
by observing movements of pre-recorded human players [9].
Graham et al., used Quake II and neuroevolution to evolve
path-finding strategies and obstacle avoidance [10]. Vision
is a particularly realistic input for first person shooters that,
if used with a proper controller, could provide robust and
human-like character behavior.

In the experiment reported in this paper, we research the
use of raw vision as the only input to a neural network, which
is trained by neuroevolution, to perform simple combat in a
first person shooter. Moreover, rather than use the recorded
data of a human player or controller, as in the above-
mentioned vision and FPS experiments, we use a fitness
function that awards agents that perform well in the game,
without regard to imitation of human behavior. We test and
compare two different visual input controllers, as well as
incremental evolution of the difficulty of the task.

II. THE QUAKE II ENVIRONMENT

We use the Quake II engine by Id Software, Inc. as our
platform for research. Quake II is a first person shooter
which puts the player into an alien world as a space marine
who must fight his way to freedom. Multiplayer games are
supported over a network or the internet, up to 256 players on
a single server (if hardware is capable). The graphics in the
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game are generally dark and dreary, but very realistic. Quake
II was at one time very popular, and many maps, models, and
tools to create custom content are freely available.

There are a few key reasons we chose to use Quake II
as a research platform, instead of other FPSs. First, it is
open-source, released on the General Public License (GPL);
there is a UNIX version available which installs on many
platforms [11], and the layout of the code is very modularized
and friendly for modification. Another important feature is
that the game is able to soft-render. Most newer first person
shooters can only render using hardware acceleration, which
only allows for one copy of the game to run on a computer
at any time. Because Quake II can render in software, we
are able to run several copies of the game on one machine,
which is essential for quick evolution.

While most Quake II AI-controlled characters (bots) are
run on the game server, we have chosen to use the client
for our agent control. We modified the source code of the
client so that we can access the pixels of the display and
fully control the agent in the game. We access the pixels
through the video framebuffer, which returns the 24-bit color
information for any pixel in the game window, as specified
by x, y coordinates. The agent can be controlled to shoot,
move forward or backward, move right or left (“strafe”, in
gaming jargon), turn right or left, look up or down, and jump
or crouch. The client can also read messages from the server
in order to see player chat or information about who killed
who, and it can read the agent’s health, ammunition, armor,
and number-of-kills figures.

III. THE EXPERIMENT

As previously stated, the Quake II game world is dark and
dreary. Because of this, there is usually not much contrast
between enemies and walls, between walls and ceilings,
or walls and floors. While human players are usually able
to cope with this environment, we decided to start out on
something simpler for our first vision-based controller.

We created a simple room map that is square in shape
and quite small; relative to humans, about as big as half a
basketball court. The ceiling is a dark brown texture, the
walls are a gray texture, and the floor is white. The enemy
is dark-blue and black, and contrasts very well against the
lighter walls and floors, even when converted to grayscale
(figure 1). In regular Quake II multiplayer, the players enter
the game through spawn portals. We raised the ceilings and
put the spawn portals above the play area, so that they would
not be in the way of the agents. Whenever an agent or enemy
dies, it reappears at a random spawn portal and drops to the
floor. In order to lessen the computational burden, we also
disabled the display of dead bodies and their scattered body-
parts that otherwise would litter the floor.

The goal for the learning agent in this experiment is
simply to kill an enemy as many times as possible in the
allotted time. The enemy does not shoot, but does move
around the room in random sequences. The learning agent
is equipped with a blaster weapon, which we have removed

Fig. 1. A screenshot of the simple room used for this experiment. The
ceilings are a dark brown textures, the walls are a gray texture, and the floors
are white. The enemy is dark-blue and contrasts the light colored walls and
floors. The trail of dots indicates the bolts from the learning agent’s blaster.

graphically from the screen so as not to interfere with the
visual environment. We modified the blaster weapon from the
original game to inflict more damage so that one shot kills
the enemy, and we made it capable of shooting in bursts.
Normally, if the learning agent is constantly shooting, the
frequency of shots is about one every half second. However,
if the agent refrains from shooting for a time, the gun will
charge and will be capable of firing up to 5 shots in a quick-
succession burst, depending on how long it has charged. We
made this modification so that agents would have a reason
to avoid shooting constantly, and only when needed.

IV. THE NEURO-VISUAL CONTROLLER

We tested two different visual schemes for our controllers.
We could not simply input the entire pixel buffer of Quake
II’s lowest default screen resolution, 320x240, into a neural
network because the network would need 76,800 weights
for each hidden-layer neuron, and would be too slow in
computation and take too long to evolve. Also, the agent
does not need so much information to perform such a simple
task, so we reduce the resolution by averaging pixel values
together into larger blocks. Also, since the agent is only
fighting one enemy, and the enemy appears much darker than
the walls and floor, color is not important, so we use gray-
scale input.

Because the map is entirely flat, the agent never needs
to look up or down. The most important visual information
for the agent appears in a horizontal band that runs across
the center of the screen. Thus, in order to keep the controller
simple and pertinent, we read only a 14x2 band of gray-scale
pixel blocks across the center of the screen (figures 2, 3).

The first type of block input layout is inspired by the
human retina, which is able to capture visual data of higher
resolution in the center of the retina than in the periphery.
To make such a graduated density retina, we used a 14x2
band of blocks and made the blocks 23 pixels in height, as
with a uniform retina, but the blocks nearer to the center
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Fig. 2. Left: A scene as rendered by the game engine. Right: The same scene as viewed via the graduated density retina. The black tics above and below
the image indicate the retinal block widths.

encompass smaller amounts of pixels averaged than the
blocks nearer to the outer edge; each block away from the
center is approximately 1.618 times larger than the previous
block. With this system the center views much finer detail
than the blocks near the outer edge (figure 2).

The second type of input layout that we tested used evenly
spaced blocks that averaged a 23x23 grid of grayscale pixel
values into one value for each block (figure 3). Both the band
and uniform layouts used 28 blocks, so that each used the
same number of inputs.

We rescale the integer grayscale value of the blocks in the
14x2 input array onto floating point numbers in the range
[0, 1] for use as inputs to the controller network (figure 4).
The controller is a simple recurrent network [12] with 28
inputs, 10 hidden/context units, and 4 output neurons. We
use a “flat” hidden layer, with no attempt to capture the
input geometry in the network architecture. The neurons
are squashed by a scaled logistic function, S(x) = 2 ∗

1
1+e−6∗x −1, which scales their outputs to the range (−1, 1).
The four output nodes control turning, forward and backward
velocity, lateral velocity (strafing), and shooting. For turning,
the output is scaled onto the maximum possible per-frame
turn rate (10◦), and the sign determines the direction of the
turn. For the longitudinal and lateral velocity controls, the
output activations represent the desired fraction of full speed,
with the signs indicating the choices of direction. No bias
units were used for the current experiments.

V. TRAINING

For the evolution, we use a Queue Genetic Algorithm (QGA),
which is a steady state first-in-first-out algorithm that allows
for easy distribution of fitness evaluations over multiple
instances of the simulation [13]. A QGA uses a queue
to store the population; a new individual is created from
stochastically selecting two individuals in the population;
once the new individual is tested, it is added to the front
of the queue and the oldest individual in the population
is removed. In this experiment we use a queue size of

Fig. 3. A view via the uniform density retina. The enemy’s location and
distance are similar to the view in figure 2. The contrast between the enemy
and the walls and floor are much less distinct in the uniform retina than in
the graduated density retina, because of the increased area averaged into the
visual block where it appears.

Fig. 4. Diagram of the controller network, with 28 visual inputs, 10
recurrent hidden layer neurons, and 4 outputs.
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128 individuals. The 420 weights of the controller network
are stored as floating point numbers, which are genes in a
chromosome for each individual. To initialize the population,
individuals are created with random genes with values in the
range [−1, 1]. Once selection begins, each new individual is
formed by roulette wheel selection of two parents from the
population, where there is higher chance that individuals with
higher fitness will be selected over lower fitness individuals.
Crossover is uniform between the two parents, per gene,
with equal chance for each parent that its gene will be
selected. Mutation occurs with a 10% chance per gene. The
mutations are generally very small and are calculated by
adding a delta from a sharply peaked distribution function
log(n)

10 ∗random(−1or1) to the current value of a gene, where
n is some random number in the range [0, 1].

Fig. 5. The Queue Genetic Algorithm (QGA). New individuals are bred
from parents chosen from the current population by roulette wheel selection.
After the new individual is tested, it is placed on the beginning of the queue
and the oldest individual is discarded.

Each individual is tested in the following manner:

1) The agent appears in room and drops to the floor.
2) The agent is given 24 seconds to kill the enemy as

many times as possible.
3) Whenever the agent kills the enemy, the enemy imme-

diately reappears at a random location.
4) At the end of the 24 seconds, the agent is removed,

and a new agent with a new chromosome appears for
evaluation.

Fitness is awarded solely by the number of times the
agent has killed the enemy. The time-limit of 24 seconds is
long enough to allow for skilled individuals to distinguish
themselves from lucky individuals, and short enough to
complete the evolution in a reasonable time. In order to
increase the bias toward the more fit genomes in roulette
wheel selection, the number of kills is multiplied by 5 and
then squared.

We found it too difficult for a random population to learn
to shoot a quickly moving enemy, so we increment the
difficulty of the enemy as the evolution proceeds. To do this
we first evolved a population against a completely stationary
enemy and marked at approximately what average fitness
of the population the agents appeared to be actually aiming
at the enemy. We set the fitness bar at that fitness, and,
starting from new populations, whenever the average fitness
of the population reached the fitness bar, the difficulty is
increased by increasing the speed of the enemy. After every

sixth individual has been evaluated for fitness the average
fitness is tested again, and the difficulty level is incremented
again if that average has risen back above the current fitness
bar. Difficulty is increased by adding 0.01 to the enemy’s
speed multiplier, which begins at 0.0. The difficulty must be
increased 100 times before the enemy reaches its maximum
possible speed.

VI. RESULTS

The graduated density retina performed better than the uni-
form density retina (figures 6, 7). The main behavior learned
by controllers that used the graduated density retina is to spin
in circles, moving forward, until the enemy appears as a dark
dot in the center of its retina, then to stop spinning, or spin
in the reverse direction, move toward the enemy, and shoot.
Some populations learned to hold their fire until the enemy
appeared in their center, and then fire a burst of shots. In the
first stages of the evolution, the agents appear to only pay
much attention to the center blocks of the retina. Since the
agents only compute at 40 frames per second, maximum,
sometimes they turn so quickly that the dark spot of the
enemy agent skips over the center of the retina, and the
agent does not react. However, as the agent becomes more
advanced it learns to use the information in the periphery as
well.

Fig. 6. The population fitness averaged over six independent runs, tested
using the graduated density retina (figure 2). The lighter bottom line
indicates the increased movement of the enemy, where 300 is the maximum
possible enemy movement speed.

The uniform density retina controller performed poorly
compared to the graduated density retina controller (figures
6, 7), likely due to its inability to fine-tune its aim. When
the enemy is far away the retina’s input blocks viewing the
enemy turn only slightly darker due to the relatively large
visual area being averaged, unlike the blocks of the graduated
density retina, which clearly show the enemy as dark when
centered, even at a great distance. Moreover, controllers using
the uniform retina can not accurately aim because the large
block sizes do not indicate the position of the enemy with
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Fig. 7. The population fitness averaged over six independent runs,
tested using the uniform retina (figure 3). One of the six tests was about
as successful as the average of the dense retina tests, but the other 5
were unsuccessful, never reaching the fitness bar, but hovering at fitnesses
between about 200 to 300.

much precision. Thus the training tended to produce agents
that shot constantly and moved about the room in patterns
that were likely to kill the enemy, without seeming to pay
much regard to the actual retinal inputs. In only one of the
six tests was a successful behavior learned, which utilized
the strategy used by all the dense retina tests: spinning until
the enemy came into view, then slowing the spin or reversing
the spin and shooting. This successful test was still limited
by the large retinal block size, and the agent could not spot
the enemy from far away. To counteract this, rather than
spinning in tight circles, the bot circled the entire perimeter
of the room in a wide spin, to increase its chances of walking
near the enemy.

VII. CONCLUSION

In this experiment, the first-person-shooter Quake II was
used to test two different retina layouts as inputs to an
evolving neural network to accomplish a simple task. Quake
II was modified to appear visually simpler, so that the
ceilings, walls, floors, and enemy were all distinct. A genetic
algorithm was used to evolve the weights in the neural
networks. To test the fitness of the agents, they were placed
into a simple single-room map and given 24 seconds to shoot
an enemy as many times as possible, given fitness for each
kill. At the start of the test, the enemy did not move, but after
the agent population reached a certain average fitness bar,
the enemy began to increment its random movement speed,
and continued to increment whenever the average fitness rose
above the fitness bar. Two different retina layouts were tested,
each with the same number of block inputs: first, a graduated
density retina that is more focused in the center, with smaller
blocks that become wider as they near the periphery; second,
a uniform retina which uses equal block widths across the
width of the view. The results of the tests showed that the
graduated density retina learned faster and with more success

on average than did the uniform retina. Five out of six of
the uniform retinas never reached the fitness bar within the
500 generations tested, while all of the graduated density
tests reached the fitness bar several times, and learned to
successfully fight against a moving enemy.

This experiment shows that it is beneficial to focus on
particular sections of information in the visual field. With
the same amount of input information, a focused retina can
greatly improve behavior. In our experiment, the focused
retina displayed the enemy as a distinctly darker block,
even at great distance, and it enhanced the agent’s ability
to accurately aim at the enemy. In this experiment, setting
the focus to the center of the screen was so successful
because the agent’s gun aims at the center of the screen.
However, in vehicle-based road-following experiments, or in
other aspects of first-person shooters, it may not be best to
focus in the center of the screen, but rather on the side of
the road, or on likely pathways. Future work will include
evolving where to focus the retina for particular tasks, as
well as evolving controllers which dynamically change the
focus in real-time. Our modified version of Quake II will
be a test-bed for other future first-person-shooter vision-
based artificial intelligence research, such as path-finding,
team-based combat with a color-sensitive retina, and resource
gathering or capture the flag. Such research will expand
the realism of artificial intelligence in 3D games, and be
expanded to camera-based robotic behavior control in a real
environment.

The source code of the Quake II AI software used in
this experiment is available at website of the Neuroevolution
and Behavior Laboratory at the University of Reno, Nevada:
http://nebl.cse.unr.edu/
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