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Abstract— We evolve a neural network controller for a boat the creation of a robust controller without the need to under
that learns to maintain a given bearing and range with respet  stand the complex physics that govern the boat’'s movement,
to a moving target in the Lagoon 3D game environment. ,nq these controllers could be evolved for different classe

Simulating realistic physics makes maneuvering boats diffi f boats with minimal int i B
cult and thus makes an evolutionary approach an attractive of boats with minimal programmer interaction. because our

alternative to hand coded methods. We evolve the weights of goal involves creating a controller that both performs the
simple recurrent neural networks trained with a fitness fundion ~ maintain station behavior and performs the behavior in a way

designed to combine multiple fitness objectives based on s that a human observer would find believable, we performed
heading, and position to create a robust maintain station be ;- axneriment with three different fitness functions tcedet

havior. Results with an enforced subpopulation neural-eviution ine th thod of calculating fit that d th t
genetic algorithm indicate that we can consistently evolveobust mine the method or calculating Ntness that produces the mos

maintain controllers for realistically simulated boats in Lagoon. ~ convincing results. We determine the best fitness function b
making a quantitative comparison of the growth of fithess

over time and also by making a qualitative evaluation to
determine which behavior would be most appropriate for use
The naval exercise known as maintain station consisis a game or simulation.
of a following boat matching the heading and speed of a In this experiment, we successfully evolve a robust main-
lead boat while staying in a specific position relative to théain station controller. We find that a fitness function that
lead boat. Typically, maintain station takes the form ofalav factors in both the relative heading to the postion to be
vessels moving together in a military formation. The phgkic maintained and the relative rotation between the maimgini
limitations placed on the maneuverability of boats congrisboat and the lead boat performs best in producing robust,
the greatest challenge in coding the maintaining behavidselievable behavior.
Boats can take a long time to accelerate, have a limitedybili The next section describes related work in neuro-evolution
to turn, and are subject to drift when turning or decelegatin and behavior based robotics. We then define the maintain sta-
The existence of these various physical constraints esutton behavior and the issues that arise in realistic sirrat
in a controller that requires careful tuning for each type oih greater detail. Section 1V presents the neuro-evolaiign
boat that executes the behavior because of the differen@gsproach that we use to evolve the maintain station con-
in maneuverability created by variations in size, mass, artebller. We then introduce Lagoon, our 3D simulation gaming
power. environment, describe the experiments conducted, and show
Previous work using neural networks to solve the invertethe results. The last section presents conclusions andefutu
pendulum problem has shown that neural networks can leanork.
to cope with complex physical situations without any explic
knowledge about the physics of a given system [1]. This
ability of neural networks to learn physics implicitly piides Reseach on controlling the behavior of simulated entities
an attractive alternative to hand coding because it allaxs fdraws on the influence of several related fields. Behaviors

I. INTRODUCTION

Il. RELATED WORK
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like maintain station that provide the ability for groups to
move together in formation are important because of the A
advantages formations provide such as the ability to share
sensor information about the environment among multiple
agents. Work by previous researchers to solve this problem
have included techniques such as behavior based robotics
[2]. Behavior based robotics have been applied to the La-
goon simulation as well, showing that these robotics based
strategies translate well into a simulated environment [3]
However the goals for simulation programming can be
somewhat different than the goals of robotics. The corgrsli
used to drive the boats in the lagoon simulation will never Lead boat
be used for controlling real boats. For controllers corirsé
strictly to the virtual world we can make a number of as-
sumptions including infinite power supplies, perfect seaso
and complete control of the conditions in the world. We Relative offset from lead
can also crash or mishandle unlimited numbers of virtual
boats giving us the ability to test and evaluate thousands of
controllers without damaging expensive equipment. Taking
advantage of the computational resources at out disposal we
would like to create controllers using more automated means Target point
such as an evolutionary method that could generate robust -
behaviors with a minimum of programmer intervention.
One challenge of using an evolutionary approach like a
genetic algorithm is that these methods often solve problem
in unexpected or unintuitive ways [4] [5]. We add a
new level of complexity to the problem of evolving a Fig. 1. The Maintain Vector
controller when we demand that it not only perform a task
but perform it in the same way that a human might perform
it. Previous papers such as work on the evolutionary Atotate the maintaining vector so that it matches the heading
variant called GAMMA discus the importance of consideringf the lead boat (target heading). Since the magnitude of
the believability of evolved agents for use in simulationghe maintain vector changes the fitness landscape, we set
[6]. Along these same lines a number of complex traininghe magnitude of the maintain vectat in Figure 1) to be
regiments have been designed to encourage the belieyabi00, a value that works well for our experiments. All sensor
of evolved agents including user modeling and training b9nd fitness values are based on the maintain vector and not
example using lamarkian neuroevolution [7] [8] [9]. on the location of the lead boat. Training boats based on
the maintain vector increases the flexibility of the behavio
because the maintaining boat does not need to be aware of
The maintain station behavior can be divided into twqhe lead boat’s actual position allowing the behavior to be

separate phases. In the first phase, the maintaining boat Bapted to any arbitrary arrangement of lead and maininin
to navigate to a target point in the world defined as an offsgjyats.

from the lead boat. In most cases a moving lead boat implies|n the general case of the maintain station behavior the

a moving target point. In the second phase, the maintainilats would also need a strategy to deal with the avoidance
boat has reached its target point and now must maintain i$ obstacles in the environment. Both land and other boats
position on that target point by matching the heading angbuld pose a threat to the integrity of the formation. We
speed of the lead boat. If the lead boat alters course in a@jll not discuss the complex problem of obstacle avoidance
way, the maintaining boat must automatically adjust to thgy this paper but will consider this to be part of our future
new heading and speed. work.

Figure 1 shows the maintain vector, the combination of
target heading and target position that describes theeadesir IV. APPROACH
position and heading of the target boat. The combination We use the ESP evolutionary algorithm to train main-
of a projected location of the target point used to calculat@ining boat controllers within the Lagoon simulation [10]
fitness called the projected point with the maintain vectoh type of genetic algorithm created specifically for use in
describes all the information needed to evolve a controllemeuro-evolution, ESP stands for enforced sub populations.
The base of the maintain vector, referred to as the targéine sub population of neurons is created for each neuron po-
point, gets positioned at a location defined by a desiregition in the neural network architecture. At each evabrati
direction and desired distance relative to the lead boat. Weetworks are created by randomly combining one neuron

Projected point

Maintain vector

Distance d

Target heading

Following boat

IIl. PROBLEM
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Fig. 2. Fully Connected Recurrent Network

our 3D, naval combat simulation.

from each of the individual sub populations into a complete V. LAGOON
network. At the end of the evaluation, each neuron receives ggr gur experiment we use the Lagoon real-time 3D naval

a fitness score equal to the fitness score of the network th@&§mpat simulation game [12] [13] [14]. Lagoon has several
it participates in. To protect good neurons from incurrimg afeatures that make it a good platform for Al research. It has
unfair bias by participating in poor networks, we evaluatgeen designed so that it can be run without graphics and
each neuron in three different networks in each generatiqn be simulated at speeds faster than real time allowing
of the genetic algorithm. for quicker evaluations. It also has a flexible controller
The neural networks we use are fully connected simplarchitecture that made it simple to incorporate neural agtw
recurrent neural networks with a single layer of recurrendeased controllers that can be substituted for the normal han
[11]. Figure 2 shows the design of the network used for theoded controllers. Figure 3 shows a screenshot from Lagoon.
experiment. In a recurrent neural network, the values in the Lagoon provides a complex physics model for moving
hidden layer of the network are retrieved from the previousoats in the simulated environment. For our experiment each
forward propagation of the network and then are used #&®at has linear and rotational velocity, linear and rotailo
inputs to the network in the current propagation. This aflowinertia and a friction equation that governs the way thatboa
information from past observations to influence the currenhove through the water. Each boat is moved by means of a
behavior of the network. The position of the maintaininghrottle that provides forward thrust and a rudder that iagpl
boat relative to the position of the maintain vector defifes t torque. We controll the rudder and throttle indirectly tingh
neural net input. The outputs of the neural network represetie use of a class in Lagoon called the helmsman. Each boat
a desired heading and a desired speed for the maintainihgs a desired speed and a desired heading that the helmsman
boat. class uses to determine an appropriate throttle and rudder
We evaluate an evolving controller by placing a lead bosgetting for the boat.
and a maintaining boat in random positions and with random
headings in the open ocean. The lead boat travels along its
heading and the maintaining boat must maneuver toward The inputs for the neural network are generated from three
it and then follow at the specified offset. How well thevectors based on sensor points surrounding the target. point
boat maintains its relative position defines fitness within o Figure 4 illustrates the arrangement of the three sensatgoi
simulated environment. The next section describes Lagoamround the target location. Sensor poititexists 100 units

VI. REPRESENTATION
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Fig. 4. The Three Vector Sensor Fig. 5. Fitness Components

from the target point in the direction of the target headingnaintaining boat. Since the neural network has no direct
Sensor pointsB and C' are positioned 100 units from the knowledge of it's speed, heading or it's current desired
target point and rotated so that the three points form dteading it must learn to navigate based entirely on the
equilateral triangle. egocentric angles provided by its sensor.

To compute the three egocentric sensor vectors, we first
compute three angles finding the number of degrees from o . i
the location of the following boat to each of the three sensor W& compared three potential fitness functions to determine
points. Subtracting the maintaining boat's desired hegdiyvhich of the three produced the most convincing maintain
from each of these three values now gives us egocentric (wiigtion behavior. The behavior has three primary objestive
respect to the following boat) rotation angles. These angle « Match the speed of the lead boat
are then converted into three normalized vectors. Flzad « Match the heading of the lead boat
y components of these three normalized vectors compose the Maintain position on a specified point relative to the
six sensor inputs of the network 2. This three vector design lead boats position
was chosen because it not only provides information about However, not all of these objectives are equally important.
the direction to the target point but also provides infoiiorat For example, a boat could keep very close to the target point
that can be used to deduce the rotation of the maintainimy driving around it in circles, but this behavior would lack
boat relative to the maintain vector. Finally, the values othe appearance of intelligence to a human observer making
the three vector sensor are continuous fronto —1 and the result undesirable for use in a game or simulation. Con-
back without the break between 0 and 360 degrees that thersely, if the following boat perfectly matches the hegdin
sensors would report if the values were given directly asf the lead boat it will appear much more intelligent even
angles instead of as vector components. if it lags some distance from the target point. Thus, each

The outputs of the network 2 control the desired headingf the three fitness functions was designed to emphasize
and desired speed of the boat. The first output value is scalkdading as the most important objective and distance as the
so that it represents a value between 36 and -36 degresscond. Matching speed gets rewarded implicitly becauese th
We add this value to the current desired heading of th@ooner a boat reaches the target point the higher its maximum
boat. Lagoon then determines the best rudder position fpotential score becomes. Passing the point due to excessive
achieving the desired heading. The second output is scalgpleed results in lowered fitness. Fitness values are ctddula
between 0 and the maximum full speed of the boat. Wat each time step in the simulation and then summed over
use this value directly as the new desired speed for thke course of an entire evaluation.

VIl. FITNESS
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To determine fitneSS, three vectors are first calculated mntn_ESP_TFFF _FULL_HALF e
based on the location of the boat and the maintain vector.|
Figure 5 illustrates the three vectors that are used in the
fitness calculations. We project vectof! in the direction
of the following boat’s desired heading, vectoP from
the following boat’s position to the projected point and
vector vl projected in the direction of the target heading. | § ...l
Finally, these three vectors are normalized before useen th | ©
fithness function equation. In addition to the three vectanes,
calculate a distancéT representing the Euclidean distance
between the following boat and the target point. Combining om0
this information together we create three different fitness
functions. b

Fitness function 1 rewards the maintaining boat for point-
ing directly at the projected point. We scale the dot product
of vH with vP to return a value between zero when the
boat points in the wrong direction to two when the boat
points in the correct direction. Scaling of the dot produchoats gain reward for facing the projected point and rely on
ensures a positive fitness value. Fitness based on facing the fact that the projected point moves to encourage them to
projected point instead of the target point prevents a i@t t match the target heading. Of the fitness functions presented
passes slightly in front of the target point from receiving a only function 3 explicitly rewards the boats for aligningtivi
inappropriately low fitness. the lead boat.

Multiplying the inverted square root of the distan€g to The new fitness component in function 3 comes from the
the dot product encourages the boat to come as near to th& product ofvH with vL scaled to return a value from
target point as possible. However, the distance componesdro to two.
plays a secondary role to the heading component because a
boat facing in the wrong direction will receive a fitness of (1+ (vH -vP))* (1 + (wH -vL)) * 1/VdT  (3)
zero no matter how close it comes to the target point.

5000

dooo -

Fig. 6. Experiment 1 - Fitness 1

VIIl. EXPERIMENT

1+ (vj[,vjo)) » 1/\/ﬁ (1) We_perform two experiments_in the paper. I_n the first
experiment, the lead boat travels in a straight line in aoamd

Fitness function 2 rewards the maintaining boat for pointdirection at half of its maximum speed. Each evaluation
ing either directly toward or directly away from the projedt lasts for three minutes in order to give the maintaining boat
point. The lowest fitness values are awarded when facirghough time to be scored adequately for both the acquiring
perpendicularly to the projected point. This logic may seerand maintaining phases of the behavior. The speed of the lead
counterintuitive but was shown to produce very good resultsoat in the second experiment was selected at random at the
in the first part of the experiment. We conjecture that thetart of each evaluation from between 25 and 75 percent of
success of this fithess function results from the increasede lead boat's maximum velocity. Cases where the speed of
number of boats that achevie high fithess in the earlighe lead boat approaches either 0 or 100 percent of maximum
generations of the experiment. In fitness function 1, boat&locity pose special challenges and are outside the sdope o
that run from the projected point are severely punished anhlis paper. We perform a different set of experiments foheac
quickly leave the population. In fitness function 2, thesef the three fitness functions proposed below. Results @r th
individuals are rewarded and can remain in the populaticexperiments are averaged over ten random seeds.
for a long time. Periodically, one of these fleeing individua We use ESP with a population of 200 individuals evolved
can mutate to become a follower instead. Selection pressweer 500 generations. We create new populations at each
will be identical to fitness function 1 in later generationgyeneration using binary tournament selection with a 70
assuming that all fleeing boats have left the population amgkercent probability of single point crossover. Expondntia
only followers remain. mutation was used with a 10 percent proability and lambda

This change in fitness results from using the absolute valwalue of 10. Each neural network has six sensor inputs, eight
of the dot product in the equation to ensure a positive valugdden nodes, and two output nodes.

instead of scaling it from zero to two.
ins 9 IX. RESULTS

(abs(vH . Up)) * 1/\/ﬁ ) We quan_titatively e\_/aluated each of the eyolved contrsller

by comparing their fitness values. Referring to graphs of
Fitness function 3 adds a third component to fitnesitness over time (figures 6, 7, 8, 9, 10, 11) we can see that
function 1 that considers how well the maintaining boaall of the experiments learned at virtually the same rate and
matches the target heading. In the first two functions, th&chieved virtually the same maximum fitness (fithess values
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Fig. 11. Experiment 2 - Fitness 3

scaled for comparison) regardless of the fithess function or
experimental setup. Each of the graphs displayed shows the
average fitness values for an experiment run over ten differe
random seeds.

In addition to comparing the fitness values of the evolved
controllers we visually inspected them to ensure that they
could in fact perform the maintain station behavior. All bét
controllers were observed starting from at least five random
starting locations and in only one out of the three hundred
of these random scenarios did a boat completely fail to find
and follow the lead boat. This is®.67% success rate. The
comparison of the graphs together with the observations of
the learned behavior suggests that on average the evolved
controllers are quantitatively equivalent.

Since all of our fitness functions generated controllers
that passed the quantitative examination the next step is
to qualitatively examine them to determine which of the
controllers would be the best for use in a game or simulation.
Qualitatively, we observed that at least 70 percent of the
boats in each experiment behaved believably. Several boats
were seen to pass the target point very quickly, stop to allow
the target point to pass in front of them and then repeat
this behavior to follow the lead boat. Other boats followed
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the target boat by swinging back and forth in a sinusoidailearby boat and when to ignore it. For example boats in
motion, altering the shape of the wave to maintain proximitya formation should not try to avoid each other unless one of
to the target point. While these strategies can achievela hithem falls out of position. Future experiments could inelud
fitness they are not suitable to represent a human driver ineapanding the network to contain some radar sensors and
simulation because the behavior is not readily perceived #isen training the networks in the presence of other boats to
human like. We suspect that the largest problem across ditermine whether or not they would be capable of making
experiments was that maintaining boats found it difficult tahis determination.
precisely control their speed. Bad controllers such astthe s
and go followers and sinusoidal followers descried above Xl. SUMMARY
may have evolved these behaviors as a way of avoiding|n conclusion we have observed that it is possible for
the need to control their speed effectively. This result wag neyral network to learn to perform the maintain station
not very surprising considering that the boats received nghavior in the open ocean. Also we have shown that a fitness
direct information about the relative speed of the lead boa,nction that scores a boat based on it heading and rotation
In the best results recurrent observations of the lead $0afg|ative to a maintaining vector can consistently evolleusi
position seem to have generated implicit information aboynq pelievable solutions to this problem. The three fitness
the relative speed but this seems to have occurred in offynctions we tested showed that different solutions to the
about 10 percent of the observed behaviors. _problem exist, and that while many different approaches to
Discussing the general trends observed in the behaviqfg problem are capable of maximizing a fitness function
created by different fitness functions the boats evolvett witsome of these solutions are more desireable for use in

function 1 were dubbed the strict followers. These boats hagmylated worlds based on their resemblance to perceived

a very optimal strategy for finding the maintaining positior, man actions.

that included fast speeds and sharp turns. In general they
maintained position on the target point very well but did not
tend to approach the point gracefully.

Boats evolved with function 2 were dubbed the casual
followers. These boats showed a very graceful approach?
the targeted point with slower approach speeds and longer
more graceful turns. However these boats are more likely to
struggle while maintaining the target point with several of[1]
the evolved boats learning to drive either behind or even in
parallel with the target point. [2]

Boats created using function 3 were dubbed the sensible
followers. These overall were the best looking of all of the
results combining the more precise maintaining of the first
function with the more graceful maneuverability of the sec-
ond function. However the most believable of these behavior 4]
were elusive with only about half learning to balance both
approach and maintain effectively and the remainder focusi [5]
on either one phase of the maintain behavior or the other.

X. FUTURE WORK (6]

There are a number of variations of this experiment
that could be attempted to try and create more consista%
evolution of the maintain station behavior including chiaigg
the fithess function or varying the sensor configuration.
Specifically relative speed sensors should be added to tHel
network to test our conjecture that the presence of this
information could allow maintaining boats to control their [9]
speed more precisely. Also the experiment could be expanded
to include new behaviors. Now that we have established a
good method of evolving a maintain station behavior in thgo]
open ocean a logical next step would be to evolve boats
that also have some evasive capabilities. A behavior with
the ability to maintain formation while avoiding collisien
with other boats would be an extremely useful behavior fditl
simulations like Lagoon. The basic problem of avoidance
centers around the task of determining when to avoid [a2]
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