1. True/False (3 pts each) To get credit, you must give brief reasons for your answers !!

(1.1) T F Binary search is always faster than linear search.

(1.2) T F When an array is passed to a function, the function receives a copy of the array (call by value).

(1.3) T F Changes in the implementation of a class should not require changes in an application that uses the class.

(1.4) T F The running time of RetrieveItem (sorted lists) is O(N)

(1.5) T F An objective way to compare two algorithms is by comparing their execution (i.e., machine) times.
(1.6) T F Color images take up twice as much memory compared to gray-level images.

(1.7) T F An $O(\log N)$ algorithm is slower than an $O(N)$ algorithm.

(1.8) T F The most appropriate structure to print a list of elements in reverse order is the Queue.

(1.9) T F The parameter to a copy constructor must be passed by reference.

(1.10) T F The running time of the program fragment shown below is $O(N)$

```c
sum = 0;
for(i=0; i<N; i++) {
    if(i > j)
        sum = sum + 1;
    else {
        for(k=0; k<N; k++)
            sum = sum - 1;
    }
}
```
2. **Questions** (5 pts each)

(2.1) Analyze the running time of the function *InsertItem* shown below (sorted list). To get credit, you need to be as specific as possible.

```cpp
template <class ItemType>
void SortedType<ItemType>::InsertItem(ItemType item)
{
    int location = 0;
    bool found;

    found = false;
    while( (location < length) && !found) {
        if(item > info[location])
            location++;
        else
            found = true;
    }

    for(int index = length; index > location; index--)
        info[index] = info[index - 1];
    info[location] = item;
    length++;  
}
```

(2.2) What are the main differences between static and dynamic array allocation?
(2.3) Give the C++ statements for the dynamic allocation of an array with 3 rows and 5 columns. Draw a diagram that shows the structure of the dynamic array in memory.

(2.4) In programming assignment 1, you implemented a function that takes an image and shrinks it by a given factor. Describe in simple words how the shrink function works (no code). Assuming $N \times N$ images, give the running time of the function in terms of N, using big-O notation. Justify your answer.
(2.5) What are the differences between "call by value" and "call by reference"?

(2.6) Demonstrate the binary search algorithm on the list (array-based) shown below. The element we want to retrieve is 55 (note that I am not asking you to write down the code; just include some figures that show the values of first, last and mid indices at each iteration).
3. **Code** (20 pts) Overload the assignment operator for the class `SortedType` (i.e., sorted linked list).

```cpp
template<class ItemType>
class SortedType {
public:
    SortedType();
    ~SortedType();
    void MakeEmpty();
    bool IsFull() const;
    int LengthIs() const;
    void RetrieveItem(ItemType&, bool&);
    void InsertItem(ItemType);
    void DeleteItem(ItemType);
    void ResetList();
    bool IsLastItem() const;
    bool GetNextItem(ItemType&);
private:
    int length;
    NodeType<ItemType> *listData;
    NodeType<ItemType> *currentPos;
};
```
4. **Code** (20 pts) Write a **client** function that merges two sorted lists using the following specification:

 MergeLists(SortedType list1, SortedType list2, SortedType& result)

 Function: Merges two sorted lists into one sorted list.
 Precondition: list1 and list2 have been initialized.
 Postconditions: result is a sorted list that contains all of the items from list1 and list2 (no duplicates)