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Abstract—In this paper, we present a new fast method for
matching stereo images acquired by a stereo sensor embedded
in a moving vehicle. The method consists in exploiting the
matching results obtained in one stereo pair (frame) for
computing the disparity map of the following stereo pair. This
can be achieved by finding a temporal relationship, which we
named association, between consecutive frames. The disparity
range of the current frame is deduced from the disparity
map of the preceding frame and the association between the
two frames. Dynamic programming technique is considered for
matching the image features. The proposed approach is tested
on virtual and real stereo image sequences and the results are
satisfactory. The method is fast and able to provide about 20
millions disparity maps per second on a HP Pavilion dv6700
2.1GHZ.

I. INTRODUCTION

An intelligent vehicle (IV) can perform road obstacle
detection by knowing its environment. Stereo vision [1] is
a well-known method used to obtain accurate and detailed
3D representation of the environment around an IV. The key
problem in stereo vision consists in finding correspondence
between pixels of stereo images taken from different view-
points [2]. Exhaustive surveys on the methods tackling the
correspondence problem are available in [3], [4]. A taxonomy
of dense stereo correspondence algorithms together with
a testbed for quantitative evaluation of stereo algorithms
is provided by Scharstein and Szeliski [5]. The taxonomy
shows that graph cuts-based methods [6] outperform the
other methods, but they are time consuming which make
them not suitable for real-time applications, e.g. ADAS.
Although there is strong support that the incorporation

of temporal information can achieve better results [7], [8],
[9], only a small amount of research has been devoted to
the reconstruction of dynamic scenes from stereo image
sequences. We believe that by considering the temporal
consistency between consecutive frames the stereo matching
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results could be improved [10]. Based on this principle, this
paper presents a new real-time stereo matching approach
dedicated to ADAS. The current work constitutes an im-
provement of that presented in [10]. The features to be
matched from stereo images are declivities (edge points)
[11]. The declivity operator is chosen because it is precise,
fast, and self-adaptive. The main idea of the method we are
presenting is the use of the temporal relationship between
current frame and its preceding one to determine the disparity
range (possible disparities) of the former one. Dynamic
programming technique [12] is considered for matching edge
points of the stereo sequences. The new method is tested
on both virtual and real stereo image sequences and gives
promising results.
The remainder of the paper is organized as follows.

Section II overviews some of the stereo methods handling
stereo sequences and using temporal consistency. Section
III presents the method used to extract primitives. The new
stereo method is detailed in section IV. Experimental results
are shown in section V. Section VI concludes the paper.

II. RELATED WORK
In the recent years, several techniques have been proposed

to obtain more accurate disparity maps from stereo sequences
by utilizing temporal consistency [7], [9], [13], [8]. Most
of these methods use either optical flow or spatiotemporal
window for matching stereo sequences. In their approach,
Tao et al. [13] proposed a dynamic depth recovery in which a
scene representation, that consists of piecewise planar surface
patches, is estimated within an incremental formulation. Such
a representation is derived based on color segmentation of
input images. Each segment is modeled as a 3D plane.
The motion of this plane is described using a constant
velocity mode. The spatial match measure and the scene flow
constraint [14] are investigated in the matching process. The
accuracy of the results and the processing speed are limited
by the image segmentation algorithm used. Vedula et al. [14]
present a linear algorithm to compute 3D scene flow based
on 2D optical flow and estimate 3D structures from the scene
flow. In [15], the temporal consistency was enforced by mini-
mizing the difference between the disparity maps of adjacent
frames. This approach is designed for offline processing
only, i.e. it takes pre-captured stereo sequences as input
and calculates the disparity maps for all frames at the same
time. In [9], an algorithm has been developed to compute
both disparity maps and disparity flow maps in an integrated
process. The disparity map generated for the current frame
is used to predict the disparity map for the next frame.
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The disparity map found provides the spatial correspondence
information which is used to cross-validate the disparity flow
maps estimated for different views. Programmable graphics
hardware have been used for accelerating the processing
speed.
Zhang et al. [8], propose to extend the existing traditional

methods by using both spatial and temporal variations.
The spatial window used to compute SSD cost function is
extended to a spatiotemporal window for computing sum of
SSD (SSSD). Their method could improve the results when
we deal with static scenes and with structured light. It fails to
do so with dynamic scenes. Davis et al. [7] have developed a
similar framework as the one in [8]. However, their work is
focused on analyzing and presenting results for geometrically
static scenes imaged under varying illumination. Given an
input sequence taken by a freely moving camera, Zhang
et al. [16] propose a novel approach to construct a view-
dependent depth map for each frame. Their method takes a
one sequence as input and provides the depth for the different
frames, i.e. offline processing. It is not applicable in an IV.
Our approach is different from the aforementioned ones.

It uses neither optical flow nor spatiotemporal window.
As temporal integration, we propose to use what we call
association (see section IV-B) between consecutive frames.
Once the association between the current frame and its
preceding one is found, a pre-estimated disparity map of the
current frame can be inferred. By analyzing the pre-estimated
disparity we can determine the disparity range authorized for
each scanline (potential matching candidates). The disparity
range is used by the dynamic programming algorithm for
selecting the valid nodes.

III. IMAGE SEGMENTATION

The first step in stereo vision consists in extracting signif-
icant features from the stereo images to be matched. In this
work, we are interested in edge points as features to consider
in the matching process. In order to be suited for computer
vision applications, e.g. IV applications, the edge detector
we choose should satisfy the following constraints : fastness,
precision, and self-adaptivity. Therefore, we consider the so-
called declivity [11] as edge detector because it meets the
above mentioned constraints. In an image line, a declivity is
defined as cluster of contiguous pixels, limited by two end-
points which correspond to two consecutive local extrema of
grey level intensity, i.e. one maximum and one minimum.
As shown in Fig. 1, Deci and Deci+1 are two adjacent
declivities. The declivity Deci is limited by two end-points
li and ri. The grey-level intensities at the end-points are
respectively I(li) and I(ri). The same for the declivity
Deci+1, their end-points are li+1 and ri+1, respectively.
Each declivity is characterized by its amplitude, e.g. ai =
I(ri)−I(li) is the amplitude of Deci and ai+1 = I(ri+1)−
I(li+1) is the amplitude of Deci+1. Relevant declivities
are extracted by thresholding these amplitudes. To be self-
adaptive, the threshold value is defined by

at = 5.6σ (1)

where σ is the standard deviation of the white Gaussian noise
component in each image line, which is computed using the
cumulative histogram of the absolute value of the gradient
[11].

Fig. 1. Image line : characteristic parameters of a declivity.

The position of a declivity is computed using the mean
position of its points weighted by the gradients squared. As
an example, the position xi of Deci is calculated as follows
(See 1).

xi =

∑ri−1

x=li
[I(x+ 1)− I(x)]2(x+ 0.5)

∑ri−1

x=li
[I(x+ 1)− I(x)]2

(2)

For each declivity Deci, the following characteristics should
be known to be used in the matching process:
• The x-coordinate xi ofDeci in the image line as defined
in equation 2. xi define the position of the edge point
detected by the declivity operator. We note that in the
subsequent of the paper edge point or declivity has the
same meaning.

• The left and right end-points of Deci : li and ri.
• The set of intensities of pixels situated between the
right end-point ri of Deci and the left end-point li+1

of Deci+1, i.e. the declivity on the right side of Deci
(see Fig 1). We call this set of pixels the right side of
Deci.

More details about the declivity operator and how to deter-
mine the parameter σ are available in [11].

IV. STEREO MATCHING ALGORITHM
This section details the steps followed by the proposed

method for matching stereo images provided by the stereo
sensor mounted aboard an IV. We note that the stereoscopic
sensor used in our experiments provides rectified images, i.e.,
the corresponding pixels have the same y-coordinate.
A. Matching constraints
In order to discard false matches, we consider some local

constraints. The first one is geometric resulting from the
sensor geometry, which assumes that a pair of declivities dli
and drj appearing in the left and right scanlines, respectively,
represent possible match only if the constraint xl

i > xr
j is

satisfied [17]. xl
i and xr

j are the x-coordinates of dli and drj ,
respectively. The second constraint is the slope constraint,
which means that only pairs of declivities with the same
slope sign are considered as possible matches.
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B. The association
The aim of this subsection is to describe the method used

to find association between declivities of consecutive frames.
Let Ik−1 and Ik be two consecutive images of the same
sequence, e.g. left sequence. Let Ck−1 be a curve in the
image Ik−1 and Ck be its corresponding one in the image
IK . Consider two declivities Pk−1 and Qk−1 belonging
to the curves Ck−1 and their corresponding ones Pk and
Qk belonging to the curve Ck (see Fig. 2). We define the
associate point of the point Pk−1 as the point belonging to
the curve Ck which has the same y-coordinate as Pk−1.
Note that the association is not correspondence neither
motion. Two associate points are two points belonging to
two corresponding curves of two consecutive images of the
same sequence and having the same y-coordinate. From
Fig. 2, we remark that the point Qk meets these constraints.
Consequently, Qk constitutes the associate point of the point
Pk−1. In practice, we assume that the movement of the
objects from one frame to the other is small. So, if x1 and
x2 represent the x-coordinates of Pk−1 and Qk, respectively,
x2 should belongs to the interval [x1−Δx, x1+Δx], where
Δx is a threshold to be selected. This constraint allows
the reduction of the number of associate candidates. The
gradient magnitude is used to choose the best associate one.
As a similarity criterion, the absolute difference between the
gradient magnitudes of the declivities is used. As we see in
Fig. 2, the point Pk represents the match of the point Pk−1.
However, the point Qk constitutes the associate of the point
Pk−1. We remark that the points Pk and Qk are different
because of the movement of the point Pk in the image Ik.

Fig. 2. Ik−1 and Ik represent consecutive images of the same sequence,
e.g. left sequence. The point Qk in the image Ik constitutes the associate
point of the point Pk−1 in the image Ik−1. The points Pk and Pk−1 are in
red color. The points Qk and Qk−1 are in green color. We mean declivity
with point.

C. The pre-estimated disparity map
We define the so-called pre-estimated disparity map of a

current frame as the disparity map deduced from its preced-
ing frame and the temporal link between the two frames.
In the rest of this subsection we show how to compute the
pre-estimated disparity map of the current frame. Let ILk−1

and IRk−1
be the left and right stereo images of the frame

fk−1 acquired at time k − 1 and dk−1 is the corresponding

disparity map. ILk and IRk are the left and right stereo images
of the frame fk acquired at time k. For each declivity in the
image ILk (resp. IRk ) we look for its associate one in the
image ILk−1

(resp. IRk−1
), if any, by following the technique

detailed in section IV-B. Knowing the association between
the declivities of the frames fk and fk−1 the pre-estimated
disparity map of fk is computed as follows:
for i=1 to N do
Dec = Declivity(i);
if AssociateOf(Dec) exists

aDec = AssociateOf(Dec);
if MatchOf(aDec) exists

maDec = MatchOf(aDec);
if AssociateOf(maDec) exists

amaDec = associate(maDec);
disparity(Dec) = amaDec-Dec;

endif
endif

endif
endfor

The algorithm is executed independently for each image
scanline. N denotes the number of the declivities present
in the scanline for which the algorithm is performed. The
association can be searched from frame fk to frame fk−1,
and vice versa.

D. Disparity range

The accurate choice of the maximum disparity threshold
value for almost any known stereo processing method is
crucial to the quality of the output disparity map and the
computation time [5], [18]. The following of this section
describes how to compute the possible disparities (disparity
range) of a current frame (fk) on the basis of its pre-
estimated disparity map (pdk). Let H be a function of the
image variable pdk such that H(pdk) = vpdk. The image
vpdk is called the v-disparity image [19]. H accumulates
the points with the same disparity that occur on a given
image line. Details on how to construct the v-disparity image
are available on [19]. The processing of the v-disparity
image provides geometric content of road scenes. It was
demonstrated in [19] that the obstacles and the road appeared
as vertical and oblique lines, respectively. Let us assume
that we have a road scene containing four objects. The
corresponding v-disparity image should be as shown in
Fig. 3. We remark that the v-disparity image contains four
vertical lines representing four obstacles and one oblique
line representing the road map. For computing the disparity
range, we divide the v-disparity image into two parts: the top
part containing the objects and bottom part containing the
road map. The two parts are separated by the line y = L0.
We propose to find the disparity range independently for each
part.
Let us start by the top part of the v-disparity image. A

disparity value is associated to each object in the scene.
We can deduce from the top part that the disparities of the
detected objects belong to the interval [d1, d2], where d1 is
the disparity of the farthest object and d2 is the disparity
of the closest object. In order to take into account the
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uncertainty inherent to the computation, the disparity range
can be chosen as [d1 − d, d2 + d], where d is a threshold to
select. d controls the number of possible candidates in the
matching process. The authorized disparities at the scanlines
{y = yi}1,..,L0

should belong to the interval [d1 − d, d2 + d],
which is represented by the area situated between the lines
(D1) and (D2) (the lines in blue color in Fig. 3).
In the bottom part, the road map is represented by an

oblique line. We have only one possible disparity value for
each scanline. For the scanline yi the only possible disparity
is a ∗ yi + b, where a and b are the oblique line equation
parameters. In order to take into account the uncertainty
inherent to the computation, the possible disparities at the
scanline {y = yi}L0+1,..,M , where M is the image height,
should be between a ∗ yi + b − d and a ∗ yi + b + d. In
Fig. 3, the possible disparities is the area situated between
the lines (D3) and (D4) (in green color). We remark that
the disparity range in the top part is the same for all the
image lines. However, it varies from scanline to scanline in
the bottom part.

Fig. 3. v-disparity of the pre-estimated disparity map. The vertical axis
refers to the image lines and the horizontal axis represents the disparities.
M is the image height. dmax is the maximum disparity value. The possible
disparities are the area between the lines (D1) and (D2) for the top part
and the area between the lines (D3) and (D4) for the bottom part.

E. Cost function
As a similarity criterion between corresponding declivities,

we use a cost function based on the variance of the intensities
at the pixels situated on the right sides of the matched
declivities. Let dli and drj be two declivities belonging to
two corresponding epipolar lines on the left and right images,
respectively. We denote by Sl = {f l

m}m=1,..,M l and Sr =
{fr

n}n=1,..,Mr their corresponding right sides, respectively.
M l and Mr are the numbers of pixels in Sl and Sr,
respectively. We assume that corresponding declivities on the

stereo images should have the same intensities at their right
sides. Let S = {f l

1, .., f
l
M l , f

r
1 , .., f

r
Mr} = {fi}i=1,..,M l+Mr

be the union of Sl and Sr. Corresponding declivities should
have similar right sides, i.e. the intensities of Sl and Sr

should be similar or very close to each other. We use the
variance of the intensities of S as a similarity criterion
between dli and drj . Corresponding declivities should give a
small variance value. The cost function is defined as follows.

C(dli, d
r
j) =

1

M l +Mr

M l
+Mr∑

i=1

(
fi − f̄

)2 (3)

where f̄ , is the mean of the intensities of S, defined as

f̄ =
1

M l +Mr

M l
+Mr∑

i=1

fi (4)

F. Dynamic programming
Let {dli}i=1,..,N l and {drj}j=1,..,Nr be two sets of decliv-

ities ordered according to their coordinates in an arbitrary
l right and l left epipolar scanlines. N l and Nr are the
numbers of the declivities on the left and right scanlines,
respectively. The problem of obtaining correspondences be-
tween declivities on right and left epipolar scanlines can
be solved as a path finding problem on 2D plane [12].
Fig. 4 illustrates this 2D search plane. The vertical lines
show the positions of declivities on the left scanline and
the horizontal ones show those on the right scanline. We
refer to the intersections of those lines as nodes. Nodes in
this plane correspond to the stages in dynamic programming
where a decision should be made to select an optimal
path to that node. They represent the candidate matches.
Optimal matches are obtained by the selection of the path
which corresponds to minimum value of the global cost. The
optimal path must goes from the upper left corner S to the
lower right corner G monotonically due to the condition on
ordering. Because of the non reversal ordering constraint,
starting from S, a path can be extended towards only one of
the three directions: east, south, or southeast.

Fig. 4. 2D search plane. The horizontal axis corresponds to the left scanline
and the vertical one corresponds to the right scanline. Vertical and horizontal
lines are the declivity positions and path selection is performed at their
intersections.

Based on the subsections IV-A and IV-D the possible
matches (valid nodes in the search plane) on the left and
right scanlines are searched as explained in subsections IV-A
and IV-D. The cost function (Eq. 3) is used to fill in the valid
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nodes in the search plane. After looking for the optimal path
in the 2D search plane, the pairs of corresponding declivities
on the corresponding scanlines are determined. We note that
the matching process is achieved independently for each
scanline.

V. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed

approach, it has been applied to virtual and real stereo
sequences. In the subsequent of this section, we propose to
call the new method temporal consistent matching (TCM)
method. We call space matching (SM) method, the TCM
method deprived of the disparity range computation step.
The only difference between the two methods is that the
TCM method computes the disparity range for each scanline,
whereas the SM method uses a fixed maximum disparity
value for the whole image. The comparison between TCM
and SM methods illustrates the advantages of the computa-
tion of the disparity range before performing the matching
process.

A. Virtual stereo image sequences
We have tested our method on the MARS/PRESCAN

virtual stereo images available in [20]. The size of the
images is 512× 512. Fig. 5 illustrates the left stereo images
of the frames #293 and #294 of the same sequence. We
have applied the new method (TCM) to the original virtual
sequences. The extracted edge points are depicted in Fig. 6.
The disparity maps computed by the TCM method are shown
in Fig. 7. We have used false colors for representing the
disparity maps. The SM method, with maximum disparity
value dmax = 200, has been used to initialize the TCM
method.

Fig. 5. Virtual stereo sequences (left images of the frames #293 and #294).

Fig. 6. Edge points of the images shown in Fig. 5.

Table I summarizes the matching results obtained. It shows
the number of matched edge points (NME), the percentage

Fig. 7. Disparity maps computed for the frames shown in Fig. 5 by the
TCM method.

Frame NME PCM NCM NFM
293 15685 80.87 13312 2373
294 15934 88.03 14027 1907

TABLE I
SUMMARY OF THE RESULTS OBTAINED BY THE TCM METHOD WHEN

APPLIED TO THE STEREO IMAGES SHOWN IN FIG. 5.

of correct matches (PCM), the number of correct matches
(NCM), and the number of false matches (NFM) for the
frames #293 and #294. In order to assess the performance
of the TCM method, the SM method has been applied to the
virtual sequence (Fig. 5) and the disparity maps obtained are
depicted in Fig. 8. Table II summarizes the results provided
by the SM method. We remark from the tables I and II that
TCM succeeds in providing more correct matches and less
mismatches when compared to SM. The proposed approach
has been applied to multiple frames of both virtual and real
sequences and the results are satisfactory. We did not show
the whole results because of the limitation of the space
allowed to the publication of the paper.

B. Real images sequences
The proposed method has been tested on the real sequence

depicted in Fig. 9. The image size is 384× 288. The stereo
sequence was acquired by stereo vision sensor embedded
in a moving car. The velocity of the car is 90km per hour.
The stereo vision sensor provides 10 frames per second. The

Fig. 8. Disparity maps computed by the SM method (dmax = 200) for
the frames shown in Fig. 5.

Frame NME PCM NCM NFM
293 16499 72.24 11919 4580
294 16772 73.78 12375 4397

TABLE II
SUMMARY OF THE RESULTS OBTAINED WITH THE SM METHOD.
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Fig. 9. Real stereo sequences (left images of the frames #4185 and #4186).

Fig. 10. Edge points of the real stereo sequence (frames #4185 and #4186).

extracted edge points are shown in Fig. 10. The disparity
maps computed by the TCM and SM methods are illustrated
in Figs. 11 and 12, respectively. It is clear that the disparity
maps computed by the TCM method are smoother than those
computed with the SM method. The SM disparity maps are
more noised. With real sequence, however, there is no ground
truth available to judge the results. in order to do so, let us
consider the disparity maps computed by the two methods at
the sub-images covering the left car (LC) and the right car
(RC) appearing in the frame #4185. Fig. 13 depicts the two
sub-images.
Let us start by analyzing the computed disparities in the

area containing RC. Fig. 14 shows sub-disparity maps taken
from the disparity maps of Fig. 12 and 11. They are enlarged
before insertion in the present paper. The left and right
maps depict the disparity maps estimated with the SM and
the TCM methods, respectively. According to the disparity
smoothness constraint, the edge points belonging to the same
contour should have very close or similar disparity values.
If we focus on the contour points of RC, we remark clearly
that those on the left image are more noised, which means
that the left image contains more false matches. However,

Fig. 11. Disparity maps computed by the TCM method.

Fig. 12. Disparity maps computed by the SM method.

Fig. 13. Sub-images covering the left and right cars.

Fig. 14. Disparity maps at RC computed by (left) the SM method and
(right) the TCM method.

in the right image the disparity values at the car contour
points are homogeneous. Consequently, the disparity map
on the right image presents a very small number of false
matches when compared to the left disparity map. The same
observations can be made on the top right and the top left
areas of the images. We can see that the disparity values on
the left image are more noised. The left disparity map of
the car contains more false matches which are represented
by different colors. The correct matches in the car contour
points in the left image should have the same color as the
car contour points in the right image. All the points with
different color are considered as false matches. In the area
situated between the vertical contours of the car, we see that
mismatches were made in the left image, which is not the
case in the right image.
After analyzing the results obtained, we can deduce that

the edge points of RC should have a disparity value equal
to 9 pixels. We consider the edge points with this value as
correct matches. The number of correct matches with the SM
and TCM methods are 74 and 89, respectively. The TCM has
more correct matches, which is equal to 20% of the correct
matches with SM method.
The same comparison can be made for LC appearing in the

stereo images. Fig. 15 shows the sub-disparity maps for LC
sub-images. The left and right maps represent the disparities
estimated with the SM and TCM methods, respectively. The
correct matches in the car contours should have the same
color as in the vertical car contour on the right image. There
are few false matches in the right image. In the left image,
there are a lot of false matches lying on the vertical contours
of LC. The remarks are valid when we look at the right side
and the middle part of LC. There are more false matches in

Fig. 15. Disparity maps at LC computed by (left) the SM method (right)
the TCM method.
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the map computed with the SM method. The improvements
are clear when we analyze the results obtained for the other
frames. The TCM method gives promising results.
After analyzing the disparity maps, we can deduce that

the correct disparities at the edge points of LC should
have a disparity value equal to 7 pixels. The number of
edge points having this value are 206 with the SM method
and 234 with the TCM method. We remark that the TCM
method correctly matches 13% more edge points than the
SM method. Table III summarizes the results obtained for
both LC and RC by using TCM and SM methods.

Sub-image RC LC
SM 74 206
TCM 89 234
PMI 20% 13%

TABLE III
NUMBER OF CORRECT MATCHES WITH THE TWO METHODS AND THE

PERCENTAGE OF MATCH IMPROVEMENT (PMI) BY TCM.

C. Running time
The hardware used for the experiments is a HP Pavilion

dv6700 2.1GHZ running under Windows Vista. Table IV
illustrates the time consumed by different methods per frame.
The time needed in the TCM matching process is less than
the SM method for all the sequences. However when we
take into account the time consumed by the disparity range
computation step, the TCM method needs more time than
the SM for matching. This is due to the technique used
to find association between consecutive frames. Despite the
time used by the disparity range computation step, the TCM
is still very fast and able to process about 20 millions frames
per second.

TCMSequence Declivity SM
Disparity range Matching

Virtual 72.21 135.72 65.01 97.10
Real 27.14 20.14 11.85 15.85

TABLE IV
RUNNING TIME CONSUMED WITH DIFFERENT ALGORITHMS IN

NANOSECOND (NSEC)

VI. CONCLUSION
In this paper, we have presented a real-time stereo match-

ing method devoted to ADAS. The temporal information
integrated in the matching process allows to determine the
disparity range for each scanline and consequently increases
the number of the correct matches. The proposed method
processes about 20 millions frames per second on a HP
Pavilion dv6700 2.1GHZ running under Windows Vista.
Given that the proposed approach is applied independently
to each image line, the running time can be further reduced
by using GPU card. The new method has been tested on
virtual and real stereo image sequences and the results are
satisfactory.
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