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Abstract

We present a distributed vision-based surveillance sys-
tem. The system acquires and processes grey level images
through one or multiple Camera Units monitoring certain
area(s) via a Local Area Network (LAN) and is capable
of combining information from multiple Camera Units to
obtain a consensus decision. It can be trained to detect cer-
tain type of intrusions, for example pedestrians, a group of
pedestrians, vehicles, pets etc., and minimizes false alerts
due to other non-interested intrusions. As a case study, we
aim to detect Pedestrian/Vehicle in an observation area.
Our wvision-based intrusion detection approach consists of
two main steps: background subtraction based Hypothesis
Generation(HG) and appearance-based Hypothesis Verifi-
cation(HV). HG hypothesizes possible threats(intrusions),
and HV werifies those hypotheses using Gabor filter for
feature extraction and Support Vector Machines (SVMs)
for classification. The system has been tested under un-
constrained outdoor environment, illustrating good perfor-
mance.

I. INTRODUCTION

There has been a growing interest and efforts in the
surveillance industries to build optical sensor based au-
tomatic systems - Intelligent Vision-based Surveillance
Systems(IVSS). IVSS aims to automate object detection,
recognition, tracking and activity understanding in dy-
namic scenes. It is of great social importance due to its
potential value to enhance security. IVSS involves many
of the core topics in computer vision area such as moving
object detection, tracking, classification, activity learning
and semantic interpretation of object behaviors. In this pa-
per, we present a trainable distributed vision-based surveil-
lance system using static cameras under unconstrained out-
door environment. Currently, our system is trained to
detect pedestrians and vehicles presented in the observa-
tion scenes, however, it can be very easily trained to de-
tect different intrusions. The following is a brief review of
some previous works targeting Pedestrian/Vehicle detec-
tion. The reviewed approaches here, as well as the devel-
oped system, are under the static camera assumption.

Pedestrians are non-rigid objects with a high degree of
variability in shape, scale, location, orientation, pose, and
occlusion. Compared to face detection [1], pedestrian de-
tection has received dramatically less attention in the liter-
ature. Oren et al. [2] used an “overcomplete dictionary” of
wavelet basis functions to extract features and SVMs as the

classifier. Ozer et al. [3] proposed an algorithm for human
detection in JPEG compressed still images and MPEG I
frames by using an eigenspace representation of human sil-
houettes. It was, however, not for real-time application.
Haritaoglu et al. [4] developed a single camera system to
detect and monitor people by combining shape analysis and
tracking. They used a simplified Gaussian model, where
the absolute maximum, minimum and the largest consecu-
tive difference values were utilized. An improved Point Dis-
tribution Model followed by Principal Component Analysis
(PCA) approach was employed in [5] to detect and track
pedestrians in images caught by a moving camera.

Similar to pedestrian detection, vehicle detection is a
difficult task in general. Vehicles, for example, come into
view with different speeds and may vary in shape, size, and
color. Also, vehicle appearance depends on its pose and is
affected by nearby objects. In-class variability, occlusion,
and lighting conditions also change the overall appearance
of vehicles. Foresti et al. used line segments as descrip-
tive primitives and each line segment was characterized by
its position, orientation, endpoints and length. Vehicle de-
tection was based on those line segments as well as some
constraints such as size[6]. In [7], a deformable model is
formed from manually sampled data using PCA. Both the
structure and pose of a vehicle can be recovered by fitting
the PCA model to the image. A convex polygon shape
describer approximated by cubic splines with 12 control
points was used in [8] to detect and track multiple vehi-
cles. Two "trap” positions were predefined in the observed
area, one was for hypothesis generation, and the other for
verification in [9]. The hypothesis generation used three
1-D correlation along x, y, z directions, while verification
employed 2-D sparse template-matching. The literature
shows that most of the static camera based vehicle detec-
tion methods utilize some templates consisting of segments
or curves. In this paper, we use appearance-based method,
which is a more powerful approach and has been used in
the context of on-road vehicle detection (vehicle detection
in images acquired by a moving vehicle) [10].

We have developed a trainable distributed surveillance
system using static optical sensors. Not just a motion de-
tector, this vision-based system is specifically designed with
the capability to recognize certain objects(unauthorized ve-
hicle, people, or animals). It minimizes false alarms due to
other non-interested intrusions. When a suspicious intru-
sion is detected, an alarm indicating the type of the intru-
sions(vehicle, people etc.), the spot of the intrusions (obser-
vation area I, observation area II, etc.) will be sent to the
server (customer’s security control center) along with the



corresponding video display. From application perspective,
the main features of this system are: First, it is a train-
able system i.e. we can easily train the system for different
usages, for instance, alert us when vehicles, pedestrians or
pets are present in some observation area. Second, it is
a distributed system - heavy computations are distributed
to terminal PCs. And it can monitor multiple areas si-
multaneously and fuse the alert information in the server
to make a consensus decision. Technically speaking, the
whole system consists of multiple cameras connected by a
Local Area Network (LAN), vision-based object detection
and classification algorithms. Our vision-based algorithm
is a two-stage approach: Hypothesis Generation(HG) and
Hypothesis Verification(GV). Specifically, HG hypothesizes
the possible threat locations using background subtraction
method and HV verifies if there are true threats. HV, es-
sentially, is a pattern classification problem and we use
Gabor filter to extract features and Support Vector Ma-
chines(SVM) to perform the classifications.

The rest of the paper is organized as follows: In Section
II, a general description of the developed system is pro-
vided. A description of the hypothesis generation is given
in Section III. The appearance-based hypothesis verifica-
tion using the Gabor Filter and SVMs are detailed in Sec-
tion IV. Our experimental results are presented in Section
V. Section VI contains our conclusions and plans for future
work.

II. SYSTEM OVERVIEW

The minimum configuration of the system is one server
connected with one client - a camera connected to and con-
trolled by a terminal PC, referred to as a Camera Unit here-
after. In practice, one server will be connected to multiple
clients(Camera Units), each located at a different location,
see Fig. 1. The communication between the server and
each client is based on TCP/IP protocols. The server and
the clients are not equal peers in terms of communication,
because: (a). Each client communicates with the server
only, while the server talks with a group of clients; (b).
Usually it is the client that starts a communication session
when it has information to send, while the server does not
know when, and which client will send messages before-
hand. The server will listen to all its ports all the time.
Therefore, the server communication socket and the client
sockets are implemented with different models. When a
client system reboots, it will ask for the IP address of the
server, and then create a socket to communicate with that
address only. The server is not bound to communicate with
any specific client. It will listen to all the ports for incom-
ing messages, and the reply packet, if any, will be sent to
the port from which the request is received.

Each of the Camera Units is equipped with the object de-
tection and classification algorithms. It processes captured
images constantly and alerts the security center, by send-
ing alarm information as well as the corresponding images
to the server, only when certain types of intrusions happen.
Our detection and classification algorithm is trainable - we
can train the system to detect different objects to meet dif-

ferent application requirements. In this paper, we consider
the problem of Pedestrian/Vehicle detection, the system,
however, is applicable to other type of intrusion detections.

= PC
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Fig. 1. System diagram

III. HYPOTHESIS GENERATION USING SIMPLE
BACKGROUND SUBTRACTION

The purpose of the HG stage is to search for the likely
Pedestrian/Vehicle presences in a frame. “Background sub-
traction” method is employed in this paper. It is a common
technique for finding moving objects in a video sequence.
The idea is that moving objects can be found by subtract-
ing the stationary background image from the current im-
age. Several practical problems have to be solved to make
background subtraction a more reliable approach. These
problems, addressed in detail by Toyama et al. [11], as
well as [12], include but are not limited to:

o Threshold setting: A predefined threshold has to be used
to assign a pixel to background/foreground;

e Quick illumination changes: A quick illumination
change, locally or globally, will cause severe false detection;
o No spatial information: we process each pixel indepen-
dently without any use of spatial information or more
generic, higher-level information;

o Shadows: Objects cast shadows that might also be clas-
sified as foreground due to the illumination change in the
shadow region.

Lots of researches have been carried out to improve the
background substraction method, for instance, mixture
of Gaussian model[13], integrated region- and pixel-based
approach, integrated color and gradient information ap-
proach[12] etc..

In this paper, we do not put much effort in the back-
ground subtraction (HG stage) due to the following rea-
sons: (a). Processing speed is very important in any
surveillance systems, the more sophisticated the method is,
the more time it requires, and (b). The two-step method
(HG followed by HV) limits the system’s demanding for
background subtraction. The HG stage is used to generate
some hypotheses, which will have to pass further verifi-
cation to trigger an alarm. Even if we have some false
hypotheses, we still have big chance to screen them out in
the following HV stage. In other words, the difficulties in-
herited in the background subtraction are mitigated to our



HV stage, where some false detection can be easily ruled
out. We can see there are false hypotheses in both of the
two examples, see Fig. 2, where the HV comes in.

Fig. 2. Hypothesis generation using background substraction

IV. APPEARANCE-BASED HYPOTHESIS VERIFICATION

Intrusion detection and classification (Pedestrian/Vehicle)
are essentially a three-class pattern classification problem
- Pedestrian, Vehicle, and Others. Gabor filter, as feature
extraction method, and SVMs, as classifiers, are utilized
in the HV step. In particular, redundant statistical Gabor
features extracted from several partial overlapped windows,
together with Gaussian kernel SVM, compensate for errors
introduced in HG step, makes the system more robust.

A. Gabor Filter and SVMs Review
A.1 Gabor Filters

There has been an increased interest in Gabor analysis
motivated by biological findings (i.e., the receptive fields of
neurons in the visual cortex are known to have shapes that
can be approximated by 2-D Gabor filters [14]). Gabor fil-
ters have been successfully applied to many image analysis
applications including texture analysis [15] [16], handwrit-
ten number recognition [17], and image retrieval [18]. An
important property of Gabor filters is that they have op-
timal joint localization both in the spatial and frequency
domains [14]. The general function of the two-dimensional
Gabor filter family can be represented as a Gaussian func-
tion modulated by an oriented complex sinusoidal signal.
Specifically, a two dimensional Gabor filter g(z,y) and its
Fourier transform G(u,v) can be written as:
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where o, and o, are the scaling parameters of the filter
(i.e., determine the effective size of the neighborhood of a
pixel), W is the center frequency, and 6 determines the ori-
entation of the filter (i.e., it will respond stronger to a bar
or edge, the normal to which coincides with 6). Gabor fil-
ters act as local bandpass filters. Fig.3(a) shows the power
spectrum of a 3 x 5 Gabor filter bank and Fig.3(b) shows
4 x 6 Gabor filter bank (the light areas indicate spatial
frequencies and wave orientation).

In this paper, we use the design strategy described in
[18]. Given an input image I(z,y), Gabor feature extrac-
tion is performed by convolving I(z,y) with a Gabor filter
bank:
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Although the raw responses of the Gabor filters could be
used directly as features, some kind of post-processing is
usually applied (e.g., Gabor-energy features, thresholded
Gabor features, and moments based on Gabor features
[19]). In this paper, we use Gabor features based on mo-
ments, extracted from several subwindows of the input im-
age (see Section IV-B)
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Fig. 3. (a) Gabor filter bank with 3 scales and 5 orientations; (b)
Gabor filter bank with 4 scales and 6 orientations; (c¢) Feature
extraction subwindows.

A.2 SVMs

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach
to learn linear or non-linear decision boundaries [20] [21].
Given a set of points, which belong to either of two classes,
SVM finds the hyperplane leaving the largest possible frac-
tion of points of the same class on the same side, while max-
imizing the distance of either class from the hyperplane.
This is equivalent to performing structural risk minimiza-
tion to achieve good generalization [20] [21]. Assuming !
examples from two classes

()

finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic program-
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ming. The optimization criterion is the width of the mar-
gin between the classes. The discriminate hyperplane is
defined as:

!
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where k(z,z;) is a kernel function and the sign of f(z)
indicates the membership of z. Constructing the optimal
hyperplane is equivalent to find all the nonzero a;. Any
data point x; corresponding to a nonzero a; is a support
vector of the optimal hyperplane.

Suitable kernel functions can be expressed as a dot prod-
uct in some space and satisfy the Mercer’s condition [20].
By using different kernels, SVMs implement a variety of
learning machines (e.g., a sigmoidal kernel corresponding
to a two-layer sigmoidal neural network while a Gaussian
kernel corresponding to a radial basis function (RBF) neu-
ral network). The Gaussian radial basis kernel is given by

2
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The Gaussian kernel is used in this study (i.e., our exper-
iments have shown that the Gaussian kernel outperforms
other kernels in the context of our application).

B. Feature Extraction for Classification

In this section we describe our Gabor feature extrac-
tion procedure. The input to the feature extraction sub-
system are the hypothetical Vehicle/Pedestrian subimages
extracted from the input images. Vehicle/Pedestrian con-
tains strong edges and lines at different orientation and
scales, information that is also captured by the Gabor fea-
tures. The statistics of these features provide a compact
and powerful representation for Vehicle/Pedestrian detec-
tion. Instead of extracting these statistics from the whole
image, we collect them from several subwindows obtained
by subimages. This provides robustness to errors in the
hypothesis generation step.

First, each subimage is scaled to a fixed size which is
64 x 64. Then, it is subdivided into 9 overlapping 32 x 32
subwindows. Assuming that each subimage consists of 16
16 x 16 patches (see Figure 3(c)), patches 1, 2, 5 and 6 com-
prise the first 32 x 32 subwindow, 2, 3, 6 and 7 the second,
5, 6, 9 and 10 the fourth, and so forth. The Gabor filters
are then applied on each subwindow separately. The moti-
vation for extracting — possibly redundant — Gabor features
from several overlapping subwindows is to compensate for
errors in the hypothesis generation step (e.g., subimages
containing partially extracted Vehicle/Pedestrian or back-
ground information), making feature extraction more ro-
bust.

The magnitudes of the Gabor filter responses are col-
lected from each subwindow and represented by three mo-
ments: the mean p;;, the standard deviation o;;, and the
skewness r;; (i.e., i corresponds to the i-th filter and j to
the j-th subwindow). Using moments implies that only
the statistical properties of a group of pixels is taken into

consideration, while position information is essentially dis-
carded. This is particularly useful to compensate for errors
in the hypothesis generation step (i.e., errors in the extrac-
tion of the subimages). Suppose we are using S = 2 scales
and K = 3 orientations (i.e., S x K filters). Applying the
filter bank on each of the 9 subwindows yields a feature
vector of size 162, having the following form:

[M11011/€117M12012512 : "M69069f<&69] (8)

We have experimented using the first two moments only.
However, much better results were obtained when the third
moment(skewness) was considered.

C. Forming the Training Set

The images used in our training set were collected in a
driveway using Sony EVI-D30 camera. To ensure a good
variety of data, the image collect program had been running
on the daytime for a period of about 5 days. The training
set contains subimages of Vehicle, Pedestrian and Other
which were extracted semi-automatically from the data. A
total of 336 Vehicle subimages, 192 Pedestrian subimages
and 154 Other subimages were extracted. Due to different
lighting conditions or shadows, there is some variability in
the way the subimages were extracted. For example, cer-
tain subimages cover the whole Vehicle/Pedestrian, others
cover the Vehicle/Pedestrian partially, and others contain
the vehicle and some background (see Fig. 4). In [22], the
subimages were aligned by wrapping the bumpers to ap-
proximately the same position for Vehicle detection. We
have not attempted to align the data in our case since
alignment requires detecting certain features on the vehi-
cle accurately. Moreover, we believe that some variability
in the extraction of the subimages can actually improve
performance. Each subimage in the training was scaled to
64 x 64.

| -

Fig. 4. Subimages for training.

D. Classification

SVMs are primarily two-class classifiers. The problem we
are facing involves three classes: Pedestrian, Vehicles and
Others. The “tournament” method can be used here. This
method, essentially, needs three trained classifiers, each of
which separates one of the three classes against the other
two. To save processing time, we build only two SVMs clas-
sifiers in this application. One separates Vehicle against
Pedestrian and Other, referred to as = C,(T"). The sec-
ond is to separate Pedestrian against Vehicle and Other,



referred to as & = Cp(T'). T is the threat(intrusion) for ver-
ification and z is output of the classifier. Because we are
only interested in detecting Pedestrian/Vehicle, building
another classifier to separate Other is unnecessary. Given
a hypothesized threat T generated from HG step, the clas-
sification is carried out by following the rule:

Vehicle Co(T)>c& Cp(T) < —c
Pedestrian

Co(T) < —c & Cp(T) >c  (9)
otherwise

Threat =
Other

where ¢ € [0 1) is a predefined threshold and used to
adjust the system’s sensitivity. In order to evaluate the
performance of the two-step surveillance system, tests were
carried out under two scenarios: offline testing using the
data described in Section IV-C, and online testing in real-
time under unconstrained outdoor environment, addressed
in Section V.

0.077 EER

BFP
OFN

0.06

0.05

0.04

0.03

0.02-
0.01+

V() Cp(M)

Fig. 5. Offline testing results

V. EXPERIMENTAL RESULTS
A. Off-line Testing

For the off-line testing, we use three-fold cross-validation
procedure and record the average error (ER), false positive
(FP) and false negative (FN). Specifically, to train either
of the two classifiers(C,(T") or Cy(T)), for instance C,(T),
we split the training dataset randomly three times (Set1,
Set2 and Set3) by keeping 50 out of the 336 Vehicle subim-
ages, 25 out of the 192 Pedestrian and 25 out of the Other
subimages for testing and all the rest for training. There-
fore, each of the three data sets has 582 training subimages
and 100 test subimages. The final results is illustrated in
Fig. 5. The detection error rate of C,,(T") is 5%, F'P 3% and
FN 2%. The detection rate achieved by C,(T) is slightly
worse: ER 7%, FP 5% and FN 2%. One observation here
is that the FP rate is higher than FN in both of the two
classifiers, which may be due to the relatively small number
of Other examples used for training. Given that the Other
class is much larger than the Vehicle/Pedestrian class, it
would make more sense to include much more Other ex-
amples in the training sets.

B. On-line Testing

As introduced in the Section I, this system is on a LAN.
If any intrusion (Vehicle/Pedestrian) is detected, the alert

will be sent to the server(security office), as well as the
video frame. Fig. 6 shows an instance of the alert with
the intrusion type (Vehicle), the general location about
where it happens(in the observation area of Camera # 1)
and bounding boxes specifying intrusion location in that
frame (white bounding boxes for Vehicle and black boxes
for Pedestrian).

To evaluate the performance of the developed system, we
have run it during the daytime over a period of several days.
The system exhibits good performance under different illu-
mination conditions. Some representation detection results
are illustrated in Fig. 7 and 8. The built system is able
to detect multiple presences of the same type of intrusions
Fig.8.a, as well as different types Fig.8.b and d. Although,
there is no group of pedestrians in our training data set, it
still detected the group of two pedestrians as Pedestrian,
see Fig.7.c, showing good generalization property.

Although we haven’t tested it, the performance of the
system is expected to degrade under some abnormal con-
ditions, such as, raining, too little contrast between the
Pedestrian/Vehicle and background, moving vehicles too
close to each other, etc. The current system runs on two
laptops(Pentium III 750MHZ, as the terminals) and one
desktop(Pentium 200MHZ, as the server) at the speed of
2HZ. We can increase its speed dramatically even with
our current computational power. However, a higher pro-
cessing speed is not necessary in our application scenario
- driveway monitoring, given Pedestrian/Vehicle is very
slow.

Fig. 6. Server display

VI. CONCLUSION AND FUTURE WORK

We have developed a distributed visual surveillance sys-
tem, and the system demonstrates good performance under
unconstrained outdoor environment. The basic structure of
the system is a LAN, with server sitting in the security of-
fice and Camera Units distributed in different observation
areas. The current system detects Vehicle/Pedestrian in
the monitoring area. It can also be trained to detect other
type of intrusions easily, because it is a trainable system.
We have defined our own protocol to make the communica-
tion more efficient. The intrusion detection program con-
sists of two steps: background subtraction based hypothesis
generation and appearance-based hypothesis verification.
The two-step strategy mitigates the difficulties faced by
all background subtraction methods to appearance-based



(c) (d)

Fig. 7. Vehicle/pedestrian detection using the developed surveillance
system: single presence

(c) (d)

Fig. 8. Vehicle/pedestrian detection using the developed surveillance
system: multiple presences

hypothesis generation step. In the hypothesis generation
step, powerful pattern classification approach, utilizing re-
dundant statistical Gabor filter features and SVMs, can
screen out the false hypotheses very easily.

For future work, we plan to investigate more extensively
the problem of information fusion from multiple cameras,
lower the detection error, especially the FP using boot-
strapping method, and upgrade the system with the capa-
bility of human activity recognition.
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