
Lamarckian Neuroevolution for Visual Control in the Quake II
Environment

Matt Parker and Bobby D. Bryant

Abstract— A combination of backpropagation and neuroevo-
lution is used to train a neural network visual controller
for agents in the Quake II environment. The agents must
learn to shoot an enemy opponent in a semi-visually complex
environment using only raw visual inputs. A comparison is
made between using normal neuroevolution and using neu-
roevolution combined with backpropagation for Lamarckian
adaptation. The supervised backpropagation imitates a hand-
coded controller that uses non-visual inputs. Results show
that using backpropagation in combination with neuroevolution
trains the visual neural network controller much faster and
more successfully.

I. INTRODUCTION

S IMPLE two-dimensional image data is sufficient for
humans to accomplish a large variety of complex tasks.

Doctors perform intricate surgery remotely using a camera
image. A camera mounted on a vehicle is sufficient input
for a human to accurately control the vehicle. There is a
wide variety of interactive simulated worlds in computer
games that use the two-dimensional screen as the main
informational output. Humans can effectively use this visual
data because their complicated brains are designed to quickly
interpret raw visual data into usable information. Computer
algorithms that are designed to interpret raw visual data are
generally also complex and computationally intensive due to
the large amount of data that must be processed. Processing
raw visual data in real-time is particularly difficult because
each frame must be processed in a small amount of time.

Some previous research has used neural networks with
raw visual input as controllers in a real-time environment. In
research by Pomerleau, a neural network was trained with
backpropagation to drive a car along a road, using a 30x32
grayscale input [1]. The training was performed in real-time
to imitate a human driver. In other research by Baluja, the
experiment was modified to replace backpropagation with
an evolutionary computation model that allowed for more
robust control, but could only be trained with recorded sets
of driving data rather than in real-time [2]. Floreano et al.
trained a car controller to use active vision to race around
a track in a realistic driving simulator [3]. Another virtual
car-racing controller was trained by Kohl et al. that used
NeuroEvolution of Augmenting Topologies and a 20x14
grayscale input to evolve a vehicle warning system [6]. Fur-
thermore, they used this technique on an actual robot with a

Matt Parker (mparker@cse.unr.edu) is a graduate student at the Depart-
ment of Computer Science and Engineering, University of Nevada, Reno.

Bobby D. Bryant (bdbryant@cse.unr.edu) is an assistant professor at the
Department of Computer Science and Engineering, University of Nevada,
Reno.

mounted camera. Neural networks were shown through these
experiments to be viable controllers for real-time control
using raw visual input.

Synthetic vision, which is a method of representing extra-
visual data within the visual field, is used by many research
experiments that take place in a virtual world [4][5]. This
method might change colors of objects to reflect their dis-
tance or angle or to show their specific object type. Enrique
et al. re-rendered the visual input into two separate color-
coded views, one of which displayed the color of an object
according to its velocity and one which displayed color
according to entity identification and wall-angle. This high-
level visual data was used to simplify creation of a hand-
coded robot controller that could navigate a map and pick up
health boxes [4]. In other research by Renault et al, an agent
used extra-visual pixel data and a hand-coded controller
to walk down a hallway. Each pixel included a distance
value, an object identification value, and a color value [5].
The extra-visual information used in synthetic vision can
be accessed because they are using a virtual world, where
such information is easily available; because it relies on this
extra-visual information, synthetic vision cannot be easily
transferred to real-world robotics.

First Person Shooters (FPS) such as Quake II are pop-
ular video games that put a player in control of a gun-
wielding character who must survive in a hostile world.
The player controls the game character from the viewpoint
of the character’s eyes and generally always views down
the barrel of a gun. FPS’s often natively support some
form of programmable AI and are often used for research.
Bauckhage et al. conducted research that first recorded demos
of humans playing the game Quake II, then taught two
neural networks to imitate them. One network learned to aim
during combat situations by changing the yaw and pitch;
another network learned to change its x and y velocities
during combat, and another network learned to traverse the
map [7]. Zanetti and El Rhalibi trained neural networks with
backpropagation for Quake III to control an agent to collect
items, engage in combat, and navigate a map. They also used
pre-recorded demos of human players, using the player’s
weapon information and location as inputs [8]. Graham et
al. trained controllers using neuroevolution for path-finding
strategies and obstacle avoidance in the game Quake II [11].
Thurau et al. used a Neural Gas method to train agents in
Quake II to imitate the waypoint-navigation of real players
by observing their movements from pre-recorded demos [9].
Behavioral grids were evolved in Quake III in research done
by Priesterjahn et al., and the resulting agents were able to

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



amply defeat the hand-coded AI robots supplied with the
game [10].

In our previous research we trained vision based con-
trollers for agents in Quake II. First, we trained a simple
recurrent network [13] by neuroevolution to control an agent
to shoot a moving enemy in a visually-simple room [14].
The input to the neural network was a 14x2 grid of grayscale
input blocks, each activated to the average grayscale value
of the pixels covered by the block. We tested two different
retinal layouts for the 14x2 grid of blocks: in the uniform
retina we used blocks that were all the same size across the
controller; in the graduated density retina we made the blocks
thinner in the center of the retina and wider in the periphery.
We found that the graduated density retina learned much
quicker to shoot the enemy because the enemy could easier
be seen in the higher-resolution center of the retina. In further
research using Quake II, we designed a new controller in
which the genetic chromosome represented a control program
which included jump and action instructions [15]. The jump
instructions determined whether or not to jump forward in
the chromosome, and how far to jump, according to the
grayscale value of some block of pixels on the screen, the
size and location of which were specified in the instruction.
The action instructions specified the behavior of the agent for
that particular frame of gameplay. With these two instruction
types the evolution produced control programs for agents
that would effectively attack the enemy. We found that
this controller learned much faster than our previous neural
network controller, and used less computation.

In the research presented in this paper, we again train a
neural network controller to shoot an enemy in a room but
we have drastically increased the difficulty of the problem
by adding uneven shadows to the room, as well as a darker
floor. This added visual complexity hinders learning to the
point that our previously-used graduated density controller
[14] is unable to learn satisfactory behavior when trained
only with neuroevolution. Instead, we combine neuroevo-
lution with backpropagation to help train the network and
are able to achieve the desired behavior. Our process is
similar to Lamarckian evolution, an idea proposed by Jean-
Baptiste Lamarck in the early nineteenth century which
hypothesized that phenotype adaptations learned within an
individual’s lifetime were passed onto its offspring [16]. This
type of evolution can easily be added to neuroevolution by
changing the weights of the neural network over an indi-
vidual’s lifetime and returning the modified weight structure
to the evolutionary gene-pool [17][18][19]; the Lamarckian
adaptations can be made by using backpropagation [20].
Lamarckian neuroevolution that uses backpropagation has
previously been used in research by Bryant and Mikkulainen,
which trained a controller to play the strategy game Legion
II by imitating pre-recorded human players [21]. Instead of
backpropagating on pre-recorded human players we use a
hand-coded bot that does not access any visual input, but
rather directly accesses world entity information. The neural
network is corrected against this hand-coded bot and learns

to imitate it using only visual inputs.

II. THE QUAKE II ENVIRONMENT

The platform used in this research is the Quake II game
engine by Id Software, Inc. Quake II is an FPS that requires
a player to take control of a space marine who is stranded
on a hostile alien planet. The space marine must fight his
way out of the planet, using a wide variety of weapons and
powerups to kill many aliens along the way. The graphics in
Quake II realistically present a dim and dreary environment.
Id Software has provided many tools to customize the game
by changing maps, models, sounds, textures, and even game
rules.

Fig. 1. An in-game screenshot from the game Quake II.

Quake II was chosen for use in this research for several
important reasons. Most importantly, the code of the game
engine is open source, licensed under the General Public
License (GPL), and can run on UNIX-like operating systems
[12]. Because code of the engine is available, we are able
to modify the engine to easily access game environment
variables and visual screen data, as well as to directly control
the agent. Many open source FPS’s are currently available,
but most of them use OpenGL graphics acceleration and
thus require a devoted graphics card. Quake II, however, is
able to render in software-only mode, which allows us to
run multiple copies on one machine. This is essential for
our distributed evolution scheme, which can run hundreds
of Quake II simulations in parallel across a network of
computers to speed up evolution.

Quake II natively includes a method for creating pre-
programmed opponents, which are called bots. These bots
usually run on the game server and cannot access the screen
buffer because the server does not render the game world;
it only calculates physics and implements game rules. A
Quake II client receives game-world information from the
server and renders the view of the world to the video buffer.
We modified the Quake II client to allow us to control the
player’s behavior and to access game data and pixel color
values from the rendered video buffer.

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



III. THE EXPERIMENT

In this experiment we use the same game-world setup as our
previous experiments [14][15], excepting that we use a more
visually complex map. In our previous research the map had
a white floor, gray walls, a dark ceiling, and a dark enemy;
moreover, the map was fully lit with no shadows (figure 2).
In our current research, the floor and ceiling of the map are
brown, the walls are gray, the enemy is dark, and the room is
lit dimly with varying shadows (figure 3). This map is much
more realistic when compared to real-world rooms, and is
also more difficult for good visual controller performance.
The map is a single open room that is about the size of half
a basketball court.

In multiplayer mode, players and bots enter or re-enter
the map through spawn portals. If an agent spawns in the
exact location of another player already in the map, then the
living player is killed by the entering player. To prevent these
accidental spawning deaths, we placed the spawn portals near
the ceiling of the map so that the spawning players fall to
the floor without killing any living players.

In this experiment the learning agent’s task is to kill a
hard-coded enemy opponent. The enemy opponent moves
around the room in a random pattern and never shoots. The
random pattern is created by performing randomly chosen
forward/back, right/left, and turn speeds for random periods
of time. This scheme produces random movement that is
reminiscent of the movement of a human player.

Fig. 2. An in-game screenshot from the simplified environment used in
our previous experiments.

The learning agent is equipped with a blaster handgun
that fires energized plasma bolts. If one plasma bolt hits the
enemy then the enemy will die instantly. The blaster shots
travel at a non-infinite speed and therefore proper aiming
often requires leading the target. In order to encourage
shooting only when necessary, we changed the blaster to use
a burst mode. The blaster has a reservoir of 25 energy units;
whenever the blaster is fired, the energy units are depleted
by 5. The blaster recharges after some time, so that by not
shooting the agent can save up shots to fire a burst.

Fig. 3. An in-game screenshot of the environment used in this experiment.
The floor and ceilings are brown, the walls are gray, and the enemy is
dark blue. The room is dimly lit with varying shadows. The display of the
shooter’s own weapon has also been removed. (Cf. figure 1.)

IV. THE NEURO-VISUAL CONTROLLER

The neuro-visual controller consists of a neural network
and a set of visual inputs. The visual inputs are taken from
the game screen as blocks of pixels whose color values are
the average color values of the grayscale pixels within their
described area. There is a 14x2 grid of blocks that make up
the visual retina, which is similar to the graduated density
retina used in previous research: the blocks near to the center
of the screen are thinner than those of the periphery; each
block is approximately 1.618 times larger than the previous
block. The two rows of blocks are each 4.2% of the height of
the screen and are positioned slightly lower than the center
of the screen. The small height and positioning of the retina
concentrates the visual data on the position of the enemy.

Fig. 4. The neural network control is a standard recurrent network with a
hidden/context layer.

The neural network used in the neuro-visual controller
is a simple recurrent network [13] with 28 inputs, 10 hid-
den/context units, and 4 output neurons (figure 4). A bias

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



value of 1.0 is input to the hidden layer and to the output
layer. The weights of the network are floating point values
that begin in the range of [−2.0, 2.0], but exceed that range
because of the mutation as the evolution continues. The 28
inputs are from the retinal blocks and are grayscale values in
the range [0, 1]. After the inputs to any neuron are multiplied
by their corresponding weights, they are summed and their
values are squashed using the tanh function. The 4 outputs
of the neural network control the behavior of the agent; one
output controls the speed of turning left or right, one controls
left or right movement speed, one controls forward or back
movement speed, and one controls whether or not to shoot.
The movement and turning controls are real values and can
be variable speed, but the output to control shooting is a
binary value that is true if positive and false if negative.

V. HAND-CODED BOT FOR BACKPROPAGATION

The backpropagation of the neural network used for
Lamarckian adaptation needs to imitate some supervising
behavior. We could have attempted to imitate a human player,
but humans are very inconsistent in their actions so learning
would be difficult. Instead, we hand-coded a controller that
performs the desired behavior; rather than using visual input
like the neural network, it directly accesses the location
coordinates of the enemy as relative to the agent and outputs
the actions that the agent should do for every frame. The
goal of this experiment is to have a controller that uses only
visual input, but we can let the hand-coded controller “cheat”
and access the direct coordinates because the neural network
will learn to imitate this behavior using only the visual input.

In order to hand-code a controller that can be used
with backpropagation for a neurovisual network, one must
consider the capabilities of the visual field. The hand-coded
bot must be designed to react only to situations that are
clearly visible in the visual field; if it does react to non-visible
elements, then the visual controller will become confused
because duplicate visual situations will require different
control outputs. For instance, if our Quake II bot always
turned directly toward the enemy, even if the enemy is not
currently on screen, then the visual controller will be trained
to turn both left and right when it sees no enemy on screen,
because sometimes the enemy will be offscreen and closer
to the left, and other times offscreen and closer to the right.
Because of this, our hand-coded bot assumes that there is no
enemy until the enemy is somewhat centered in the view of
the agent; only then does it follow its aim directly towards the
enemy. When the enemy is not near the center, or not even on
screen, then the bot always spins to the left, as if searching
for the enemy. When the enemy is centered, then the hand-
coded bot shoots at the enemy, vibrating its turning slightly
to scatter the shots. When the enemy is killed it begins its
death animation, and by observing the enemy’s animation
frames we can tell when the enemy has fallen out of view of
the visual controller’s retina and then proceed to search for
the enemy again by turning left. Our controller performs no
action inconsistent with the visual field, which is essential to

successful backpropagation of the visual controller.
Like the neural network, the hand-coded controller outputs

4 values, corresponding to turning, moving left or right,
moving forward or back, and shooting or not shooting. For
the real valued movement, we can simply output the desired
movement values. For the binary shooting output, which will
shoot if positive and not if negative, we output the most
extreme values of -1.0 and 1.0, which seems to work well
for training.

VI. TRAINING

To evolve the weights of the neural network, we represent
the weights as a chromosome and evolve the population
of chromosomes using a Queue Genetic Algorithm (QGA),
which is a steady-state first-in-first-out genetic algorithm
[22]. The QGA uses a queue (figure 5) to store the population
of chromosomes; the oldest individuals are at the tail of the
queue and the youngest are at the head. Whenever a new
individual chromosome is needed, two parents are taken from
the queue using stochastic roulette wheel selection, according
to fitness; the parents are combined into a new individual
using crossover. After any new individual is finished being
tested and is assigned a fitness, the individual is returned to
the QGA and placed at the head of the queue, and the oldest
individual is dropped off of the queue’s tail. This technique
provides evolution very similar to a regular genetic algorithm,
and allows for easy distribution of the evolution. We can run
a central QGA server and run several QGA clients on several
different computers over the network, each running multiple
fitness evaluation tests. Because we run Quake II in real-time
at normal game speed, distributing the evolution is essential
to completing the tests in acceptable time.

Fig. 5. The Queue Genetic Algorithm (QGA). New individuals are bred
from parents chosen from the current population by roulette wheel selection
according to fitness. After each new individual is evaluated it is enqueued
and the oldest individual is dequeued and discarded.

For this experiment we used a population size (queue
length) of 128 chromosomes, each consisting of 434 genes,
representing by floating point numbers. Crossover is uniform,
with equal chance of drawing each gene from either parent.
The resulting chromosome is mutated with an independent
10% chance of mutation per gene. The mutations are cal-
culated by drawing a delta from a sharply peaked random
distribution, log(n)

10 ∗ random(−1or1), where n is a random
number in the range [0, 1]. This function has a high prob-
ability of generating small deltas and a low probability of
generating high deltas.

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



Fig. 6. An in-game screenshot of an agent looking at the enemy opponent in the map. The left side of the screen shows the Quake II game screen and
the right side shows what the agent actually sees through its retina.

In one test we use only neuroevolution for the learning;
in the other, we use Lamarkian neuroevolution with back-
propagation for adaptation. The setup of the two tests are
exactly the same, except that each individual in the latter
test is given 12 seconds to backpropagate against the hand-
coded controller before their fitnesses are tested. During
these twelve seconds the hand-coded controller completely
controls the agent. The neural network controller, which
consists of the weights given by the chromosome as dis-
pensed by the QGA, is given the visual inputs of the agent
as the agent performs the hand-coded control. The neural
network outputs what it would do to control the agent for
each frame of gameplay, 40 per second, and the error is
backpropagated with a learning rate of 0.0001. The weights
are permanently modified throughout the backpropagation;
after the backpropagation the updated chromosome remains
static and is tested for 24 seconds and returned to the QGA.

Each individual chromosome is tested according to this
process:

1) The learning agent appears in the room and drops to
the floor.

2) If the agent is using backpropagation, it imitates the
hand-coded controller for 12 seconds.

3) The agent is given 24 seconds to kill as many enemy
’bots’ as it can; kills are counted.

4) Whenever an enemy is killed, it promptly respawns at
some random location in the room.

5) After the 24 seconds the current learning agent is
removed and the fitness for its chromosome is reported.

The fitness is according to the number of kills achieved in
the 24 second testing period; in order to increase selection
pressure, we use (5n)2, where n is the number of kills.
Because there is some time delay between the death of the
enemy and its reappearance, the maximum number of kills
possible in the 24 second period is about 12.

In this research as well as in our previous research we
shape the enemy’s speed. At the beginning of the evolution,
the enemy stands completely still; after the average fitness

of the population reaches a certain level, the speed increases.
This shaping allows the controllers to incrementally learn to
attack a fast moving opponent, aiding their ability to learn.

VII. RESULTS

We tested the two learning schemes for 500 generations each.
The tests that learned using backpropagation for Lamarckian
neuroevolution were much more successful than the test that
used only neuroevolution. Figure 9 shows the average fitness
of the six populations that used backpropagation mixed with
neuroevolution. In this graph we see that the fitness jumped
up quickly and by the 75th generation the fitness was high
enough that the enemy’s speed began to be incrementally
raised. By the end, the average enemy speed of the six tests
is a little over half of the full speed capable by the enemy.
Comparatively, figure 10 shows the average fitness for the six
populations that used only neuroevolution. We see that the
fitness does not reach nearly as high as in the previous test,
and only by the end of the evolution does the movement of
the enemy begin to increase. In five of the six neuroevolution-
only tests the average fitnesses of the populations never
reached high enough to increase the speed of the enemy past
zero, whereas in all six of the backpropagation and neu-
roevolution combination tests the enemy’s speed increased
past zero. We can more clearly see the disparity of success
between the two tests by looking at a graph that combines
the average fitness of the populations with the average enemy
movement speed: figure 9 shows the combined graph for the
Lamarckian neuroevolution combination test, and figure 10
shows the combined graph for the neuroevolution-only test.

The dim lighting and varying shadows makes this problem
extremely difficult for our simple retina controller. The 14x2
retina does not appear to provide adequate information for
distinguishing the darkness of the enemy from the darkness
of the shadows. Observance of the agents developed by
the neuroevolution-only controller shows that the agents
converge prematurely on a “sprinkler” solution: they turn
around the room sprinkling it in a pattern that is somewhat
likely to hit the enemy; the enemy itself is ignored and

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



Fig. 7. Average of the average fitnesses of the six populations that used
Lamarckian neuroevolution. The top dark line shows the fitness according
to the number of kills, and the dashed line shows the enemy’s speed, which
increased whenever the fitness reached a certain point.

no special behavior is presented when the enemy appears
in view. The test that used backpropagation as a learning
aid, however, could not get stuck in this premature local
optimum because the agents were always being influenced to
imitate the hand-coded controller. After some generations of
backpropagation and evolution, the controllers began to learn
to react to the enemy’s appearance. By the later generations,
the agents behaved very similar to the hand-coded bot: they
shot bursts of blaster fire at the enemy and would even track
the enemy as it moved; they did not fire their blaster unless
the enemy was in view, except at an occasional shadow.
The fitnesses of the best individuals from the lamarckian
controllers were comparable to the best fitnesses of the hand-
coded bot, ranging between 7 and 9 kills per turn; the average
fitness of the visual controller, however, was much lower at
about 3.5 kills per turn, whereas the average fitness of the
hand-coded controller was about 7 kills per turn. Since luck
can play a large role in earning the “best” fitness, the average
fitnesses are a more accurate representation of the abilities
of the lamarckian visual versus hand-coded controllers.

One disadvantage of adding backpropagation to neuroevo-
lution is that it requires extra time for the backpropagation
training. In this experiment it added an extra 12 seconds of
training to every individual; they each took a total of 36
seconds instead of 24 seconds, a 150% time increase. In the
time that it would take for the neuroevolution-only test to
finish its 500th generation, the test using backpropagation
would only be at its 333rd generation. We can see by
comparing the graphs that the fitness of the Lamarckian
test is still much better at the 333rd generation than the
neuroevolution-only test at the 500th generation.

Another disadvantage of the backpropagation is that the

Fig. 8. Average of the average fitnesses of the six populations that used
neuroevolution alone. The dark top line shows the fitness according to
the number of kills, and the dashed line shows the enemy’s speed, which
increased whenever the average fitness reached a certain point.

Fig. 9. This combination graph for the test using Lamarckian neuroevo-
lution gives a clear representation of its success, which incorporates the
average speed of the enemy with the average fitnesses of the test.

population will only become as successful as the hand-coded
controller which it is imitating. Because the controller is
designed by hand and is not using the visual field, it may
not be an optimal controller for supervision. This problem
can likely be solved by decreasing the effect or time of
backpropagation as the evolution proceeds. For example,
in the beginning longer periods of backpropagation could
be used to quickly boost the behavioral fitness; then, as
the fitness increases, the time used doing backpropagation
could slowly drop down until sometime when there is no
backpropagation, and the evolution can continue to perfect

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



the controller for visual control without any influence from
the hand-coded controller.

Fig. 10. This combination graph for the neuroevolution-only test combines
the average fitness of the test with the enemy movement speed. By
comparing this graph with Figure 9, it is clearly seen that neuroevolution-
only was much less successful.

Using backpropagation by itself was an option for this
research, but distributing backpropagation across multiple
computers on a network is a difficult problem. If we were
to match the running computational time of a population
from the the neuroevolution-only test, running only a single
backpropagating client, it would require over 1066 days
of computation. There are some techniques to distribute
backpropagation, such as was done by Chen et al. [23], but
the techniques are complicated and do not exactly model pure
backpropagation. Using the distribution of the QGA to evolve
the controllers in combination proved to be an easy and fast
solution that could utilize our large number of computers, and
that also had the advantage of the incorporated evolutionary
learning.

VIII. CONCLUSION

In this research we compared two learning methods: one
used neuroevolution only and one used neuroevolution with
backpropagation for Lamarckian adaptation. The controller
used by both tests was a neural network with a visual
retina input. The visual retina consisted of a 14x2 grid
of blocks; each block consisted of the average grayscale
values of a number of pixels. The blocks in the retina
were thinner in the center and wider near the periphery
so that the agent could see “clearer” near the center of
the screen. The neural network was a standard recurrent
network with a hidden/context layer. The network had four
outputs: move forward/back, move right/left, turn right/left,
and shoot. The neuroevolution-only test evolved the weights
of the neuro-visual controller over 500 generations. The
Lamarckian neuroevolution test evolved the weights of the
network for 500 generations and also used backpropagation

on every individual to persuade them to imitate a hand-coded
controller. The hand-coded controller was programmed using
non-visual game data, such as the enemy’s exact location,
and controlled the agent to shoot at the enemy. During the
backpropagation, the hand-coded controller controlled the
agent while neural network controller learned to imitate it.

The task learned was to shoot a moving enemy in a vi-
sually complex environment. The environment was a square
room with dim lighting and varying shadows. The enemy’s
speed increased throughout the evolution, after the average
fitness of a population reached a certain value. Fitness was
awarded according to the number of kills during a 24 second
test period. Results showed that using Lamarckian neuroevo-
lution was much more successful than using neuroevolution
alone. The neuroevolution-only tests learned a premature
solution that ignored the appearance of the enemy and merely
sprinkled bullets around the room in a semi-deadly pattern.
The tests that used Lamarckian neuroevolution learned to im-
itate the hand-coded controller using only the visual inputs,
and their fitnesses were accordingly more successful.

This research shows that backpropagation can be used
with a hand-coded non-visual controller and mixed with
neuroevolution to learn visual-only control in a visually
complex environment. Moreover, this research emphasizes
the general idea that an effective controller that uses high-
level inputs can be used with backpropagation to teach a
controller that uses lower-level inputs. This could also be
useful to train non-visual agents, such as a robot that learns
to use its infrared distance sensors to navigate by imitating a
higher-level hand-coded controller which uses some higher-
level triangulation of WiFi signals to determine its location;
in the final product the controller might not be able to use
WiFi to pinpoint its location, but to train the lower-level
sensors it can “cheat” and use WiFi triangulation. In future
research in visual control we will increase the complexity of
the retina and of the environment, and learn more complex
behaviors. We also will try to add color to the retina, rather
than grayscale only. We also will eliminate the need to hand-
code a controller by evolving, rather than coding, a non-
visual supervising controller, thereby completely eliminating
human supervision beyond a fitness function in the learning.

IX. ACKNOWLEDGMENTS

This work was supported in part by NSF EPSCoR grant EPS-
0447416. Quake II is a registered trademark of Id Software,
Inc., of Mesquite, Texas.

Our modifications to the Quake II source code, including a
general-purpose API for client-based AI, is available from the
Neuroevolution and Behavior Laboratory at the University of
Nevada, Reno, http://nebl.cse.unr.edu/.

REFERENCES

[1] D. Pomerleau, “Efficient Training of Artificial Neural Networks for
Autonomous Navigation”, Neural Computation, Vol. 3, No. 1, 1991,
pp. 88-97.

[2] S. Baluja, “Evolution of an Artificial Neural Network Based Au-
tonomous Land Vehicle Controller”, IEEE Transactions on Systems,
Man and Cybernetics, Vol. 26 No. 3, 450-463, June 1996.

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.



[3] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of active
vision and feature selection”, Biological Cybernetics, 90(3), 2004, pp.
218–228.

[4] S. Enrique, A. Watt, F. Policarpo, S. Maddock, “Using Synthetic
Vision for Autonomous Non-Player Characters in Computer Games”,
4th Argentine Symposium on Artificial Intelligence, Santa Fe, Argentina,
2002.

[5] O. Renault, N. Magnenat-Thalmann, D. Thalmann, “A Vision-based
Approach to Behavioural Animation”, Journal of Visualization and
Computer Animation, Vol.1, No1, 1990, pp.18-21.

[6] N. Kohl, K. Stanley, R. Miikkulainen, M. Samples, and R. Sherony,
“Evolving a Real-World Vehicle Warning System”, In Proceedings of
the Genetic and Evolutionary Computation Conference 2006, pp. 1681-
1688, July 2006.

[7] C. Bauckhage, C. Thurau, and G. Sagerer, “Learning Human-like
Opponent Behavior for Interactive Computer Games”, In B. Michaelis
and G. Krell, editors, Pattern Recognition, volume 2781 of LNCS, pages
148-155. Springer-Verlag, 2003.

[8] S. Zanetti, A. El Rhalibi, “Machine Learning Techniques for First
Person Shooter in Quake3”, International Conference on Advances
in Computer Entertainment Technology ACE2004, 3-5 June 2004,
Singapore.

[9] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning Human-Like
Movement Behavior for Computer Games”, In Proc. Int. Conf. on the
Simulation of Adaptive Behavior, pages 315-323. MIT Press, 2004.

[10] S. Priesterjahn, O. Kramer, A. Weimer, A. Goebels, “Evolution of
Human-Competitive Agents in Modern Computer Games”, Proceedings
of the 2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[11] R. Graham, H. McCabe, and S. Sheridan, “Neural Pathways for
Real Time Dynamic Computer Games”, Proceedings of the Sixth
Eurographics Ireland Chapter Workshop, ITB June 2005, Eurographics
Ireland Workshop Series, Volume 4 ISSN 1649-1807, ps.13-16

[12] “Q2 LNX stuff,” Nov 14, 2005. http://icculus.org/quake2/
[13] J. L. Elman, “Finding structure in time”, Cognitive Science, 14:179–

211, 1990.
[14] M. Parker, and B. Bryant, “Neuro-visual Control in the Quake II Game

Engine”, Proceedings of the 2008 International Joint Conference on
Neural Networks (IJCNN 2008), Hong Kong, June 2008.

[15] M. Parker, and B. Bryant, “Visual Control in Quake II with a Cyclic
Controller”, Proceedings of the 2008 IEEE Symposium on Computa-
tional Intelligence and Games (CIG 2008), Perth, Australia, December
2008.

[16] J.-B. Lamarck, Pilosophi Zoologique, 1809.
[17] J. Grefenstette, “Lamarckian Learning in Multi-Agent Environments”,

Proceedings of the Fourth International Conference on Genetic Algo-
rithms, 303-310, San Mateo, CA, 1991.

[18] D. Whitley, S. Dominic, R. Das, and C.W. Anderson, “Genetic Re-
inforcement Learning for Neurocontrol Problems”, Machine Learning,
13:259-284, 1993.

[19] K. Ku, M. Mak, and W. Sui, “A Study of the Lamarckian Evolution
of Recurrent Neural Networks”, IEEE Transactions on Evolutionary
Computation, 4:31-42, 2000.

[20] D. Rumelhart, G. Hinton, and R. Williams, “Learning Internal Repre-
sentations by Error Propagation”, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Volume 1: Foundations‘,
Cambridge, MA: MIT Press, 318-362, 1986.

[21] B. Bryant, and R. Miikkulainen, “Acquiring Visibly Intelligent Behav-
ior with Example-Guided Neuroevolution”, Proceedings of the Twenty-
Second National Conference on Artificial Intelligence (AAAI-07), pp.
801-808. Menlo Park, CA: AAAI Press.

[22] M. Parker, and G. Parker, “Using a Queue Genetic Algorithm to Evolve
Xpilot Control Strategies on a Distributed System”, Proceedings of
the 2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

[23] Q. Chen, Y. Lai, and J. Han, “A Implementation for Distributed
Backpropagation Using Corba Architecture”, Proceedings of the 2006
5th International Conference on Cognitive Informatics (ICCI 2006),
Beijing, China, July 2006.

Copyright 2009 IEEE. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC’09), pp. 2630–2637.
Piscataway, NJ: IEEE Press.


