
CS 302 Data Structures

Spring 2012 - Dr. George Bebis

Programming Assignment 1

Due date: 2/14/2012

In this assignment, you will write C++ code to read, write, and manipulate images. The objec-
tives are the following:

• Familiarize yourself with reading/writing images from/to a file.
• Learn about some simple image processing algorithms.
• Improve your skills with manipulating arrays.
• Improve your skills with implementing constructors, destructors, copy-constructors, and
overloading various operators.
• Learn to document and describe your programs.

Specifically, you have to write a package to implement the image data type using arrays. The
image data type should allow you to:

(1) Read an image from a file.
(2) Save an image to a file.
(3) Get the info of an image.
(4) Set the value of a pixel.
(5) Get the value of a pixel.
(6) Extract a subimage from an image.
(7) Compute the average gray-level value of an image.
(8) Enlarge an image by some factors.
(9) Shrink an image by some factors.
(10) Reflect an image in the horizontal or vertical directions.
(11) Translate an image by some amountt.
(12) Rotate an image by some angletheta.
(13) Compute the sum of two images.
(14) Compute the difference of two images.
(15) Compute the negative of an image.

You will have to write a driver program which interacts with the above image data type and the
user. The user should have the option to choose anyone of the above options in any order. Your
program should be able to handle various user input errors.

-2-

Image type specification

class Image {
public:

constr uctor // default - no parameters
constr uctor // with parameters
destr uctor
copy_constr uctor
operator= //overload assignment
getImageInfo
getPixelVal
setPixelVal
getSubImage
meanGray
enlargeImage
shr inkImage
reflectImage
translateImage
rotateImage
operator+ //overload addition for images
operator- //overload subtraction for images
negateImage

pr ivate:
int N; // no of rows
int M; // no columns
int Q; // no gray-level values
int **pixelVal;

};

readImage(fileName, image)Reads in an image from a file. The pixel values are stored in an
array and the image width, height, and number of gray-levels are recorded in the appropriate
fields. A NOT-PGM exception should be raised if the image file to be read is not in PGM format
(image is an object of typeImageType).

writeImage(fileName, image):Writes out an image to a file in the appropriate format (image is
an object of typeImageType).

getImageInfo(noRows, noCols, maxVal): It returns the height (no of rows) of the image, the
width (no of columns) of the image, and the max pixel value. (shouldbe returned using "call by
reference").

int getPixelVal(r, c): Returns the pixel value at(r, c) location. An OUT-OF-BOUNDS exception
should be raised if(r, c) falls outside the image.

setPixelVal(r, c, value): Sets the pixel value at location(r, c) to value. An OUT-OF-BOUNDS
exception should be raised if(r, c) falls outside the image.

-3-

getSubImage(ULr, ULc, LRr , LRc, oldImage): It crops a rectangular area withinoldImage.
Often, for image analysis, we want to investigate more closely a specific area within the image,
called a Region of Interest (ROI). They are used to limit the extent of image processing opera-
tions to some small part of the image. The ROI is a rectangular area within the image, defined
either by the coordinates of its upper-left (UL) and lower-right (LR) corners or by the coordi-
nates of its upper-left corner and its dimensions. You can obtain the pixel coordinates of the UL
and LR corners usingxv by moving the cursor on the desired positions and by pressing the mid-
dle button (Warning: the first number displayed corresponds toc and the second tor). An OUT-
OF-BOUNDS exception should be raised if UL or LR fall outside the image.

int meanGray(): Computes the average gray level value of an image (returns the results as an
integer by truncating it).

enlargeImage(s, oldImage): Enlarges the input imageoldImage by some integer factor s.
Enlarging an image is useful for magnifying small details in an image. There are various ways to
enlarge a given image. Here, we will use a simple method: to enlarge an image by a given factor
s, we must replicate pixels such that each pixel in the input image becomes ansxs block of iden-
tical pixels in the output image. This technique is most easily implemented by iterating over pix-
els of the output image and computing the coordinates of the corresponding input image pixel.

shrinkImage(s, oldImage): Shrinks the input imageoldImage by someinteger factor s. Shrink-
ing an image is useful, for example, to reduce a large image in size so that it fits on the screen.
There are various ways to shrink a given image. Here, we will use a simple method: to shrink an
image by a scale factors, we must sample every sth pixel in the horizontal and vertical dimen-
sions and ignore the others. Again, this technique is most easily implemented by iterating over
pixels of the output image and computing the coordinates of the corresponding input image pixel.

reflectImage(flag, oldImage): Reflects the input imageoldImage along the horizontal or vertical
directions (determined by the boolean "flag"). Reflection along either direction can be performed
by simply reversing the order of pixels in the rows or columns of the image.

translateImage(t, oldImage): Translates the input imageoldImage by some amountt. The
translation process can be performed with the following equations:

r′ = r + t (1)

c′ = c + t (2)

wheret is an integer (note: the translation amounts in the horizontal and vertical directions can
be different in general). There are some practical difficulties implementing translation using the
above equations (see question 3 below).

rotateImage(theta, oldImage): Rotates the input imageoldImage by some angletheta. The
rotation process requires the use of the following equations:

r′ = r cos(theta) − c sin(theta) (3)

-4-

c′ = r sin(theta) + c cos(theta) (4)

where theta is the angle of rotation (positive values correspond to counterclockwise rotation).
Although the above formula is the basis of rotation, it only gets you halfway there because it will
rotate an image about point (0,0). In most cases, what we really want is to rotate an image about
its center. The following equations rotate an image about an arbitrary point(r0), (c0):

r′ = r0 + (r − r0) cos(theta) − (c − c0) sin(theta) (5)

c′ = c0 + (r − r0) sin(theta) + (c − c0) cos(theta) (6)

There are some practical difficulties implementing rotation using (3)-(4) or (5)-(6). Let us con-
sider what happens to pixel (0,100) after a 90 degrees rotation using equations (3)-(4):

r′ = r cos(9 0) − c sin(9 0) = −100 sin(9 0) = −100
c′ = r sin(9 0) + c cos(9 0) = 0 sin(9 0) = 0

In this case, the pixel moves to coordinates (-100,0). This is clearly a problem since pixels cannot
have neg ative coordinates. Let’s now consider what happens to pixel (50,0) after a 35 degrees
rotation:

r′ = r cos(3 5) − c sin(3 5) = 50 cos(3 5) = 40. 96
c′ = r sin(3 5) + c cos(3 5) = 50 sin(3 5) = 28.68

The coordinates calculated by the transformation equations are not integers, and therefore do not
index a pixel in the output image.

The first problem can be resolved by testing coordinates to check that they lie within the bounds
of the output image before attempting to copy pixels. Asimple solution to the second problem is
to find the nearest integers tor′ andc′ and use these as the coordinates of the transformed pixel.

Please note that the C++ math functionscos() andsin() require that the angle is given in radians
(enter "man cos" or "man sin" from the command line to get a description of these functions). To
convert degrees to radians, use the following formula:

θ rad =
θ deg x π

18 0. 0
(7)

To use these functions successfully, you need to include the following header file in your pro-
gram:

#include <math.h>

Also, you need to "link" your program to the Math library (this can be done during compilation
by appending-lm at the end of the command you are using to compile your program). There are

-5-

some practical difficulties implementing rotation using the above equations (see question 4
below).

operator+: Computes the sum of two images. Addition is used to combine the information in
two images. For example, you can implement simple "image morphing" using image addition
(e.g., try adding together the following images from the image gallery: person1.pgm, per-
son2.pgm, person3.pgm). If we add two 8-bit images, then pixels in the resulting image can have
values in the range 0-510. One way to deal with this problem is by choosing a 16-bit representa-
tion (i.e., set Q=510) for the output image. Another way is to use the formula shown below:

O(r, c) = aI1(r, c) + (1 − a)I2(r, c) (8)

wherea is a constant in the interval [0,1] (addition is a special case whena = 0. 5)

operator-: Computes the difference of two images. Themain application of image subtraction is
in change detection. If we make two observation of a scene and compute their difference, then
changes will be indicated by pixels in the difference image which have non-zero values. If we
subtract two 8-bit images, then pixels in the resulting image can have values between -255 and
+255. This necessitates the use of 16 bit signed integers in the output image. However, the sign is
usually unimportant and we just consider the absolute difference in which case we just need 8 bit
integers:

O(r, c) = |I1(r, c) − I2(r, c)| (9)

negateImage: Computes the negative of an image. This can be done by the following transfor-
mation:

O(r, c) = − I (r, c) + 255 (10)

whereI(r,c) is the input image (i.e., a grayscale image with 255 possible gray levels) andO(r, c)
is the output image.

Instructions

You should have three source code files: one for the application program containing the main
function (driver.cpp), one header fileimage.h that specifies the image data type, and a file
image.cpp that actually implements the image data type.

Describe the implementation of each function in detail. Each function should be discussed into a
separate section with the title of each section being the same as the name of the function. The
sections should be clearly separated from each other.

-6-

Questions - Extra Credit

Answering any of the extra credit questions would not require prior background in image pro-
cessing. Just spend some time to think about each question and give me your best possible
answer along with some justification. Reasonable answers, that have been implemented and
demonstrated to the TA, will get extra credit. You should document any extensions that you
might have made and let the TA know about them during your demo.

(5pts extra) We hav ealready discussed in class two practical difficulties associated with image
rotation: (a) the case where the transformed pixel coordinates fall outside the image and (b) the
case where the transformed pixel coordinates are not integers. In the first case, we suggested sim-
ply ignoring the transformed pixel coordinates which fall outside the range. This is probably
enough in most cases. In the second case, we suggested finding the nearest integer neighbors tor′
andc′. This approach, however, will not produce a value for every pixel in the output image. In
other words, it will produce numerous "holes" in the rotated image where no value was com-
puted. Can you suggest a way for dealing with this problem?

