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Recognizing human actions from video has been a challenging problem in computer vision. Although human
actions can be inferred from a wide range of data, it has been demonstrated that simple human actions can be
inferred by tracking the movement of the head in 2D. This is a promising idea as detecting and tracking the head
is expected to be simpler and faster because the head has lower shape variability and higher visibility than other
body parts (e.g., hands and/or feet). Although tracking the movement of the head alone does not provide sufficient
information for distinguishing among complex human actions, it could serve as a complimentary component of
a more sophisticated action recognition system. In this article, we extend this idea by developing a more general,
viewpoint invariant, action recognition system by detecting and tracking the 3D position of the head using multiple
cameras. The proposed approach employs Principal Component Analysis (PCA) to register the 3D trajectories in
a common coordinate system and Dynamic Time Warping (DTW) to align them in time for matching. We present
experimental results to demonstrate the potential of using 3D head trajectory information to distinguish among
simple but common human actions independently of viewpoint.
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1. INTRODUCTION

Human action recognition is a challenging problem with many important applications
in video surveillance and human-computer interaction. There has been significant research
over the last few years dealing with the problem of recognizing human actions from video.
In general, complex spatio-temporal changes in dynamic environments must be processed
and analyzed for inferring useful information. Moreover, a decision must be made whether a
system would utilize 2D or 3D information. When studying the representation and recognition
of signals in time, two techniques always show up in the literature: DTW and Hidden Markov
Models (HMMs) (Oates, Firoiu, and Cohen 1999).

Gavrila and Davis (1995) have presented a system where several actions, including waving
hello, waving-to-come, and twisting, were recognized by recovering 3D body pose using
multiple cameras. Matching was performed using DTW. Rao, Yilmaz, and Shah (2002) have
proposed a view-invariant representation and recognition approach for action recognition.
Their system characterizes actions using dynamic instants and intervals. Dynamic instants
are maxima of the spatio-temporal curvature, while intervals are the segments of a trajectory
between dynamic instants. To extract the dynamic instants reliably, they employ anisotropic
diffusion for smoothing the trajectories. Actions are first classified according to the number
of instants and their sign sequence, while recognition is performed by calculating the rank
of the observation matrix (Tomasi and Kanade 1993). Later on, Rao et al. (2003) proposed
an approach for view-invariant alignment and matching of video sequences. Their system is
capable of aligning video sequences obtained by different cameras at different time instances
and employs DTW with a cost function based on epipolar geometry.

In Syeda-Mahmood, Vasilescu, and Sethi (2001), a region-based approach to human
activity recognition was presented using only one camera. The idea was modeling actions
in terms of action cylinders which were built by combining shape and motion information.
Because action cylinders are not view-invariant in general, new actions are recognized by
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recovering the viewpoint transformation and treating the problem as model-based object
recognition. A real-time, Bayesian approach to modeling human interactions was presented by
Oliver, Rosario, and Pentland (2000). Each action model was built using synthetic data while
an eigen-background approach and a Kalman filter were used to detect blobs corresponding
to the human body and track them over time. To model human interactions, they combined
a top-down with a bottom-up approach, both based on Coupled HMMs, using a closed
feedback loop. More recently, Robertson and Reid (2006) presented a general system for
human activity recognition where actions were described using trajectory information and
motion descriptors. Human behavior was modeled as a stochastic sequence of actions using
HMMs.

In the past, it has been demonstrated that simple human actions can be inferred by tracking
the position of the head only. Specifically, Madabhushi and Aggarwal (1999) have demon-
strated that head movement provides useful information for distinguishing among several
simple but common human actions such as sitting-down, standing-up, walking, hugging, etc.
The key idea is that the head moves in a characteristic way when humans perform certain
actions. Using two cameras (i.e., frontal and lateral), they built a system that was able to
recognize some simple actions using probabilistic models. Besides being viewpoint depen-
dent, their system was based on a number of heuristics and assumptions that do not usually
hold in practice (i.e., motion in the x-direction is independent of motion in the y-direction).
Moreover, the position of the head was determined manually from frame to frame. A related
approach appeared in Nait-Cherif and McKenna (2003) where head trajectory information
was used to recognize simple actions in a meeting room. This system was also viewpoint
dependent.

In general, detecting and tracking the head is simpler and faster than detecting and
tracking other body parts like the hands and/or the feet. This is mainly because the head has
low shape variability and more visibility. This is especially true in surveillance applications
where cameras are mounted at a high position, making it less likely for the head to be occluded.
However, using head movement alone should not be expected to provide enough information
for distinguishing among complex human actions. Therefore, the role of head movement
should be considered mostly as complimentary rather than stand-alone, for example, it could
be combined with 3D human pose information (Bowden, Mitchell, and Sarhadi 2000).

In this article, we extend the work of Madabhushi and Aggarwal (1999) by proposing
a viewpoint invariant action recognition system based on 3D head trajectory information.
Specifically, the main weakness of the approach in Madabhushi and Aggarwal (1999) is
that it can recognize an action from two viewpoints only which limits its practical value. In
contrast, our approach is capable of recognizing simple actions, independently of viewpoint,
by tracking the position of the head in 3D using multiple cameras. Another difference between
the approach in Madabhushi and Aggarwal (1999) and our approach is in the recognition
stage. In Madabhushi and Aggarwal (1999), each action was modeled using probabilistic
models, however, each a small number of training data was used to estimate the parameters
of each model. Moreover, recognition was performed using Bayesian classifiers, under the
restrictive assumption that each action can not take more than a fixed number of frames. In
contrast, our recognition strategy is based in DTW which does not put any upper bounds on
the number of frames needed to perform an action. By aligning different samples of the same
action in time, we model each action by simply taking the average over all the samples of the
same action. We demonstrate the proposed approach on a long video sequence containing
multiple actions, without assuming that different actions have been pre-segmented.

Tracking and recovering the position of the head in 3D has received a lot of attention.
In general, a head model is employed which could be purely geometrical or might contain
additional information such as color and texture. In Brown (2001), the 3D position of the
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head was tracked by rendering a texture-mapped cylinder. Face detection was employed to
re-initialize the tracker when it failed. A related approach was proposed in Cascia, Sclaroff,
and Athitsos (2000). A 3D head tracking algorithm, which is robust partial occlusions, was
proposed in Zhang and Kambhamettu (2002). An advanced geometric model was used to
provide a better approximation of facial shape. In Terada, Oba, and Ito (2005), the head was
modeled as a polygon mesh along with statistical color information from the skin and the
hair. A particle filter was used to track the head in 3D using depth information recovered by
a stereo camera. A cylindrical head model was employed in Kwon, Chun, and Park (2006).
In Ohayon and Rivlin (2006), head geometry was modeled using a sparse set of 3D points
which were acquired prior to tracking. By solving a camera pose estimation problem, the
3D position of the head was recovered. In Birchfield (1998), an elliptical head model was
employed along with gradient and color information. A similar model was employed in Nait-
Cherif and McKenna (2003) for head tracking and action recognition in a smart meeting
room. A modified particle filter algorithm was employed for tracking.

With the exception of Birchfield (1998) and Nait-Cherif and McKenna (2003), the above
methods are mostly appropriate for applications where the head is assumed to be close to
the camera (e.g., human-computer interaction). In our application, we cannot make such an
assumption, therefore, a detailed head model cannot be used. To demonstrate our approach,
we have adopted the elliptical head model introduced in Birchfield (1998). To reduce noise,
we smooth the 3D head trajectories using a Kalman filter with constant velocity Welch and
Bishop (1995). It should be mentioned that more sophisticated approaches could be used for
head modeling and tracking, however, our main objective in this study is to demonstrate the
idea of employing 3D head movement for simple human action recognition.

The rest of this article is organized as follows. In Section 2, we present the experimental
setup of our system. Section 3 describes the steps for recovering the 3D trajectory of the head
while Section 4 presents the steps for modeling different actions. The procedure to recognize
novel actions is given in Section 5. Our experimental results are presented in Section 6.
Finally, our conclusions and directions for future work are presented in Section 7.

2. SYSTEM SETUP

Our experimental setup involves using multiple cameras to capture the location of the
head from different viewpoints and estimate its 3D position. Given a sequence of frames
corresponding to a specific action, the 3D trajectory of the head can then be extracted for
action modeling and/or recognition purposes. Specifically, we used three Videre cameras to
collect the training sequences to build a action model for each action. For testing, however,
we used four Dragonfly cameras to allow the subjects more freedom in their movements but
also to demonstrate that the proposed approach works well with different number and type
of cameras. In general, a larger number of cameras can be used both for training and testing,
depending on the environment and the application requirements. All cameras were calibrated
and synchronized.

Although many camera models today provide an option for automatic synchronization,
multiple camera calibration could be challenging depending on the application. One way to
simplify this task is by assuming that all cameras see a common plane (Kanade, Rander, and
Narayanan 1997). In this case, the position and orientation of the cameras with respect to
the common calibration plane can be recovered easily. Then, calculating the relative position
and orientation between cameras is straightforward. In our experimental environment, all the
cameras were mounted high enough on the wall and tilted downward. This camera placement
is very common for many surveillance applications. To calibrate the cameras, we placed a
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FIGURE 1. Illustration of setup for multiple camera calibration.

calibration board on the floor in such a way that it was visible by all cameras (i.e., see Figure
1). To compute the extrinsic and intrinsic camera parameters, we used Matlab’s Calibration
Toolbox, which is based on the calibration algorithms proposed by Zhang (2000) and Heikkila
and Silven (1997).

3. 3D HEAD TRAJECTORY EXTRACTION

The first step in recovering the 3D trajectory of the head involves detecting its 2D location
in each camera. Because the cameras were all synchronized, each 2D head location corre-
sponds to the same physical 3D location of the head. To estimate the 3D location of the head
from the corresponding 2D head locations, we use triangulation. To reduce reconstruction
errors, we apply triangulation using each pair of cameras and fuse the estimates.

To evaluate the power of 3D head trajectory information for discriminating between
different actions, special care was placed in building the action models without introducing
head localization errors. Specifically, to detect the location of the head in each camera robustly
and reliably during training, subjects were required to wear a hat with a lightbulb attached to
it as shown in Figure 2. To detect the position of the head in each frame, we simply segment
the position of the lightbulb by thresholding the intensity value. In all of our experiments,
we used a fixed threshold equal to 200. To estimate the center of the lightbulb more reliably,
we fit a 2D Gaussian and take the location having the maximum value as the true center of
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FIGURE 2. Detecting and tracking the head reliably to build accurate action models: (a) lightbulb attached
to a hat, (b) subject wearing the hat for collecting the training sequences.

the lightbulb. It should be mentioned that during testing, we did not impose any restrictions
on the subjects and the head was detected and tracked automatically using an elliptical head
tracker (see Section 5).

To recover the 3D position of the head, we apply triangulation by considering pairs of
cameras, assuming that the head is visible in both cameras (Trucco and Verri 1998). In our
implementation, we consider all possible camera pairs. Because each camera pair yields an
estimate of the true 3D position, the final estimate is obtained by averaging the individual 3D
estimates as shown in Figure 3. The 3D trajectory of the head is then obtained by combining
the 3D positions of the head over time.

4. ACTION MODELS

To model each action, we collected a number of training data (i.e., sequences) for each
action by asking different subjects to perform the action several times. Then, each training
sequence was processed to extract the 3D trajectory of the head as described in Section 3. The
final model for each action was built by appropriately preprocessing the 3D trajectory training
samples of that action and averaging them. Preprocessing involves the following three steps:
(i) registering the 3D head trajectories by representing them in a common coordinate system,
(ii) aligning them in time using DTW, and (iii) normalizing them.

4.1. Registration and Normalization of 3D Head Trajectories

Before combining the 3D trajectory training samples of an action into a single model, the
samples must be registered first by rotating and translating them into a common coordinate
system. Figure 4 illustrates the sitting down action performed by the same subject in two
different ways, each time starting and ending at different positions and facing different
directions. Registering the trajectories would be necessary to average them.

To simplify registration, it can be observed that the z direction (i.e., normal to the floor)
is always common to all actions, as far as the subjects performing an action step on the
ground. Therefore, registration is required in the x − y plane only. To implement this idea, we
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FIGURE 3. Estimating the 3D position of the head by reconstructing the 3D position of the head from every
pair of cameras and averaging the results.

FIGURE 4. Two instances of the sitting down action performed at different locations of the room and facing
different directions.

represent each action in a new coordinate system which is built by using PCA (Jain, Duin,
and Mao 2000). The resulting PCA space contains only two principal components, x′ and y′,
both perpendicular to z axis. Therefore, each training trajectory is represented in the x′ − y′ −
z space, which is rotation and translation invariant (i.e., centered at the first point of each

trajectory), by projecting its x and y coordinates in the PCA space. Obviously, the direction
of 3D trajectories (i.e., distinguishing between the starting and ending points of a trajectory)
would be necessary to distinguish actions having similar shape (i.e., “sitting-down” and
“sitting-up” actions where one is almost the reverse of the other).
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4.2. Alignment of 3D Trajectories

Because different subjects can perform the same action in different speeds, it is also
imperative to align the samples of each action in time before combining them into a single
model. In this study, we employed DTW (Oates, Firoiu, and Cohen 1999) for aligning the ac-
tions in time. DTW is a well-known method in speech recognition for aligning two sequences
with local differences in time. DTW works by allowing for locally stretching or shrinking a
signal in time, to find the best alignment between two sequences. This has been shown to be
far more superior than matching two sequences using simple distance measures such as the
Euclidean distance.

Specifically, the purpose of DTW is to find the best alignment between two sequences,
which is equivalent to finding the path starting at the first frame of each sequence to the
last frames by minimizing a distance. The success of DTW depends on how the distance is
computed. Instead of comparing the value of the candidate sequence at time t with the query
at time t, it is calculated with respect to the values of the query in a time window centered at
t.

DTW can be implemented efficiently using dynamic programming. First a table contain-
ing all the distances between frames of the two sequences is built. Then, a decision about
the shortest path is made based on this table. The path minimizing the distance between two
sequences gives the proper alignment and the distance is the measure of similarity. The table
of distances for a query Q and a candidate C is build by computing for each element of each
trajectory the following function:

γ (i, j) = d(qi , c j ) + min{γ (i − 1, j − 1), γ (i − 1, j), γ (i, j − 1)} (1)

where d is a distance measure (e.g., Euclidean distance) and γ (i, j) represents the error of
aligning signals up to time ti and t j . Using a brute force approach, the table of distances is
built for all possible pairs of frame-to-frame correspondences. However, this is not always
necessary and some global constraints can be enforced to bound the best path search. In this
work, we have adopted the Itakura band (Keogh et al. 2003) to apply some global constraints.
We assume that the trajectories are segmented in time such that the first and last frames are
already aligned. The resulting model has the same length (i.e., contains the same number of
frames) as the training sequences.

4.3. Normalization of 3D Trajectories

After the 3D head trajectories have been registered and aligned in time, we normalize
them so that the variation in the z′ and x′ directions are equal. Figure 5 shows several samples
of the “sitting-down” action without any registration.

4.4. Action Models

To build a model for each action, first we collected several training sequences by having
a number of subjects perform each action several times. Then, for each action, we used the
longest training sequence as an initial template and aligned the rest training sequences of the
same action with the template using DTW. The final model for each action was obtained by
taking the average over all normalized trajectories of the action.

It should be mentioned that since we used the longest training sequence as an initial
template for DTW, the action models look similar to the corresponding templates. Figures 6
and 7 show representative training samples and corresponding action models for the following
four actions: sitting-down, bending-down, squatting, and rising from squatting. Each figure
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FIGURE 5. Representative trajectories corresponding to the “sitting down” action (a) x − z plots, (b) x′ − z
plots (i.e., registered, aligned, and normalized).

FIGURE 6. Representative sitting-down training samples and action model: (a) x′ vs z, (b) time vs z; Repre-
sentative bending-down training samples and action model: (c) x′ vs z, (d) time vs z.

shows plots of the z component against both x′ and time. Figure 8 shows all four models in
the same plot for comparison purposes.

5. ACTION RECOGNITION

Given a new input sequence corresponding to some action, first we process the data
to detect the head in each frame, estimate its 3D position, and finally recover the 3D head
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FIGURE 7. Representative squatting training samples and action model: (a) x′ vs z, (b) time vs z; Represen-
tative rising-from-squatting training samples and action model: (c) x′ vs z, (d) time vs z.

FIGURE 8. The four action models plotted in the x′ vs z directions.
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trajectory. In contrast to training where subjects have to wear a hat to extract the trajectory
of the head very accurately, the head was detected automatically during testing using an
elliptical head tracker (Birchfield 1998). To reduce noise, we smoothed the 3D trajectories
using a Kalman filter with constant velocity (Welch and Bishop 1995).

Once the test 3D head trajectories had been filtered, they were compared against each
of the action models to find the closest match. This step involves using the same steps as in
training, that is, registering and aligning an input action with each of the action models as
well as normalizing it. To account for differences due to performing an action at different
speeds, additional effort is required (see next section).

6. EXPERIMENTAL RESULTS

In this section, we demonstrate the feasibility of the proposed approach by considering a
small number of actions: sitting-down, bending-down, squatting, and rising from squatting.
For demonstration, we have only considered the inverse action for “squatting” only (i.e.,
“rising from squatting”). This is because inverse actions have symmetrical trajectory shapes
and can be recognized in the same way by simply flipping the starting and ending points.

During testing we had a subject, other than the ones who assisted us in collecting the
training data performing all four actions several times each, one after the other. This represents
a more realistic scenario instead of recording a separate video for each action (i.e., assuming
already segmented actions). To make testing more interesting, we added a fourth camera and
used different cameras as mentioned in Section 2. The test video sequence contained a total
of 633 frames.

Because we did not know in advance where in the sequence a particular action starts
and ends, we compared different parts of the sequence against each of the action models. In
particular, for each frame i in the test sequence, we had to decide how many frames in the most
recent history corresponded to the same action. This number could vary in general depending
on the speed of the head as well as the frame rate of the camera (i.e., when different cameras
are used for training and testing). Here, we considered different lengths of past history, each
of them finishing at the current frame. The length values used for each action were computed
statistically by analyzing the training data. Then, each subsequence was matched against the
four action models. The smallest DTW-distance, for each action, was taken as the distance
between the input action and the model for that subsequence.

It should be mentioned that the complexity of this step depends on the number of action
models. However, indexing mechanisms could be employed to speed up this step, in a manner
analogous to using indexing for object recognition (Bebis et al. 1998). The idea is that instead
of having to search the space of all possible matches between the input and the models and
explicitly reject invalid ones through verification, indexing could invert this process so that
only the most feasible matches are considered. This can be done by arranging information
about each model action in an index space offline such that only feasible matches can be
found by indexing into this space during recognition.

Figure 9 shows a plot of DTW-distances between input trajectories and each of the action
models. When a minimum has been reached for a particular action model, then, if it is below
a certain threshold, we assume that this action has been executed. Due to the fact that some
actions, if not properly segmented in time, could look quite similar, small differences for
some actions might occur. However, if there are two minimums close together (e.g., frame
451), these are further compared and only the one having the smallest distance was considered
valid.

Although our testing environment was different from training, all actions in the test
sequence were detected and recognized successfully: “sitting-down” was detected at frame
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FIGURE 9. Plot of DTW-distances between the test sequence containing 633 frames and each of the four
action models. The subject performed all four actions several times, all of which were detected and recognized
successfully (see text for details).

123, “bending-down” was detected at frame 177, “squatting” was detected at frame 227,
“rising from squatting” was detected at frame 235, “squatting” was detected at frame 273,
“rising from squatting” was detected at frame 284; “sitting-down” was detected at frame
390; “bending-down” was detected at frame 451; “squatting” was detected at frame 593; and
“rising from squatting” was detected at frame 623. Figure 10 shows several examples from
the test sequence where specific actions were detected and recognized correctly.

7. CONCLUSIONS AND FUTURE WORK

We presented a system for recognizing several simple human actions by analyzing the
movement of the head in 3D. The proposed system recovers the 3D trajectory of the head
by estimating the position of the head in 3D using multiple cameras. Then, it registers the
trajectories in a common coordinate system using PCA and aligns them in time using DTW.
Finally, it performs normalization prior to recognition. Our experimental results demonstrate
the potential of the proposed approach. It should be emphasized again that although the head
movement can not be used to discriminate between complex actions, it does provide useful
information which could be combined with other cues for building more sophisticated action
recognition systems.

For future work, we plan to extend the proposed approach in several ways. First, we plan
to estimate the speed of the head to segment different activities in a video sequence more
efficiently instead of simply considering different length subsequences. Second, instead of
modeling actions by simply averaging the normalized sample trajectories, we plan to modify
Itakura’s global constraint to take standard deviation into consideration as well. Third, we
plan to experiment with more actions as the main purpose of this study was to demonstrate
feasibility. Fourth, we plan to perform larger scale experiments using more data both for
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FIGURE 10. (a) Sitting-down at frame 123, (b) Bending-down at frame 177, (c) Squatting at frame 227, (d)
Rising from squatting at frame 236. Once an action was recognized successfully, the 3D trajectory of that action
was projected onto the last frame of the action for illustration purposes.

training and testing. In the same context, we will consider building multiple models per
action by splitting the training data for each action into a number of clusters in the spirit of
Gavrila and Davis (1995). This would be useful, for example, when the within-variance of
an action is very high. Finally, we plan to perform comparisons with competitive approaches
such as HMMs.
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