
Backpropagation without Human Supervision for Visual Control in
Quake II

Matt Parker and Bobby D. Bryant

Abstract— Backpropagation and neuroevolution are used in a
Lamarckian evolution process to train a neural network visual
controller for agents in the Quake II environment. In previous
work, we hand-coded a non-visual controller for supervising
in backpropagation, but hand-coding can only be done for
problems with known solutions. In this research the problem
for the agent is to attack a moving enemy in a visually complex
room with a large central pillar. Because we did not know a
solution to the problem, we could not hand-code a supervising
controller; instead, we evolve a non-visual neural network as
supervisor to the visual controller. This setup creates controllers
that learn much faster and have a greater fitness than those
learning by neuroevolution-only on the same problem in the
same amount of time.

I. INTRODUCTION

A large variety of complex tasks can be solved by humans
using only simple two-dimensional image data for input. A
vehicle can be adequately controlled remotely by a human
using as input a transmitted image from a single mounted
camera. Doctors are able to remotely perform intricate and
detailed surgeries by controlling a robotic arm and using
camera images for input. Virtual worlds in computer games
are accessed mainly by using the 2-dimensional screen on a
monitor, yet there are a huge variety of games that require
that the player perform many different tasks to complete.
Humans are able to use this image information because their
complex brains are designed to quickly process raw vision.
Computers can also process raw visual data but generally
must use complex algorithms that are computationally inten-
sive due to the large number of color values in an image
that must be processed. Processing visual data in real-time
is usually very difficult because the information must be
processed within short time-constraints.

Neural networks have previously been used as controllers
in research using raw visual input in a real-time environment.
Pomerleau trained a neural network with backpropagation
to drive a car on a road using a 30x32 grayscale input;
the controller learned to imitate a human driver in real-
time [1]. In research by Baluja, the same experiment was
modified to use an evolutionary computation model instead
of backpropagation. The new method evolved more robust
controllers, but trained with recorded data sets rather than
in real-time [2]. A car controller was trained by Floreano
et al. to use active vision to race around a track in a

Matt Parker (mparker@cse.unr.edu) is a graduate student at the Depart-
ment of Computer Science and Engineering, University of Nevada, Reno.

Bobby D. Bryant (bdbryant@cse.unr.edu) is an assistant professor at the
Department of Computer Science and Engineering, University of Nevada,
Reno.

realistic driving simulator [3]. Kohl et al. trained another
virtual car racing controller by using NeuroEvolution of
Augmenting Topologies and a 20x14 grayscale input to
evolve a vehicle warning system [6]. They then proceeded
to try out this technique on an actual robot with a mounted
camera and found that the system was able to adequately
warn the robot about obstacles. These experiments all show
that neural networks are viable controllers for real-time raw
vision applications.

Synthetic vision, which is a method that adds extra-
visual data into the raw visual field, has been used by
many researchers for experiments that exist entirely in a
virtual world [4][5]. This technique might change the color
of objects to help with identification to specify some field
such as distance. For example, in research by Enrique et
al., the visual input was re-rendered into two separate color-
coded views: one displayed the color according to entity
identification and wall-angle, and the other displayed colors
corresponding to the velocities of objects. This higher-level
information simplified the raw visual field so that a hand-
coded controller that navigated a map and picked up health
boxes could more easily be created [4]. An agent’s controller
was hand-coded by Renault et al. to walk down a hallway
using extra-visual pixel data: each pixel included distance,
object identification, and color values [5]. Because these
experiments used virtual worlds, the extra-visual information
could be easily accessed; in the real world, however, such
information is only accessed through great difficulty and by
expensive sensors; for that reason synthetic vision techniques
cannot be easily transferred to real-world robotics.

First Person Shooters (FPS) such as Quake II are popular
video games that put a player in control of a character that
generally must shoot many enemies to win. The player plays
the game looking through the eyes of the in-game character
and usually can see the aim of the character’s gun. FPS’s are
often used for research because they usually have some native
interface for programming AI for the game. Research was
conducted by Bauckhage et al. that trained multiple neural
networks to imitate behavior of human players whose actions
had been previously recorded. One neural network was used
for combat and another was used to traverse the map when
not in combat [7]. An agent was trained in Quake III by
Zanetti and El Rhalibi to collect items, engage in combat,
and navigate a map. The controller was a neural network that
learned by backpropagation on pre-recorded demos of human
players, using the player’s weapon information and location
as inputs [8]. In research by Graham et al., controllers were
trained using neuroevolution for obstacle avoidance and path-

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



finding strategies in the game Quake II [10]. A Neural Gas
method was used by Thurau et al. to train agents to imitate
the waypoint-navigation of human players in Quake II, also
by observing the humans’ movements from pre-recorded
demos [9].

In our previous research we trained vision based con-
trollers for agents in Quake II. First, we trained a simple
recurrent network [12] by neuroevolution to control an agent
to shoot a moving enemy in a visually-simple room [13].
The input to the neural network was a 14x2 grid of grayscale
input blocks, each activated to the average grayscale value
of the pixels covered by the block. We tested two different
retinal layouts for the 14x2 grid of blocks: in the uniform
retina we used blocks that were all the same size across
the controller; in the graduated density retina we made the
blocks thinner in the center of the retina and wider in the
periphery. We found that the graduated density retina learned
more quickly to shoot the enemy because the enemy could
more easily be seen in the higher-resolution center of the
retina.

In more recent research we took the graduated density
controller and used it in a more visually complex room that
contained varying lights and shadows (figure [15]). We found
that the graduated density controller was unable to learn
in the complicated environment using only neuroevolution.
Instead, we hand-coded a controller that used exact location
inputs rather than visual input to determine its behavior. We
used this controller as the supervisor for backpropagation
of the evolving neural network controllers: each controller
was given 12 seconds to learn via backpropagation and
then was given 24 seconds to test its fitness. The indi-
viduals were then bred according to their fitnesses. The
idea that behavioral changes learned during an individual’s
lifetime can be genetically passed on to its offspring was
first proposed by Jean-Baptiste Lamarck [16], and has been
implemented previously by many researchers [17][18][19],
including the use of backpropagation with neuroevolution
[20][21]. Our experiments using a hand-coded controller to
supervise backpropagation learned much more successfully
than did the controllers that used pure neuroevolution on
the same problem. However, a problem arises that a human
must manually program the supervising controller, and a
human might not know the optimal solution. In order to
bypass the human-element completely, we have extended the
research by evolving, rather than hand-coding, the non-visual
supervisory controller; we then use that evolved controller to
help train the visual controller.

II. THE QUAKE II ENVIRONMENT

This research uses Quake II by Id Software, Inc. as a platform
for testing visual controllers. Quake II is an FPS that has the
player take control of a space marine who must fight his way
out of a hostile alien world, using a wide variety of weapons
and powerups. The game can be played either in single player
or with many players over a network. The game’s textures,
maps, rules, models, and sounds can all be easily changed

to create custom modifications.

Fig. 1. An in-game screenshot from the game Quake II.

We chose Quake II as our research platform for several
reasons. The most important is that the game is open source,
released by Id Software, Inc. under the General Public
License (GPL), and can be compiled on many UNIX-like
operating systems [11]. Because it is open source, we were
able to create an easy interface to any values and functions
that might be useful for AI; particularly, we are able to
control the behavior of the player and read color values from
the rendered screen buffer. Another important requirement
for our platform is that it does not render using a 3D graphics
card; if the engine used 3D acceleration then we could only
run one copy of the game per graphics card. Instead, Quake
II can render the 3D scene using only the regular CPU, so
that we can run several copies of the game on one machine.
We run the game in real-time and distribute the evolution
over several copies of the game, so it is essential that we run
as many copies as possible per computer.

Many FPS’s, including Quake II, allow users to create AI
opponents, called bots; generally these bots only run on the
game server and cannot access the screen render because they
do not use visual input for the controllers. For this research
we use the client, which is normally controlled by a human
player, and control it with our AI and read the visual data
from the screen render.

III. THE EXPERIMENT

For this experiment we have parted from the simple open
room used in our previous research [13][15] and have in-
serted a large square pillar into the midst of it (figure 3).
The room is the same size as in our previous research, with
the same style of shading, and the task is also the same:
shoot and kill the enemy as many times as possible. The
pillar in the middle of the room occludes the player’s view
of most of the map, so often the enemy is not visible and
the hallways around the pillar must be traversed in order to
find him. Because of this new setup, the agent can no longer
use its previous optimal behavior, which was to spin around
in circles shooting bursts of shots at the enemy.

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



Fig. 2. An in-game screenshot from the simplified environment used in
our previous experiments.

In this map we place the spawn portals for the learning
agent over the empty hallways surrounding the pillar, so that
he drops to the floor and can immediately begin hunting for
the enemy. The enemy’s spawn portals are over the top of
the pillar, and he is programmed to automatically walk to the
opposite side of wherever the agent happens to be. Once the
enemy drops to the hallway floor, he begins moving about
in a random pattern.

Fig. 3. An in-game screenshot of the environment used in this experiment.
The floor and ceilings are brown, the walls are gray, and the enemy is dark
blue. The room is dimly lit with varying shadows. A large square pillar is
placed in the center of the room. The display of the shooter’s own weapon
has also been removed.

To kill the enemy opponent, the learning agent is equipped
with a blaster that shoots out deadly beams of plasma. The
blaster stores up to 25 energy units and uses 5 units for
each shot; the energy units recharge after some time. This
setup allows the agent to shoot out bursts of shots and is
implemented to encourage the agent to wait to shoot until
the enemy is in range.

IV. THE NEURO-VISUAL CONTROLLER

The neural-visual controller consists of an array of visual
inputs and a neural network. The visual input array consists

of 28 grayscale blocks of pixels whose grayscale color values
have been averaged together. The blocks are arranged in a
14x2 grid that spans across the width of the game screen
and takes up about 8.4% of the height of the screen. We
use the graduated density retina from our previous research
[13]; the blocks in the center of the retina are thinner than
those nearer to the periphery, with each block, from inmost
to outmost, being approximately 1.618 times larger than the
previous.

Fig. 4. The neural network control is a standard recurrent network with a
hidden/context layer.

The neural network controller used in this experiment
is a simple recurrent network [12] with 28 inputs, 10
hidden/context units, and 4 outputs neurons (figure 4). A
bias unit with a value of 1.0 is input to the hidden and
output layers. The weights of the neural network are floating
point numbers that start in the range [−2.0, 2.0], but through
learning and mutation may exceed the bounds of that range.
The inputs are the 28 visual blocks from the retina, as well
as the recurrent hidden layer neurons. The summation of
the products of the inputs and their corresponding weights is
squashed by the tanh function. The neural network outputs 4
values, corresponding to right/left movement, forward/back
movement, right/left turning movement, and shoot or not-
shoot action. The neural network calculates the movement
of the agent for every frame of gameplay, 40 frames per
second.

V. SUPERVISING BOTS FOR BACKPROPAGATION

In order to perform backpropagation learning, the agent
must have some supervising behavior to imitate. As ex-
plained in the introduction of this thesis, many real-time
backpropagation experiments in FPS’s involve imitating pre-
recorded human behaviors. A problem with using human
gameplay is that humans are not very behaviorally consistant,
and it is a hassle to build up a large library of recorded human
players; moreover, unless they are particularly good, human
players perform less than optimal.

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



Instead of using a human player our first solution was
to use a hand-coded controller that would tell the neural
network what it should have done for every frame. If we were
able to program this supervising controller to do exactly what
we wanted using the same inputs as the visual controller then
we would not have much need to evolve a neural network that
does the same thing with the same inputs. However, hand-
coding visual controllers is particularly difficult, so instead
we “cheat” and use non-visual inputs, like the enemy’s exact
X and Y location, to easily hand-code a controller that
does what we want. It’s permissible to let the supervising
controller use non-visual inputs because in the end we still
end up with a visual-only controller, but it will have learned
its behavior from a non-visual controller.

In our previous Lamarckian research [15], we hand-coded
the non-visual controller, which worked well because we
already had a good idea of the optimal solution to the
problem. We had learned the solution by observing the
strategies evolved by neuroevolution in the retinal layout
experiment, which used a room with no shadows. We did
not know, however, the optimal solution for the pillar room.
Rather than making a hand-coded controller, we evolve a
neural network that uses non-visual data for inputs. The non-
visual neural network controller is a simple recurrent network
with a hidden layer. There are 11 non-visual inputs: 7 are wall
distance sensors at 0 degrees and at 10, 25, and 60 degrees
on either side; there are 4 enemy inputs which tell the x
and y distance and x and y velocities of the enemy, relative
to the agent’s heading angle. Whenever the enemy is not on
screen, is occluded behind the pillar, or is not near the center
of the field of view, since some input must be given to the
network, fictional inputs are used that indicate an imaginary
enemy who is very far away. It is important that the non-
visual controller cannot use information that is not somehow
accessable to the visual-controller, so that the non-visual does
not attempt to train the visual to do the impossible. The non-
visual controller has 4 outputs that are exactly the same as
the visual controller’s, so the outputs can easily be used to
teach the visual controller through backpropagation.

VI. TRAINING

To evolve the weights of both the visual and non-visual
neural networks, we represent the weights as a chromosome
and evolve the population of chromosomes using a Queue
Genetic Algorithm (QGA), which is a steady-state first-in-
first-out genetic algorithm [22]. The QGA uses a queue
(figure 5) to represent the population of chromosomes and
arranges them from youngest to oldest. Whenever a new
chromosome is needed, two individuals are stochastically
selected (roulette wheel), according to fitness, and are used
to form a new child through crossover and mutation. This
new child is tested for fitness and, upon returning, is inserted
onto the queue as the youngest; at the same time, the oldest
individual is deleted from the queue. The QGA allows for
easy distribution of evolution over a network because many
individuals can be sent out to be tested and may return at

their leisure without forcing the QGA to wait. It is essential
to distribute the evolution because we run Quake II at normal
game speed; by running several copies at once over multiple
processors and over the network, we are able to evolve our
controllers fairly quickly.

Fig. 5. The Queue Genetic Algorithm (QGA). New individuals are bred
from parents chosen from the current population by roulette wheel selection
according to fitness. After each new individual is evaluated it is enqueued
and the oldest individual is dequeued and discarded.

For this experiment we used a population size (queue
length) of 128 chromosomes, consisting of 434 genes for
the visual controllers, and only 136 genes for the non-
visual controller; the genes are representing by floating point
numbers. Crossover is uniform, with equal chance of drawing
each gene from either parent. The resulting chromosome
is mutated with an independent 10% chance of mutation
per gene, and the mutations are calculated by drawing a
delta from a sharply peaked random distribution, log(n)

10 ∗
random(−1or1), where n is a random number in the range
[0, 1]. This function has a low probability of generating large
deltas and a high probability of generating small deltas.

We compare the Lamarckian controller to a
neuroevolution-only controller. The setup of each test is the
same, except that each individual in the Lamarckian tests
are given 12 extra seconds to learn through backpropagation
to imitate the non-visual supervisory controller before their
fitnesses are tested. During these twelve seconds the non-
visual controller completely controls the agent. The visual
neural network controller, which consists of the weights
given by the chromosome as dispensed by the QGA, is
given the visual inputs of the agent as the agent performs
the control specified by the non-visual controller. The visual
neural network outputs what it would do to control the agent
for each frame of gameplay, 40 per second, and the error is
backpropagated with a learning rate of 0.0001. The weights
are permanently modified throughout the backpropagation;
after the backpropagation the updated chromosome remains
static and is tested for 24 seconds and is returned to the
QGA.

For the supervising controllers, we evolve one non-visual
controller for each Lamarckian test, selecting the best in-
dividual from the 1000th generation. We then use it as
supervisor for the 12 seconds of backpropagation in the
Lamarckian tests, and run those tests for 1000 generations. To
accurately compare the neuroevolution-only controller to the
Lamarckian controller, we must allow it to evolve for the sum
total of the time used to evolve the non-visual supervising

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



Fig. 6. An in-game screenshot of an agent looking at the enemy opponent in the map. The left side of the screen shows the Quake II game screen and
the right side shows what the agent actually sees through its retina.

controller and the Lamarckian visual controller, as well as the
12 seconds of backpropagation for each individual. This to-
tals to 2500 generations of evolution for the neuroevolution-
only controller, at 24 seconds per individual.

Each individual chromosome is tested as follows:
1) The learning agent appears in the room and drops to

the floor.
2) In the Lamarckian tests, the visual controller learns via

backpropagation for 12 seconds.
3) The agent is given 24 seconds to kill as many enemy

’bots’ as it can; kills are counted.
4) Whenever an enemy is killed, it promptly respawns at

some random location in the room.
5) After the 24 seconds the current learning agent is

removed and the fitness for its chromosome is reported.
We calculate the fitness for each individual solely based

upon the number of kills achieved within the 24 second
period. This number is modified by the equation (5n)2,
where n is the number of kills, to increase selection pressure.
The maximum number of kills in the 24 seconds is about 12
due to the duration of the enemy’s respawn time.

Rather than starting the enemy at full speed, we slowly
increase the speed over the evolution. Whenever the average
fitness of the population reaches a certain point, the speed
increases by a small percent; this usually results in the fitness
of the population decreasing again until it learns to hit the
enemy at the new speed; then, the fitness once again reaches
the speed increase level and the process continues until the
enemy moves at full speed. This shaping of the difficulty
allows the population to learn incrementally.

VII. RESULTS

We tested 25 different populations for each of the two
learning schemes. The Lamarckian controller’s non-visual
supervisor was also evolved 25 separate times, one for each
Lamarckian population. The Lamarckian learning tests per-
formed much better than did the neuroevolution-only tests.
The fitness chart of the Lamarckian tests (figure 7) shows

that the enemy’s movement speed is up to 27% of fullspeed
by the end of the test; comparatively, the enemy’s movement
speed is only at 10% in the neuroevolution-only test (figure
8). The average fitness of the neuroevolution tests gradually
reaches just under 250. The average fitness of the Lamarckian
test exceeds 250 very early in the tests and wavers around
there for the remainder of the testing period.

Fig. 7. Average of the average fitnesses of the 25 populations that used
Lamarckian neuroevolution. The top dark line shows the fitness according
to the number of kills, and the dashed line shows the enemy’s speed, which
increased whenever the fitness reached a certain point.

The Lamarckian controller not only achieved higher fit-
ness, but its observable behavior is also superior and much
different than the behavior of neuroevolution-only tests. Both
controllers learned to walk around the pillar in one direction,
which seemed to be optimal movement strategy because the
enemy always dropped on the opposite side of whatever
location the agent happened to occupy. The neuroevolution
controller seems to have learned a “sprinkler” pattern for

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



Fig. 8. Average of the average fitnesses of the 25 populations that used
neuroevolution alone. The dark top line shows the fitness according to
the number of kills, and the dashed line shows the enemy’s speed, which
increased whenever the average fitness reached a certain point.

shooting at the enemy, by which the agent merely sprinkles
the hallways in a pattern that is likely to hit any enemies
that may be in it. The majority of the Lamarckian agents,
however, learned to shoot bursts of blaster fire only when the
enemy was in the aim. The non-visual supervising controllers
easily learned that the best strategy is to save the shots
until the enemy appears, then shoot a burst at the enemy,
thereby increasing the chance that one of the shots will
hit the enemy. These supervising agents pushed the visual
Lamarckian controllers towards this strategy until they were
able to do likewise. The neuroevolution-only tests, however,
became stuck in a “sprinkler” strategy local optimum and
had no supervisory controller to push them out.

Figure 9 shows the average fitness of the non-visual
supervisory controllers. The non-visual controllers do much
better than either of the visual controllers, and seem to
continually be improving. Almost immediately the average
fitness of the populations is higher than the highest average
fitnesses of the visual tests. We arbitrarily chose to pick
the best individual from the 1000th generation, though it
appears that we could have picked one from a much earlier
generation, since it still would be outperforming the visual
controllers at anything above 250 fitness. However, since
the best individual is sometimes just a lucky one in the
earlier generations, choosing the best from a later generation
provides a greater chance of it really being a good controller.

VIII. CONCLUSION

The research in this paper compared a visual controller
trained by neuroevolution-only and a visual controller that
used a combination of neuroevolution and backpropagation
in a Lamarckian learning scheme. Each individual in the

Fig. 9. Average of the average fitnesses of the 25 populations of evolved
non-visual controllers. The dark top line shows the fitness according to
the number of kills, and the dashed line shows the enemy’s speed, which
increased whenever the average fitness reached a certain point. The non-
visual controller’s fitness is nearly double that of either visual controllers
(figures 8 and 7).

Lamarckian test was trained shortly with backpropagation
before it was tested by the fitness function; the supervising
input for the backpropagation came from an evolved neu-
ral network controller that used non-visual inputs, such as
distance sensors and the exact enemy location, which was
previously trained by neuroevolution. The controllers’ task
was to learn to shoot and kill an enemy as many times as
possible in a 24 second period in a room with a large central
pillar. Both the neuroevolution-only and the Lamarckian
tests evolved controllers that learned to walk around the
pillar, but they differed in that the Lamarckian tests learned
to shoot bursts when the enemy was in view, while the
neuroevolution-only tests seemed to ignore the enemy and
shot in a random “sprinkler” pattern. The neuroevolution-
only tests probably were stuck in a “sprinkler” local op-
timum, and were unable to learn more complex strategies
because the problem was too difficult to learn from scratch
with visual inputs. The Lamarckian tests, however, were
heavily influenced through backpropagation by the strategy
that the supervising controller learned, which it was able
to learn from scratch because it used simpler non-visual
input; these supervising controllers were able to guide the
Lamarckian controllers out of any local optimums like the
“sprinkler” strategy.

The most important aspect of this research is the idea
of using controllers with high-level inputs to help train
controllers that use lower-level inputs. This idea may be
particularly useful in real-world robotics as well as in sim-
ulations. For example, suppose that someone needs a robot
that can navigate through some hallways using only laser
rangefinders for inputs. It may be too difficult to hand-code

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.



or to evolve a successful controller for such low-level inputs;
instead, a controller that used some extra information such
as GPS and an internal map could be hand-coded or trained
to perform successfully, and that new controller could then
be used to help train the controller that used the low-level
laser rangefinders.

In this research we were fortunate that the evolved non-
visual supervisory neural network learned a strategy that
could transfer well to a visual controller. To make sure that
the evolved supervisory controller could teach the visual
controller we had to restrict the non-visual inputs to use
only information that could be derived from the visual
input. For this problem it was not too difficult to limit the
supervisory inputs, but it may be very difficult to do so for
other controllers that have more complex inputs. It would be
helpful in the future to devise some system to automatically
limit the supervisory controller so that it does not attempt to
train the learning controller to do some impossible thing,
given its limited set of inputs. Our work is now being
directed to find such an automated solution to further remove
requirements of human intuition from this Lamarckian style
learning process.

IX. ACKNOWLEDGMENTS

This work was supported in part by NSF EPSCoR grant EPS-
0447416. Quake II is a registered trademark of Id Software,
Inc., of Mesquite, Texas.

Our modifications to the Quake II source code, including a
general-purpose API for client-based AI, is available from the
Neuroevolution and Behavior Laboratory at the University of
Nevada, Reno, http://nebl.cse.unr.edu/.

REFERENCES

[1] D. Pomerleau, “Efficient Training of Artificial Neural Networks for
Autonomous Navigation”, Neural Computation, Vol. 3, No. 1, 1991,
pp. 88-97.

[2] S. Baluja, “Evolution of an Artificial Neural Network Based Au-
tonomous Land Vehicle Controller”, IEEE Transactions on Systems,
Man and Cybernetics, Vol. 26 No. 3, 450-463, June 1996.

[3] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of active
vision and feature selection”, Biological Cybernetics, 90(3), 2004, pp.
218–228.

[4] S. Enrique, A. Watt, F. Policarpo, S. Maddock, “Using Synthetic
Vision for Autonomous Non-Player Characters in Computer Games”,
4th Argentine Symposium on Artificial Intelligence, Santa Fe, Argentina,
2002.

[5] O. Renault, N. Magnenat-Thalmann, D. Thalmann, “A Vision-based
Approach to Behavioural Animation”, Journal of Visualization and
Computer Animation, Vol.1, No1, 1990, pp.18-21.

[6] N. Kohl, K. Stanley, R. Miikkulainen, M. Samples, and R. Sherony,
“Evolving a Real-World Vehicle Warning System”, In Proceedings of
the Genetic and Evolutionary Computation Conference 2006, pp. 1681-
1688, July 2006.

[7] C. Bauckhage, C. Thurau, and G. Sagerer, “Learning Human-like
Opponent Behavior for Interactive Computer Games”, In B. Michaelis
and G. Krell, editors, Pattern Recognition, volume 2781 of LNCS, pages
148-155. Springer-Verlag, 2003.

[8] S. Zanetti, A. El Rhalibi, “Machine Learning Techniques for First
Person Shooter in Quake3”, International Conference on Advances
in Computer Entertainment Technology ACE2004, 3-5 June 2004,
Singapore.

[9] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning Human-Like
Movement Behavior for Computer Games”, In Proc. Int. Conf. on the
Simulation of Adaptive Behavior, pages 315-323. MIT Press, 2004.

[10] R. Graham, H. McCabe, and S. Sheridan, “Neural Pathways for
Real Time Dynamic Computer Games”, Proceedings of the Sixth
Eurographics Ireland Chapter Workshop, ITB June 2005, Eurographics
Ireland Workshop Series, Volume 4 ISSN 1649-1807, ps.13-16

[11] “Q2 LNX stuff,” Nov 14, 2005. http://icculus.org/quake2/
[12] J. L. Elman, “Finding structure in time”, Cognitive Science, 14:179–

211, 1990.
[13] M. Parker, and B. Bryant, “Neuro-visual Control in the Quake II Game

Engine”, Proceedings of the 2008 International Joint Conference on
Neural Networks (IJCNN 2008), Hong Kong, June 2008.

[14] M. Parker, and B. Bryant, “Visual Control in Quake II with a Cyclic
Controller”, Proceedings of the 2008 IEEE Symposium on Computa-
tional Intelligence and Games (CIG 2008), Perth, Australia, December
2008.

[15] M. Parker, and B. Bryant, “Lamarckian Neuroevolution for Visual
Control in the Quake II Environment”, Proceedings of the 2009
International Conference on Evolutionary Computation (CEC 2009),
Trondheim, Norway, May, 2009.

[16] J.-B. Lamarck, Pilosophi Zoologique, 1809.
[17] J. Grefenstette, “Lamarckian Learning in Multi-Agent Environments”,

Proceedings of the Fourth International Conference on Genetic Algo-
rithms, 303-310, San Mateo, CA, 1991.

[18] D. Whitley, S. Dominic, R. Das, and C.W. Anderson, “Genetic Re-
inforcement Learning for Neurocontrol Problems”, Machine Learning,
13:259-284, 1993.

[19] K. Ku, M. Mak, and W. Sui, “A Study of the Lamarckian Evolution
of Recurrent Neural Networks”, IEEE Transactions on Evolutionary
Computation, 4:31-42, 2000.

[20] D. Rumelhart, G. Hinton, and R. Williams, “Learning Internal Repre-
sentations by Error Propagation”, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Volume 1: Foundations‘,
Cambridge, MA: MIT Press, 318-362, 1986.

[21] B. Bryant, and R. Miikkulainen, “Acquiring Visibly Intelligent Behav-
ior with Example-Guided Neuroevolution”, Proceedings of the Twenty-
Second National Conference on Artificial Intelligence (AAAI-07), pp.
801-808. Menlo Park, CA: AAAI Press.

[22] M. Parker, and G. Parker, “Using a Queue Genetic Algorithm to Evolve
Xpilot Control Strategies on a Distributed System”, Proceedings of
the 2006 IEEE Congress on Evolutionary Computation (CEC 2006),
Vancouver, BC, Canada, July 2006.

Copyright 2009 IEEE. In Proceedings of the IEEE 2009 Symposium on Computational Intelligence and Games (CIG’09), pp. 287-293. Piscataway, NJ: IEEE Press.


