To appear in Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC-2003)

Evolving Adaptive Neural Networ ks with and without Adaptive Synapses

Kenneth O. Stanley
Dept. of Computer Sciences
The University of Texas at Austin
Austin, TX 78705
kstanley@cs.utexas.edu

Abstract- A potentially powerful application of evolu-
tionary computation (EC) is to evolve neural networks
for automated control tasks. However, in such tasks en-
vironments can be unpredictable and fixed control poli-
cies may fail when conditions suddenly change. Thus,
there is a need to evolve neural networks that can adapt,
i.e. change their control policy dynamically as condi-
tions change. In this paper, we examine two meth-
ods for evolving neural networks with dynamic poli-
cies. The first method evolves recurrent neural net-
works with fixed connection weights, relying on internal
state changes to lead to changes in behavior. The second
method evolves local rules that govern connection weight
changes. The surprising experimental result is that the
former method can be more effective than evolving net-
works with dynamic weights, calling into question the
intuitive notion that networks with dynamic synapses
are necessary for evolving solutions to adaptive tasks.

1 Introduction

In evolutionary computation (EC), evolved solutions are
usually static: Their parameters do not change during per-
formance. However, in many important control problems,
the environment may change suddenly or gradually, and
to maintain sufficient performance, the controller needs to
adapt to it online. For example, a robot may lose a sen-
sor or an airplane may lose an engine and there may not
be any opportunity to re-evolve controllers for such unex-
pected circumstances. Adaptation is necessary also to make
the controllers general. For example, a controller evolved
for driving a car should work for any car, even if the dimen-
sions and mechanics are slightly different from its training
models.

Natural organisms are constantly faced with unforeseen
circumstances and generally adapt to them very well. They
can do it because their nervous systems are plastic, i.e. not
fixed at birth. Thus, one way to achieve adaptive solutions
is to evolve neural networks with plastic synapses, i.e. adap-
tive networks. Evolution can discover parameterizations
that lead to robust adaptability.

Several researchers have evolved neural systems that

Bobby D. Bryant
Dept. of Computer Sciences
The University of Texas at Austin
Austin, TX 78705
bdbryant@cs.utexas.edu

Risto Miikkulainen
Dept. of Computer Sciences
The University of Texas at Austin
Awustin, TX 78705
risto@cs.utexas.edu

learn. Nolfi and Parisi used backpropagation inside evolved
networks to make predictions about future states (Nolfi et al.
1990, 1994) and also for a network to train itself (Nolfi
and Parisi 1993, 1995). Chalmers (1990) evolved a global
learning rule that turned out to be similar to the delta rule.
McQuesten and Miikkulainen (1997) showed that parent
networks can teach their offspring using backpropagation.
These experiments showed that general learning mecha-
nisms can improve performance of evolved neural networks.

However, the goal of evolving adaptive neural networks
is different from evolving networks that simply utilize learn-
ing. The goal is to find specific learning mechanisms that
are optimized to adapt to new or changed problems that
can arise in the domain. In a significant demonstration of
the power of this approach, Floreano and Urzelai (2000)
evolved neural networks with local synaptic plasticity pa-
rameters and compared them to fixed-weight networks in a
two-step task. The networks were evolved to turn on a light,
and then move to a gray square. The local learning rules,
they found, helped networks quickly alter their functional-
ity, facilitating a policy transition from one task to another.

While Floreano and Urzelai’s experiment demonstrated
that evolving local learning rules can be useful, a further
question is whether such adaptation is actually necessary
in tasks that require adaptation. In such tasks the cor-
rect policy depends on an aspect of the environment that
varies randomly from one trial to the next and is not imme-
diately observable but must be discovered through explo-
ration. Since synaptic plasticity allows natural organisms to
adapt to novel situations, we would expect plastic neurons
to allow artificial neural networks to adapt similarly. Yet
although synaptic plasticity facilitates such adaptation, re-
current networks with fixed weights can also respond differ-
ently in changing environmental conditions. Thus, two im-
portant questions are, (1) are plastic synapses necessary to
adapt to changing environments, and (2) does adding local
learning rules support the network’s ability to adapt when
necessary? To answer these questions, we evolved fixed-
weight networks and adaptive neural networks in a food
foraging domain designed to require a policy change dur-
ing the network’s lifetime. We used the NeuroEvolution of
Augmenting Topologies (NEAT) method, augmented with a

facility for evolving local Hebbian learning rules for specific
connections in the network. Thus, the connection weights
could change over the network’s lifetime according to dif-
ferent evolved rules at each connection.

The results indeed confirmed that networks with evolved
plasticity were able to adapt to change in the environment.
However, the experiments also yielded a surprising result:
Recurrent networks with fixed connection weights could
also solve the task. Moreover, the fixed-weight networks
did so faster and more reliably than the adaptive networks.
Evolution found an alternative, clever way of implementing
adaptation in this problem: The recurrent network changes
its internal state to change the behavior policy of the net-
work. This result implies that adaptation does not always re-
quire synaptic plasticity, although evolution can utilize plas-
ticity if it is available. Further, because local learning pa-
rameters expand the genetic search space, which can make
finding a solution more difficult, local learning may not al-
ways be the right approach for adaptive tasks.

We begin the paper by describing the NEAT method
for evolving neural networks, and how NEAT was aug-
mented to evolve learning parameters in addition to connec-
tion weights. We then describe the food foraging domain
used in the experiments, and present the results.

2 Adaptive NeuroEvolution of Augmenting
Topologies

The parameter space being searched in the space of adaptive
networks is much larger than for static networks. In addition
to connection weights, several learning parameters must be
evolved for each learning rule at each connection. Thus, it is
important to minimize the number of connections optimized
by evolution. In addition, the topology of the network has to
be optimized. It is necessary to have connections between
the right nodes, so that the connections can be strengthened
or weakened to change the relationship between the compu-
tational concepts they represent.

In order to discover minimal effective adaptive topolo-
gies, we used the NeuroEvolution of Augmenting Topolo-
gies (NEAT) method (Stanley and Miikkulainen 2002d).
NEAT combines the usual search for appropriate network
weights with complexification of the network structure.
This approach is highly effective: NEAT outperforms
other neuroevolution (NE) methods, e.g. on the bench-
mark double pole balancing task (Stanley and Miikkulai-
nen 2002c,d). In addition, because NEAT starts with sim-
ple networks and expands the search space only when ben-
eficial, it is able to find significantly more complex con-
trollers than fixed-topology evolution, as demonstrated in
a robotic strategy-learning domain (Stanley and Miikkulai-
nen 2002a,b). These properties make NEAT an attractive
method for evolving adaptive neural networks.

112(3] 41 5] 6 1(2 |3] 4| 5|6]|7
1->4P->4{3->42->85->41->5 ->4p->4|3->42->55->4{1->5(3->5
DIS DIS
4 Mutate Add Connection 4
1¢” 20 3 1¢7 20 3

112 |3 4| 5|6 11213 4| 5| 6 9
->4R—>4(3->42->85->41->5 [1->4P->4(3->42->55->4{1->53->6/6—>4
DIS DIS | DIS

Mutate Add Node

Figure 1: Thetwotypesof structural mutation in NEAT. Both
types are illustrated with the genes above their phenotypes. The
top number in each gene is the innovation number of that gene.
The bottom two numbers denote the two nodes connected by that
gene. The weight of the connection, also encoded in the gene, is
not shown. The symbol DIS means that the gene is disabled. As-
suming the depicted mutations occurred one after the other, the
genes would be assigned increasing innovation numbers as the fig-
ure illustrates.

In this section, we briefly review the original NEAT
method, and further describe how it can be extended to ef-
ficiently evolve parameters for learning functions at each
synapse.t

2.1 Genetic Encoding with Historical Markings

Evolving network structure requires a flexible genetic en-
coding. Each genome in NEAT includes a list of connec-
tion genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node, the
out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an inno-
vation number, which allows finding corresponding genes
during crossover.

Mutation in NEAT can change both connection weights
and network structures. Connection weights mutate as in
any NE system, with each connection either perturbed or
not. Structural mutations, which allow complexity to in-
crease, either add a new connection or new node to the
network (figure 1). Through mutation, genomes of vary-
ing sizes are created, sometimes with completely different
connections specified at the same positions.

In order to perform crossover, the system must be able
to tell which genes match up between any individuals in
the population. NEAT keeps track of which genes line up
with which by keeping track of the historical origin of ev-

LA more comprehensive description of the NEAT method is given by
Stanley and Miikkulainen (2002d).

ery gene. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus repre-
sent a chronology of every gene in the system (figure 1).
Whenever these genomes crossover, innovation numbers on
inherited genes are preserved. Thus, the historical origin of
every gene in the system is known throughout evolution.
Through innovation numbers, the system now knows ex-
actly which genes match up with which. Genes that do not
match are either disjoint or excess, depending on whether
they occur within or outside the range of the other parent’s
innovation numbers. When crossing over, the genes in both
genomes with the same innovation numbers are lined up.
Genes that do not match are inherited from the more fit par-
ent, or if they are equally fit, from both parents randomly.
Historical markings allow NEAT to perform crossover
without the need for expensive topological analysis.
Genomes of different organizations and sizes stay compati-
ble throughout evolution, and the problem of matching dif-
ferent topologies (Radcliffe 1993) is essentially avoided.

2.2 Protecting Innovation through Speciation

Adding new structure to a network usually initially reduces
fitness. However, NEAT speciates the population, so that
individuals compete primarily within their own niches in-
stead of with the population at large. This way, topological
innovations are protected and have time to optimize their
structure before they have to compete with other niches in
the population.

Historical markings make it possible for the system to
divide the population into species based on topological sim-
ilarity. The distance ¢ between two network encodings is a
simple linear combination of the number of excess (E) and
disjoint (D) genes, as well as the average weight differences
of matching genes (W):

52%4‘%4-03'“/. 1)

The coefficients ¢y, ¢z, and ¢z adjust the importance of
the three factors, and the factor IV, the number of genes in
the larger genome, normalizes for genome size. Genomes
are tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than d;, a compatibility
threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness
sharing (Goldberg and Richardson 1987), where organisms
in the same species must share the fitness of their niche,
preventing any one species from taking over the population.

2.3 Minimizing Dimensionality

Unlike other systems that evolve network topologies and
weights (Gruau et al. 1996; Yao 1999) NEAT begins with
a uniform population of simple networks with no hidden
nodes. New structure is introduced incrementally as struc-
tural mutations occur, and only those structures survive that
are found to be useful through fitness evaluations. This way,
NEAT searches through a minimal number of weight di-
mensions.

2.4 Evolving Local Learning Rules

Each connection in an adapting network follows a rule that
governs how its weight changes. We implemented local
learning rules based on those used by Floreano and Urze-
lai (2000). Floreano and Urzelai chose their rules based
on synaptic mechanisms observed in mammals (Willshaw
and Dayan 1990). The space of possible rules included a
plain Hebbian rule, which strengthens the connection pro-
portionally to correlated activation, and rules for weakening
the connection when activations do not correlate.

We streamlined Floreano and Urzelai’s rules to make
them more efficient and to fit NEAT’s genetic encoding
more naturally. Instead of dividing Hebbian learning into
separate rules, we evolved a single general learning rule for
both excitatory and inhibitory connections that combines
the properties of Floreano and Urzelai’s rules. That way,
only two parameters are needed to express a rule, keeping
the search space to a minimum. Let z and y be the activities
of the incoming and outgoing neurons, respectively, and W
be the highest weight magnitude in the network. If the con-
nection is excitatory, the change in weight magnitude Aw
can be expressed as

Aw = (W —w)zy + ;Wz(y — 1.0), (2

where 7, is the Hebbian learning rate and 7 is the decay
rate, which controls how fast the connection weakens when
the presynaptic node does not affect the postsynaptic node.
Inhibitory connections adapt as

Aw=—-m(W —w)zy + (W —w)z(1.0—y) . (3)

The first term in equation 3 is negative because corre-
lated activation implies that the connection does not have an
inhibitory effect. The second term strengthens the connec-
tion when the input is high and the output is low, increasing
the contribution of the inhibitory connection. Equations 2
and 3 were validated through extensive preliminary experi-
mentation.

To implement equations 2 and 3, every connection in an
adaptive NEAT neural network has a local learning rule pa-
rameterized by 7; and 2, in addition to its evolved weight.

Connection Genes

Rules
0, 0O (fixed
0.2.0 ' 13| 4| 5| 6
— 1. 4| 2»4{2+5|3+5|4»5
0, 0.5 — DIS
03,01 ~——_ \
Network (Phenotype)

Figure 2: Encoding Local Adaptation Rules. The connection
genes are depicted as in figure 1, with gene 4 disabled. Each con-
nection gene points to one of the four local learning rules. The
corresponding connection in the phenotype receives the learning
parameters pointed to by its respective gene. This way, fewer pa-
rameters need to be optimized, and rules can be reused. The con-
nections between nodes 1 and 4 and between 3 and 5 both use the
same rule.

Yet if every connection gene expressed its own local learn-
ing parameters, the dimensionality of the parameter space
would multiply by a factor of 3, reducing the chance of find-
ing a solution. Moreover, it is likely that many connections
will utilize the same rule. It should not be necessary to re-
discover such a rule for every connection that uses it.

Thus, we augmented the NEAT genetic encoding so that
the rules could be reused by more than one connection gene.
Instead of having all of the adaptation parameters for each
connection and node expressed in every gene, each genome
has a single rule set. This set consists of a finite number
of rules, in our implementation one “fixed weight” rule and
three evolved rules, each containing the adaptation param-
eters n; and n2. Each gene points to one rule in the rule
set. Thus, when a genome is translated into a network,
the connections and nodes receive the parameters of the
rule to which their genes point (Figure 2). These pointers
can change through mutation. This system accomplishes
3 objectives: (1) The number of learning parameters in a
genome does not increase as the genome grows; (2) the
same rules can be reused by many genes; and (3) the adapta-
tion rules can be optimized separately from the connection
genes. Thus, using the rule set in NEAT can be seen as
an efficient alternative to evolving separate rules for every
gene.

The question, then, is whether evolution can take advan-
tage of adaptive synapses when necessary. The next section
describes a domain designed to answer this question.

Figure 3: The Dangerous Food Foraging Domain. The robot
begins in the center of the field. The concentric circles around the
robot represent one ring of sensors for type A items and one ring
for type B. Eight items are dispersed randomly throughout the
field. In this case, the items are type B. However, they may or
may not be poisonous. The robot can only find out if the items are
poisonous by consuming them, after which is must stop foraging
if it senses pain. This domain requires adaptation because a fixed
network cannot change its policy in midcourse.

3 The Dangerous Foraging Domain

In order to analyze the evolution of adaptation, a domain is
needed in which adaptation is necessary and where success
can be readily measured. Such a domain can be constructed
by making the optimal policy depend upon a hidden prop-
erty of the world that can only be discovered through ex-
ploration. That way, once the hidden property is uncovered,
the policy must adapt accordingly. A fixed policy, e.g. a
neural network with only fixed-weight feedforward connec-
tions, cannot change its policy, and thus cannot succeed in
such a domain. Networks must evolve to adapt to properties
native to the particular problem.

One such problem occurs in natural foraging. When an
animal enters a new geographical area, some food may first
appear edible yet turn out poisonous. The animal must be
able to change its policy and stop gathering such food. We
implemented a food foraging domain based on this danger-
ous natural scenario. Some of the food is poisonous and
some is edible. However, it is not possible tell which is
which without trying the food first. A simulated robot be-
gins in the center of a field with one of two types of item,
type A, or type B, spread randomly throughout (figure 3).
The items are either all poison, or all food, and the robot
must consume at least one item to find out whether it should
continue foraging. After consuming an item, the neural net-
work receives a brief pain or pleasure signal. The correct
policy thereafter depends upon this signal.

Because the correct policy, whether to forage or not, can-
not be fixed at the start, the network must be able to adapt.

‘ Neural Network Controller ‘
Left Right Forward

‘ Robot Sensors and Motors‘

Evolvd oology

2 3 4 5 Bias

Type B pleasure Pain
Sensors

A B C D E 1
Type A
Sensors

Figure 4: The Robot and its Controller Network. Five type
A sensors and five type B sensors detect the presence of objects
around the robot. The pleasure or pain sensors activate for 20 time
steps (out of a total of 750 in each trial) if the robot consumes food
or poison. These signals give the robot a chance to change its be-
havior accordingly. The three motor outputs are mapped to forces
that control the left and right wheels. Evolution must discover a
network that can change the control policy of the robot when it
encounters poison.

The challenge of constructing such a network is significant
because it must evolve policies for foraging items of both
type A and type B, but also be capable of abandoning ei-
ther policy if poison is encountered.

The simulated robots are similar to Kheperas (Mondada
et al. 1993). Each has two wheels controlled by separate
motors. Five rangefinder sensors can sense type A items
and five can sense type B (figure 4). Finally, each robot has
a pleasure sensor, which activates when it consumes food,
and a pain sensor, which activates when it consumes poison.
The pleasure/pain sensors are used for adaptation.

4 Experiments

The experiments are designed to test the hypothesis that
adaptive synapses are necessary for adaptation. Thus,
we test (1) whether fixed-weight networks with recurrent
connections can solve the task and (2) whether allowing
synapses to adapt enhances evolution’s capacity to discover
adaptive solutions.

Accordingly, we ran five 350-generation runs with fixed
connection weights and five 500-generation runs with plas-
tic synapses (the former runs took fewer generations to con-
verge). All runs were free to utilize recurrent connections
but only the adaptive runs could utilize adaptive synapses.
Each run took approximately 2 days to complete on a 1.8
Ghz Pentium 4 processor. The NEAT algorithm itself took
less than 1% of this computation: The rest of the time was
spent evaluating networks in the foraging task.

4.1 Experimental Setup

In each run, the population consisted of 500 NEAT net-
works. Each network was evaluated in eight separate trials:

Two trials with edible type A items, two trials with edible
type B items, two trials with poisonous type A items, and
two trials with poisonous type B items. Networks were re-
set to their initial state before each trial, that is, internal ac-
tivations were flushed to zero and synapses were reset to the
initial weights defined in the genome.

Fitness was evaluated by rewarding networks for con-
suming food and penalizing them for consuming poison.
Since there were 8 items in each trial, and 4 trials consisted
of poison, the maximum number of poison consumed is 32.
Thus, in order to ensure positive fitness values, the fitness
function f was defined,

f=32+e—p, 4)

where e is the number of edible items consumed and p is the
number of poisonous items. The maximum possible fitness
is 64. However, in general the highest fitness that can be
consistently attained is 60 because the only way to know
when poison is present is by testing at least one item in
the field. Thus, since there are four poison trials, the best
networks need to consume four poisons to properly test for
poison in each trial.

Because the fitness evaluation has a degree of random-
ness, i.e. the placement of food is random in each trial, the
fitness function is noisy. Thus, simply reaching a fitness of
60 is not sufficient to indicate a solution. Rather, a solu-
tion has been reached when the population champion con-
sistently reaches a fitness of 60 for several generations in a
row.

4.2 Parameter Settings

The coefficients for measuring compatibility were ¢; = 1.0,
ce = 1.0, and ¢3 = 2.0. The initial compatibility distance
was 6; = 6.0. However, because population dynamics can
be unpredictable over hundreds of generations, we assigned
a target of 20 species. If the number of species grew above
20, 6, was increased by 0.3 to reduce the number of species.
Conversely, if the number of species fell below 20, §; was
decreased by 0.3 to increase the number of species. In order
to prevent stagnation, the lowest performing species over
130 generations old was not allowed to reproduce. The
champion of each species with more than five networks was
copied into the next generation unchanged. The interspecies
mating rate was 0.01. The probability of adding a new node
was 0.005 and the probability of a new link mutation was
0.05. These parameter values were found experimentally
but they do follow intuitively meaningful rules: Links need
to be added significantly more often than nodes, and an av-
erage weight difference of 0.5 is about as significant as one
disjoint or excess gene. Performance is robust to moderate
variations in these values: The dynamic compatibility dis-
tance measure caused speciation to remain stable.

In the adaptive runs, genomes contained four rules with
values for i, and n2. The first rule was fixed at zero to allow
genes to encode fixed connection weights that do not adapt.
The probability of mutating the parameters of a rule was 0.3,
in which case each parameter mutated with a probability of
0.2 by adding uniform random noise between 0 and 0.5. A
connection gene had a 0.05 chance of being pointed to a
different rule.

The learning rules affect how compatible network
genomes are. Thus they were factored into network com-
patibility calculations. The average difference in learning
rule parameter values was added to W in calculating the
compatibility of two genes. That way, speciation took into
account learning rule differences in addition to topology and
weight differences.

5 Results

5.1 Evolving Fixed-Weight Neural Networks

Figure 5 shows that fixed-weight networks were able to
solve the task. In fact, all five runs could consistently score
60 or above before 350 generations.? The best run found a
consistent solution by the 250th generation.

5.2 Evolving Adaptive Neural Networks

NEAT was able to evolve networks with local learning rules
that solved the task. However, solutions with adaptive
synapses were more difficult to find. Figure 6 shows how fit-
ness increased over generations in both the average and best
runs of adaptive evolution. Three of the five runs converged
to consistently scoring 60 or above, whereas the other two
runs never found a consistent solution. Thus, the variance
in fitness was higher for adaptive networks than for fixed-
weight networks. The best run was able to find a consistent
solution by the 350th generation, 100 generations later than
fixed-weight evolution! Nevertheless, since several runs did
find solutions, these results show that local Hebbian learn-
ing can be utilized to encode dynamic policies.

The unexpected conclusion is that for this task, evolution
of fixed-weight recurrent networks is not only sufficient to
solve the task, but more efficient than evolving adaptive net-
works. How does this result come about?

5.3 Typical Solution Networks

Let us analyze solution networks from each type of evolu-
tion in order to understand how each kind of network rep-

2The reason networks sometimes scored above 60 is that some species
evolved a small probability of doing nothing during a trial. Although this
behavior sometimes led to a significant drop in fitness when a food trial
was missed, in some cases the networks got lucky and skipped a poison
trial.

resents a policy that can change over time, and why fixed-
weight networks evolved faster and more reliably.

Figure 7 depicts typical solutions from each type of evo-
lution. It turns out that the fixed-weight solution uses a
simpler mechanism than the adaptive solution. Most of the
structure in the fixed-weight network, including recurrent
connections on hidden nodes, is used to stabilize food gath-
ering trajectories, rather than to modulate behavior depend-
ing on pain or pleasure. In fact, the network can still reliably
perform the task even if all its hidden nodes are ablated, al-
though it takes longer because its actions are less accurate.

The key components of the fixed-weight solution are the
self-recurrent connections on the output nodes. The strong
excitatory self-recurrent connection on the left turn output
(identified in figure 4) keeps the node active even when
it has low input. The only thing that can stop the self-
activation cycle is a strong inhibitory signal directly from
the pain sensor, in which case the left turn output node is
temporarily disabled. At the same time, the right turn out-
put turns off unless food is directly in front of the robot.
Thus, when the left turn output is temporarily muted, the
right turn output will cause the robot to spin until it is fac-
ing away from food. At this point both turn outputs will be
off, and the robot will dash forward through the open space
to a wall, thus avoiding any further food gathering. Thus, re-
current connections are used to represent a dynamic policy.
This clever solution demonstrates the power of evolution in
finding effective novel solutions.

In contrast, the adaptive solution uses its hidden nodes
as part of its policy-changing method. If hidden nodes are
ablated, the network can no longer perform the task. 22%
of the connections, i.e. 16 connections, diverge in opposite
directions depending on whether or not the robot discovers
it is in a food or poison trial. Of those, 8 connections di-
verge in both type A and type B trials. In other words, an
abstraction of the food vs. poison distinction evolved that
is independent from what the objects look like. Thus, the
solution is holistic in that the entire network contributes to
the task in every trial. Instead of driving into a wall after
consuming poison like the recurrent solution, the adaptive
network spins in place.

Other recurrent and adaptive solutions followed similar
patterns; recurrent solutions tended to rely exclusively on a
“trick” using recurrent connections on output nodes, while
adaptive solutions tended to make complex internal network
changes. These results explain why recurrent solutions were
found more easily. These networks only need to find a par-
ticular combination of recurrent connections on outputs, and
then use hidden nodes to refine trajectory control. Adaptive
networks, on the other hand, tend to discover complex holis-
tic solutions that genuinely change network functionality.

65

60 | bl Tk 1A
Tl ﬁw e

N
L ﬁ“%‘;::w
i

T
55 |- ‘\‘\: i

i
wwu‘g s
o Hiu \d
i muﬁ
i

t et
h
|

|
|

|

|

! |
it 1

‘a“ﬁ”“ i

50

Highest Fitness

e
45 i) Evolution of Recurrent Networks B
C Standard Deviation ~--+---
40 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Generation

Highest Fitness

Best Recurrent Run —+—
44 B

42 | | | | | |
0 50 100 150 200 250 300 350

Generation

Figure 5: Average Highest Fitness and Best Run of Networks with Fixed-Weight Neural Networks. The graphs depict the highest
average fitness and the highest fitness of the best run over generations of fixed-weight recurrent evolution. All five runs discovered
solutions within 350 generations, demonstrating that dynamic synapses are not necessary for adaptation in this task.

65 ‘
T N "
60 | : - 159‘#%;;‘ j %l;
| iy i A
| 13 W» i il
3 | w: w
A S ‘ R
£ P "w’l"-w“"i‘-""‘
R L isiiiiilliijﬁi:»:w
o (A \|-:=1'-;:l::ih,llié" "”i Wi ‘”«Ft‘f
5 50 i WWWmeﬁ 4
T i same A !
A ‘HE‘J S 1
il ku e s
i i
45 P ‘E i
L e T T .
g ks Evolutioh of Adaptive Networks
S Standard Deviation ---+---
40 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Generation

65
60 [
o l I|| llll'l
© 55 hil]
£ WW
5 1
[
S 50 _
T I
45 Best Adaptive Run —+— B
40 Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Generation

Figure 6: Average Highest Fitnessand Best Run of Adapting NEAT. The graphs show how the highest fitness increased in adaptive
evolution both on average and in the best run. Three of five runs found a consistent solution. Thus, the task can be solved with adaptive

synapses, although not as reliably as with fixed-weight synapses.
6 Discussion and Future Work

Although evolution of adaptive networks was successful in
this task, the surprising result is that fixed-weight recurrent
networks were able to solve it with fewer evaluations. Re-
currency alone was successful in this experiment because
an unanticipated yet relatively simple solution existed in the
space of fixed-weight recurrent networks. This result sug-
gests that if such a solution exists, finding it can be easier
than finding an adaptive solution. The general conclusion
is then that justification is required before broadening the
search to include learning parameters.

Nevertheless, local learning rules may provide an ad-
vantage in some domains. The holistic nature of evolved
adaptive networks suggests that such networks may be supe-
rior to fixed-weight recurrent networks on tasks that require
holistic solutions. A major problem for future research is to

characterize what kinds of tasks do.

Why did the adaptive networks, which were also able to
use recurrent connections, not evolve the same style of solu-
tions as the fixed-weight networks? As connection weights
became dynamic early in evolution, trivial solutions based
on recurrent output nodes were no longer feasible because
the network weight configuration was not reliable. Thus,
evolution was forced to utilize the dynamic synapses in or-
der to master the task, leading to more holistic solutions.

An important question for future research is whether
fixed-weight recurrent networks can scale up to more dif-
ficult tasks, or whether there exist some tasks for which dy-
namic synapses and holistic solutions are necessary. Char-
acterizing those situations where dynamic synapses provide
an advantage will contribute to our general understanding
of adaptation and help to explain its use in nature.

(b) Adaptive

(a) Fixed- Welght Recurrent

Figure 7: Solution Network Examples. Typical solutions are de-
picted for adaptive evolution and fixed-weight recurrent evolution.
Nodes are shown as squares beside their node numbers, and line
thickness represents the strength of connections. Dark lines repre-
sent excitatory connections, and light lines are inhibitory connec-
tions. Loops at nodes represent self-recurrency. (a) The fixed-
weight network solves the task using recurrent connections on
its outputs. (b) The adaptive solution is holistic, utilizing plastic
synapses throughout the network.

7 Conclusion

Both fixed-weight networks and networks with dynamic
synapses were evolved in a dangerous food foraging task.
The only way to succeed in the task is to be able to switch
off the foraging behavior in the middle of a trial. Although
adaptive networks seem well-suited for a such a task, in fact
the fixed-weight networks evolved solutions more quickly
and more reliably. The fixed-weight solutions exploited a
clever strategy of switching their internal state, represented
by recurrent connections, while adaptive evolution found
more complex holistic solutions. The conclusion is that re-
currency alone may be a sufficient method of adaptation in
many tasks, and because of its smaller search space, may be
easier to evolve than solutions with adaptive synapses.

Acknowledgments

This research was supported in part by the National Sci-
ence Foundation under grant 11S-0083776 and by the Texas
Higher Education Coordinating Board under grant ARP-
003658-476-2001.

Bibliography

Chalmers, D. J. (1990). The evolution of learning: An experiment
in genetic connectionism. In Touretzky, D. S., EIman, J. L., Se-
jnowski, T. J., and Hinton, G. E., editors, Connectionist Models:
Proceedings of the 1990 Summer School, 81-90. San Francisco,
CA: Morgan Kaufmann.

Floreano, D., and Urzelai, J. (2000). Evolutionary robots with on-
line self-organization and behavioral fitness. Neural Networks,
13:431-4434.

Goldberg, D. E., and Richardson, J. (1987). Genetic algorithms
with sharing for multimodal function optimization. In Grefen-

stette, J. J., editor, Proceedings of the Second International Con-
ference on Genetic Algorithms, 148-154. San Francisco, CA:
Morgan Kaufmann.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison be-
tween cellular encoding and direct encoding for genetic neural
networks. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and
Riolo, R. L., editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, 81-89. Cambridge, MA: MIT
Press.

McQuesten, P., and Miikkulainen, R. (1997). Culling and teaching
in neuro-evolution. In Béck, T., editor, Proceedings of the Sev-
enth International Conference on Genetic Algorithms (ICGA-97,
East Lansing, MI), 760-767. San Francisco, CA: Morgan Kauf-
mann.

Mondada, F., Franzi, E., and lenne, P. (1993). Mobile robot minia-
turization: A tool for investigation in control algorithms. In Pro-
ceedings of the Third International Symposium on Experimental
Robotics, 501-513.

Nolfi, S., Elman, J. L., and Parisi, D. (1990). Learning and evo-
lution in neural networks. Technical Report 9019, Center for
Research in Language, University of California, San Diego.

Nolfi, S., EIman, J. L., and Parisi, D. (1994). Learning and evolu-
tion in neural networks. Adaptive Behavior, 2:5-28.

Nolfi, S., and Parisi, D. (1993). Auto-teaching: Networks that de-
velop their own teaching input. In Deneubourg, J. L., Bersini, H.,
Goss, S., Nicolis, G., and Dagonnier, R., editors, Proceedings of
the Second European Conference on Artificial Life, 845-862.

Nolfi, S., and Parisi, D. (1995). Learning to adapt to changing
environments in evolving neural networks. Technical Report 95-
15, Institute of Psychology, National Research Council, Rome,
Italy.

Radcliffe, N. J. (1993). Genetic set recombination and its applica-
tion to neural network topology optimization. Neural computing
and applications, 1(1):67-90.

Stanley, K. O., and Miikkulainen, R. (2002a). Competitive coevo-
lution through evolutionary complexification. Technical Report
Al2002-298, Department of Computer Sciences, The University
of Texas at Austin.

Stanley, K. O., and Miikkulainen, R. (2002b). Continual co-
evolution through complexification. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-
2002). San Francisco, CA: Morgan Kaufmann.

Stanley, K. O., and Miikkulainen, R. (2002c). Efficient rein-
forcement learning through evolving neural network topologies.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002). San Francisco, CA: Morgan Kauf-
mann.

Stanley, K. O., and Miikkulainen, R. (2002d). Evolving neural
networks through augmenting topologies. Evolutionary Compu-
tation, 10(2):99-127.

Willshaw, D., and Dayan, P. (1990). Optimal plasticity from ma-
trix memories: What goes up must come down. Neural Compu-
tation, 2:85-93.

Yao, X. (1999). Evolving artificial neural networks. Proceedings
of the IEEE, 87(9):1423-1447.

