CS 302 Data Structures
Spring 2012 - Dr George Bebis
Programming Assignment 1

Due date: 2/14/2012

In this assignment, you will write C++ code to read, write, and manipulate images. The objec-
tives ae the following:

» Familiarize yourself with reading/writing images from/to a file.

 Learn about some simple image processing algorithms.

* Improve your skills with manipulating arrays.

* Improve your skills with implementing constructors, destructors,yeopnstructors, and
overloading various operators.

 Learn to document and describe your programs.

Specifically you have 1o write a package to implement the image data type using arrays. The
image data type should alNoyou to:

(1) Read an image from a file.

(2) Save an image to a file.

(3) Get the info of an image.

(4) Set the value of a pixel.

(5) Get the value of a pixel.

(6) Extract a subimage from an image.

(7) Compute thewaerage gray-leel value of an image.
(8) Enlarge an image by some facsor

(9) Shrink an image by some fac®r

(10) Reflect an image in the horizontal or vertical directions.
(11) Translate an image by some amdunt

(12) Rotate an image by some aniteta.

(13) Compute the sum of twmages.

(14) Compute the difference of tmmages.

(15) Compute the metive d an image.

You will have o write a drver program which interacts with the alimage data type and the
user The user should ka the option to choose anyone of the abaptionsin any order. Your
program should be able to handle various user input errors.

Image type specification

class Image {
public:
constructor // default - no parameters
constructor // with parameters
destructor
copy_constructor
operator= //overload assignment
getimagelnfo
getPixelVal
setPixelVval
getSublmage
meanGray
enlargelmage
shrinkimage
reflectimage
translatelmage
rotatelmage
operator+ //overload addition for images
operator- //overload subtraction for images
negatelmage
private:
int N; // no of rows
int M; // no columns
int Q; // no gray-level values
int **pixelVal,

I3

readimage(fileName, imageReads in an image from a file. The glixalues are stored in an
array and the image width, height, and number of gresideare recorded in the appropriate
fields. A NO-PGM exception should be raised if the image file to be read is not in PGM format
(image is an object of typémageType).

writelmage(fileName, image):Writes out an image to a file in the appropriate forraade is
an object of typeémageType).

getlmagelnfo(noRaws, noCols, max¥\l): It returns the height (no of rows) of the image, the
width (no of columns) of the image, and the maxepualue. (shoulde returned using "call by
reference").

int getPixelVal(r, c): Returns the pixel value &t, c) location. An OUT-OF-BOUNDS»>&eption
should be raised {f, c) falls outside the image.

setPixelVal(r, c, value). Sets the pixel alue at locatior(r, c) to value. An OUT-OF-BOUNDS
exception should be raised(if c) falls outside the image.

-3-

getSublmage(ULr, ULc, LRr, LRc, oldimage) It crops a rectangular area withohdl mage.
Often, for image analysis, we want tawvéstigate more closely a specific area within the image,
called a Region of Interest (R). They are used to limit the extent of image processing opera-
tions to some small part of the image. THelRs a rectangular area within the image, defined
either by the coordinates of its upper-left (UL) andderight (LR) corners or by the coordi-
nates of its upper-left corner and its dimensior®u ¥an obtain the pixel coordinates of the UL
and LR corners usingv by moving the cursor on the desired positions and by pressing the mid-
dle button Marning: the first number displayed correspond tnd the second t9. An OUT-
OF-BOUNDS exception should be raised if UL or LR fall outside the image.

int meanGray(): Computes the\grage gray leel value of an image (returns the results as an
integer by truncating it).

enlargelmage(s, oldimage) Enlarges the input imageldimage by someinteger factor s.
Enlaging an image is useful for magnifying small details in an image. There are various ways to
enlage a gven image. Here, we will use a simple method: to enlarge an image kgnafggtor

s, we rmust replicate pixels such that each pixel in the input image beconsgs lalock of iden-

tical pixels in the output image. This technique is most easily implemented by itenadirmxe

els of the output image and computing the coordinates of the corresponding input image pixel.

shrinkimage(s, oldimage) Shrinks the input imageldimage by someinteger factor s. Shrink-

ing an image is useful, for example, to reduce a large image in size so that it fits on the screen.
There are various ways to shrink aegi image. Here, we will use a simple method: to shrink an
image by a scaleattors, we nmust sample \ery sth pixel in the horizontal and vertical dimen-
sions and ignore the others. Again, this technique is most easily implemented by iterating o
pixels of the output image and computing the coordinates of the corresponding input inehge pix

reflectimage(flag, oldimage) Reflects the input imagadimage along the horizontal orertical
directions (determined by the boolean "flag"). Reflection along either direction can be performed
by simply reversing the order of pixels in the rows or columns of the image.

translatelmage(t, oldimage) Translates the input imagadimage by some amount. The
translation process can be performed with the following equations:

r'=r+t (1)

c=c+t (2)

wheret is an integer (note: the translation amounts in the horizontal and vertical directions can
be different in general). There are some practical difficulties implementing translation using the
above gjuations (see question 3 below).

rotatelmage(theta, oldimage) Rotates the input imageldimage by some angldheta. The
rotation process requires the use of the following equations:

r' =r cos(theta) — c sin(theta) (3)

4-
c' =r sin(theta) + ¢ cos(theta) 4)

wheretheta is the angle of rotation (posig values correspond to counterclockwise rotation).
Although the abee formula is the basis of rotation, it only gets you halfway there because it will
rotate an image about point (0,0). In most cases, what we really want is to rotate an image about
its centerThe following equations rotate an image about an arbitrary pgjnt,):

r'=rq+(r —rg) cos(theta) — (c — ¢;) sin(theta) (5)

C' =g +(r —rg) sin(theta) + (c — ¢cy) cos(theta) (6)

There are some practical difficulties implementing rotation using (3)-(4) or (5)-(6). Let us con-
sider what happens to pixel (0,100) after a 90 degrees rotation using equations (3)-(4):

r'=r cos(90 - ¢ sin(90) =-100sin(90 =-100
¢ =r sin(90 + c cos(90 =0sn(90 =0

In this case, the pixel mies to mwordinates (-100,0). This is clearly a problem since pixels cannot
have regdive mordinates. Les nrow consider what happens to pixel (50,0) after a 3§rekes
rotation:

r'=r cos(35 — ¢ sin(35 =50 cos(35 =40 9%
¢’ =r sin(35 + ¢ cos(35 =50 sin(35 =288

The coordinates calculated by the transformation equations are ry#rs)tand therefore do not
index a pxel in the output image.

The first problem can be resely by testing coordinates to check thatthe within the bounds
of the output image before attempting to gppxels. Asimple solution to the second problem is
to find the nearest integersrtaandc’ and use these as the coordinates of the transformed pixel.

Please note that the C++ math functicos)) andsin() require that the angle isvgn in radians
(enter "man cos" or "man sin" from the command line to get a description of these functions). T
corvert degrees to radians, use the following formula:

Ogeq X 7T

To use these functions successfulpu need to include the following header file in your pro-
gram:

#include <math.h>

Also, you need to "link" your program to the Math library (this can be done during compilation
by appendinglm at the end of the command you are using to compile your program). There are

-5-

some practical difficulties implementing rotation using thevabejuations (see question 4
below).

operator+: Computes the sum of twimages. Addition is used to combine the information in
two images. For example, you can implement simple "image morphing" using image addition
(e.g., try adding together the following images from the imagkeny: personl.pgm, per-
son2.pgm, person3.pgm). If we add two 8-bit images, then pels in the resulting image canvea

values in the range 0-510. One way to deal with this problem is by choosing a 16-bit representa-
tion (i.e., set Q=510) for the output image. Another way is to use the formula shown below:

O(r,c) = aly(r,c) + @—a)l(r,c) (8)

wherea is a constant in the interval [0,1] (addition is a special case whén5)

operator-: Computes the diérence of tw images. Thenain application of image subtraction is
in change detection. If we make two dbsenation of a scene and compute their difference, then
changes will be indicated by pixels in the difference image whigk han-zero values. If we
subtract tvo 8-bit images, then pixels in the resulting image carehalues between -255 and
+255. This necessitates the use of 16 bit signed integers in the output imageerHibe sign is
usually unimportant and we just consider the absoluterdiice in which case we just need 8 bit
integers:

O(r, c) =ly(r, c) — I(r, c)| 9)

negatelmage Computes the rggtive d an image. This can be done by the faling transfor
mation:

O(r,c) =—1(r,c) +255 (20)

wherel(r,c) is the input image (i.e., a grayscale image with 255 possible grag)leando(r, c)
is the output image.

Instructions

You should hae three source code files: one for the application program containing the main
function @river.cpp), one header filemage.h that specifies the image data type, and a file
image.cpp that actually implements the image data type.

Describe the implementation of each function in detail. Each function should be discussed into a
separate section with the title of each section being the same as the name of the function. The
sections should be clearly separated from each other.

Questions - Extra Credit

Answering ag of the extra credit questions would not require prior background in image pro-
cessing. Just spend some time to think about each questionvendagiyour best possible
answer along with some justification. Reasonable answers, thatbhan implemented and
demonstrated to theAT will get extra credit. You should document anextensions that you
might have made and let theATknow about them during your demo.

(5pts extra) We havealready discussed in classawractical dificulties associated with image
rotation: (a) the case where the transformed pixel coordinates fall outside the image and (b) the
case where the transformed pixel coordinates are ngieirgeln the first case, we suggested sim-

ply ignoring the transformed pixel coordinates whieli butside the range. This is probably
enough in most cases. In the second case, we suggested finding the nearest integer neighbors to
andc'. This approach, heever, will not produce a &lue for @ery pixel in the output image. In

other words, it will produce numerous "holes" in the rotated image where no value was com-
puted. Can you suggest a way for dealing with this problem?

