
Can you trust your computer? 
Khalil Kalbasi Floating-point formats, round-off, 

and machine constants-they could 
be making liars out of your data 

omputers are a part of 
daily life in areas from 
banking, game playing, 
reservation systems, 
traffic control and busi- 

ness to science and engineering. Their 
use, in the latter, requires much more 
diligence and care than is usually ex- 
tended, especially when performing 
many arithmetic operations, such as 
solving differential equations or a sys- 
tem of algebraic equations. In such 
instances, the computer, which is per- 
ceived as an “exact” tool, can turn out 
to be a monster number cruncher that 
delivers nothing but “garbage.” This is 
due to the way computers handle real 
numbers. 

For example, consider the determi- 
nation of the following sum. 

+ 914 - + + 
615 - = 1529. 

By summing from left to right, most 
digital computers will return zero as the 
answer. This gross error is the result of 
floating-point formats in these comput- 
ers. What can be done about these 
problems? Are they machine depen- 
dent? If so, what are the characteristics 
of different computers, and if not, what 
algorithms would eliminate or reduce 
these errors? 

Real vs. floating point 
The real number system is one of the 

triumphs of the human mind, underly- 
ing calculus and higher analysis. In 
spite of the infinite span of the real 
number system, computers deal with a 
finite numbering system called the 
floating-point number system. A float- 
ing-point number system consists of a 
finite number of elements having the 
appearance of a screen placed over the 
real numbers. Indeed, the expression 
floating-point screen is sometimes 
used. Thus for an approximation of the 
real numbers on a computer, floating- 
point numbers are used. 

A t-digit base b floating-point num- 
ber is one of the form 

k.dld2d3 . . . . . d, b’. 

Here .d1d2d, . . . . . d, is the mantissa, 
b is the base of the number system in 
use (an integer greater than unity) and e 
is the exponent. The exponent is an 
integer between two fixed integer 
bounds el , e2 and, in general, 
el d 0 d e2. With the condition 
dl = 0, floating-point numbers are said 
to be normalized. The set of normalized 
floating-point numbers does not con- 
tain zero. (For a unique representation 
of zero, we assume a positive (+) sign, 
a mantissa of 0.0000. . . 0 ( t  zeros 
after the radix point) and e = e l . )  

Therefore, a floating-point system de- 
pends on the constants b ,  r ,  el and e2. 
Let’s denote it by R = R(b, t ,  e l ,  e2). 
The base b is usually 2 and the length t 
of the mantissa is typically 24 bits for 
single precision arithmetic. 

A floating-point system R consists of 
a finite number of elements spaced 
between successive powers of base b 
and their negatives. It has exactly 
2(b - 1)bt-’(e2 - el + I )  + I num- 
bers in it. Figure 1 shows a simple 
floating-point system R = R(2, 3 ,  - 1 ,  
2)  consisting of 33 elements. These are 

0278-664819010004-0015$01 .OO 0 1990 I EEE 

APRIL 1990 



not equally spaced throughout their 
range. but only between successive 
powers of b and their negatives. 

Rounding and chopping, over- 
and under-flow 

Because of the structure of floating- 
point numbers, the arithmetic opera- 
tions for real numbers are only approx- 
imated by floating-point numbers. If x 
and y are floating-point numbers, the 
exact point x X y will have more than t 
digits of mantissa and therefore the 
least significant digits in excess of t are 
either “chopped” or “rounded,” leading 
to error. The same is true for exact sum 
of x + y .  Since a computer has to rep- 
resent the results of its own operations 
as a floating-point number, it  rounds 
(or chops) the exact result into a float- 
ing-point number screen and takes the 
outcome as the definition of floating- 
point operation. 

We say that a number x is chopped to 
t digits or figures when all the digits 
following the rth digit are discarded and 

e 2e ml m2 

-1 112 0.100 0.101 

0 1 0.100 0.101 
1 2 0.100 0.101 

2 4 0.100 0.101 

ping and rounding, respectively. This 
implies that if you have a relative error 
of say lo-’ in calculating a number, 
you expect to have about 6 digits of 
accuracy. 

Let JZ(x) represent the floating-point 
representation of a real number x. Fur- 
thermore, let JZ(x + y) represent the 
floating-point addition of two real num- 
bers x and y. In the 33-point system 
described above, letx = %andy = Yx. 
The operation x + y on a computer is 
simulated via a JZouting-point uddi- 
tion approximation. We would like 
P(x + y )  to be closest to the true x t y ,  
but in most computers this does not 
happen. For instance, in our 33-point 
floating point number system the result 
ofJZ(Y4 + Yx) would be either Y2 or 774 
instead of 1%. The difference between 
x + y andJZ(x + y )  is called rounding 
errur in addition. When the result of 
some floating-point operation is greater 
than the largest floating-point number 
available in a given floating-point sys- 
tem (772 in our toy system), the phenom- 

m3 m4 

0.110 0.111 
0.110 0.111 
0.110 0.111 
0.110 0.111 

Nonzero Elements of r~-- Least Absolute Value 
1- Greatest Element 1 Least Element 

-4 -3 -2 -1-1120 1/21 2 3 4 
t t t 11 t t  t t ’ Powers o f 2  

f i g  1 A simple f/oating-point system 

none of the remaining t digits is 
changed. Conversely, x is rounded to t 
digits or figures when x is replaced by a 
t-digit number that approximates x with 
minimum error. The question of round- 
ing up or down a ( t  + 1)-digit decimal 
number that ends with a 5 is best han- 
dled by always selecting the rounded 
t-digit number with even tth digit. 

The relative error of representing a 
number in floating-point format is at 
most equal to b’-‘and !/2b’-‘for chop- 

enon of overflow occurs. Underflow 
happens in floating-point multiplica- 
tion when two non-zero numbers have a 
non-zero product that is smaller in mag- 
nitude than the smallest number in R 
(i.e., V4 in our 33-point system). When 
overflow occurs, almost all computers 
signal an error message, but underflow 
happens unnoticed in some computers 
because the machine quietly sets the 
number equal to zero. How great is the 
relative error when this happens? 

An example 
To show the implications of round- 

off in a very common type of calcula- 
tion, let’s look at an example. The 
following Fortran and Pascal Programs 
are roughly equivalent. Predict how 
many lines of output you would expect 
from running one of them on a com- 
puter that uses binary, rounded arith- 
metic. 

program derno(output); 
var 

i : inte er 
h : reay; real h 
x : real; real x 

i := 0; i = O  
x := 0.0; x = 0.0 
h := 0.1; h = 0.1 
repeat 10 continue 

i := i + 1; i = i + l  
x : = x + h  x = x + ~  
writeln(i , x) print* i , x 

integer i 

begin 

until x<l; if(x .le. 1 .O) 

end 
end. go to 10 

If your answer to this question is “1 1 
lines” run the program and see for 
yourself. Now, if the statement 
x = x + h is replaced with x = i * h, 
are there going to be any changes in the 
printed output? If your answer is “no,” 
try the program with the modification 
again and see what happens. If you 
could not see what is happening ex- 
actly, here is an explanation: Using 
exact arithmetic, the program should 
print eleven lines in either case. But 
using 24-digit base 2 arithmetic with 
rounding (such as single precision 
VAX arithmetic), the program prints 
only 10 lines when the x=x+h version 
is used. The sequence of values at- 
tained by x (in double-precision for- 
mat) is 

1 X 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.1000000014901 161 
0.2000000029802322 
0.3000000 1 19209290 
0.4000000059604645 
0.5000000000000000 
0.600000023341 8579 
0.7000000476837158 
0.80000007 15255737 
0.90000009536743 16 
1.0000001 19209290 

Why did this happen? The fraction 
1/10 cannot be represented exactly by 
24 binary digits. The nearest 24-binary- 
digit number is slightly larger than 
1/10. Observe the direction of the 
rounding errors. In particular, when 
i =  10, x is slightly greater than 1, and 
the loop stops. 
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With the modification x=i*h, the 
results are as follows: 

1 X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

O.l~oooO14901161 
0.2000oooO29802322 
0.30000001 19209290 
0.4oooOOOO59604645 
0.5000000000000000 
0.6OOOOO02384 18579 
0.69999998807907 10 
0 . 8 0 ~ ~ 1 1 9 2 0 9 2 9 0  
0.9000000357627869 
1.000000000000000 
1.1-23841 858 

Computer 
~~ 

CDC CYBER 170 

CDC CYBER 205 

Cray-1 

DEC VAX (single) 

DEC VAX (double) 

HP-llC,15C 

IBM 3033 (single) 

IBM 3033 (double) 

IBMlPC (single) 

IBMlPC (double) 

PRIME 850 (single) 

PRIME 850 (double) 

Table 7 

RIC 

R 

C 

C 

R 

R 

R 

C 

C 

R 

R 

C 

C 

present themselves during the course of 
computation in one or more ways. For 
instance, in order to quantify the round- 
off errors in the computation, we need a 
round-off unit. This unit, which is 
called machine epsilon or machinepre- 
cision ( E ) ,  is, roughly speaking, the 
fractional accuracy to which floating- 
point numbers are represented and cor- 
responds to a change of one in the least 
significant bit of the mantissa. In other 
words, machine epsilon is a positive 
floating-point number for which 

Note that E is not the smallest floating- 
J(1 + E) 3 1. 

the integer, real and double-precision 
constants of different computers. These 
constants represent values checked by 
extensive testing and are not naive 
counts of “how many bits in a word.” 
Because some machines use extended 
precision registers, trying to calculate 
such quantities directly is problemati- 
cal. Here is the list of constants that can 
be obtained by running these codes for 
integer and floating-point (single- and 
double-precision) arithmetic: 

The number of bits per integer 
storage unit; 
The number of characters per 
character storage unit; 

P 

2 

2 

2 

2 

2 

10 

16 

16 

2 

2 

2 

2 

The closest floating-point number to 
J(l0 X 0.10000000149012) is 1, so 
the loop runs eleven times. The moral 
of the story is that round-off error could 
alter the results completely without any 
“apparent” reason and that care must be 
taken to avoid pitfalls like this. 

Machine constants 
Table 1 shows that round-off de- 

pends on the floating-point format of 
your computer. Therefore, one needs to 
know the machine constants of his or 
her favorite computer before beginning 
to do serious work on it. By machine 
constants we mean the set of numbers 
related to the floating-point format de- 
scribed in Table l .  Obviously, different 
computer hardware and architecture 
implementations would result in differ- 
ent machine constants. These constants 

t 

48 

47 

48 

24 

56 

10 

6 

14 

24 

53 

23 

47 

L 

-976 

-28,626 

-8.1 92 

-1 27 

-1,023 

-99 

-64 

-64 

-1 26 

-1,022 

-1 28 

-32,896 

point number on a given machine. That 
number depends on the number of bits 
in the exponent, while E depends on the 
number of bits in the mantissa. 

Table 1 depicts the more important 
machine constants of some common 
computers both for single- and double- 
precision arithmetic. Note that ex- 
tended precision is not implemented on 
hardware in these machines and is nor- 
mally done via an internal algorithm, 
thereby requiring much more CPU 
usage. 

If you need to know some of the 
machine constants of your favorite 
computer (without having to read the 
manuals), a set of programs on the 
Netlib public library are very helpful. 
In particular, the programs IlMACH, 
RlMACH and DlMACH are very 
handy. These programs will give you 

U 

1071 

28,718 

8,191 

127 

1,023 

99 

63 

63 

127 

1023 

127 

32,639 

e 

3.55 x 1045 

1.42 x 10‘‘ 

7.11 x 1015 

5.96 x 109 

1.11 x 10-16 

5.00 x 10-10 

9.54 x 10-7 

2.22 x 10-16 

5.96 x 104 

1.11 x 10-16 

2.38 x l o 7  
1.42 x io44 

The base for integer and floating- 
point numbers; 
The number of digits in the inte- 
ger and floating-point base; 
The largest magnitude integer 
and floating-point number; 
The smallest and largest exponent 
(single- and double-precision); 
The smallest positive magnitude 
number (single- and double-pre- 
cision); 
The smallest relative spacing 
(single- and double-precision); 
The largest relative spacing 
(single- and double-precision), 

To get a copy of these codes, and the 
list of computers you can run them on, 
use the Machine or Core library from 
Netlib. Instructions on how to use 
Netlib are in the February 1989 issue of 
Potentials. 
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If you are not interested in all those 
constants and just need to know an 
approximate value for your machine 
epsilon, a quick and efficient way is to 
write a couple of lines of code. It is 
usually sufficient to know E within a 
factor of two. The following short pro- 
gram in FORTRAN will do the job: 

implicit double precision 

eps = 1.0 
10 continue 

(a-h ,o-z) 

eps = epsI2.0 
t = 1.0 + eps 
if (t .gt. 1 .O) go to 10 
eps = 2.0 eps 
print *, eps,’ .le. machine 

epsilon .le. ’,2.0 eps 

The value of E will become handy, 
especially when you want to terminate 
an iteration. Suppose you are finding 
the root of a nonlinear equation using 
the Newton method. You want the 
value you get to be as close as possible 
to the actual value, but at the same time 
you do not want the iteration process to 
continue forever by expecting the com- 
puter to give you absolutely no error. 
Therefore, you need a stopping crite- 
rion. This is when you need the value of 
E .  You use this value of E to compare 
your error bounds or termination crite- 
rion. 

Error propagation and analysis 
An optimistic value for the round-off 

accumulation in performing N arith- 
metic operations is roughly  NE 
where the square root is for the random 
walk. In many instances, the round-off 
error could grow to NE or even more. 
For instance, when subtracting two 
large numbers that are nearly equal, the 
result depends only on the few less 
significant digits in which the two num- 
bers differed. Thus, once the result is 
normalized, the rest of the digits in the 
mantissa other than those few ones are 
lost. This phenomenon is called sub- 
tractive cancellation and occurs every 
now and then, introducing considerable 
round-off error. For example, in 4-digit 
base 10 arithmetic, fZ[(lOOOO + 1) - 
100001 = 0 but (10000 + 1 )  - 
(10000) = 1 (exactly). The finite pre- 
cision result has no correct significant 
digit. Subtractive cancellation happens 
when we attempt to compute the reia- 
tively small quantity 1 by subtracting 
the relatively large numbers 10001 and 
10000. 

The introduction of floating-point 
when combined with the enormous 
gains in speed of computers mandates 
methods of controlling the round-off 
errors. Traditionally, two techniques of 
error analysis called forward error 

end 

analysis and backward error analysis 
have been used. In forward error anal- 
ysis, the floating-point representation 
of error is subjected to the same mathe- 
matical operations as the data them- 
selves, resulting in an equation for the 
accumulated error. In backward error 
analysis, attempts are made to regener- 
ate the original mathematical problem 
from the computed solutions. Both of 
these methods are analytic, and, for 
large scale computations, a large num- 
ber of error estimates will be needed in 
addition to their propagation through- 
out the computation process. For in- 
stance, in multiplying two complex 
matrices of order 100, about 8 million 
of such estimates are required. It is 
clear that one prefers to avoid such 
analysis. Instead, one should adopt one 
of the following techniques: 

1. Compute a residual; i .e.,  feed the 
computed solution into the orig- 
inal problem and evaluate the 
remainder. A small remainder 
usually indicates a good solu- 
tion. This process is sometimes 
referred to as defect correction. 

2. Repeat the calculation in double 
or extended precision to verify a 
good agreement. In fact, avoid 
single precision arithmetic if you 
can; because, as my numerical 
analysis instructor used to say, 
“Single precision computing is 
only good for writing checks! ” 

3. Rerun your problem with slightly 
perturbed input data and notice 
the change in the results. Usu- 
ally, small variations in the re- 
sults indicate stability in the com- 
putational process. 

One can dream of examples that show 
the above methods to be completely 
unreliable, but they frequently are a 
good indication of the quality of your 
computations. 
New ideas for computer 
arithmetic 

With the increased capability of 
computers and enormous growth and 
ramification of the problems that are 
dealt with in scientific computations, 
there remains no alternative but to fur- 
nish the computer with the capability of 
control and validation of the computa- 
tional process. Recently developed 
concepts and methods of floating-point 
arithmetic provide a superior capability 
for modern digital computers with far- 
reaching consequences for scientific 
computation. For example, they go a 
long way toward eliminating errors of 
the type described in this article. There 
are also nonfloating-point arithmetic 
implementations for eliminating errors 

in scientific computation. Examples of 
these are rational arithmetic, the use of 
multiple and the full precision arith- 
metic found in such systems as 
SCRATCHPAD and MACSYMA. 

The basic feature of advanced com- 
puter arithmetic is to augment the four 
basic operations +, - , x , / for float- 
ing-point numbers by another operation 
referred to as the scalar or dot product 
of two vectors. The new scalar product 
must be implemented with only one 
rounding. The augmented set of five 
basic operations is sufficient for the 
execution with maximum accuracy. 
The availability of exact scalar prod- 
ucts, as well as matrix and matrix- 
vector operations with maximum accu- 
racy, combined with defect correction 
and interval arithmetic concepts make 
it possible to verify or validate a given 
computational process. 

Conclusions 
Understanding the limitations of 

computers is the key step in their utili- 
zation. Although progress is being 
made to reduce the limitations of float- 
ing-point formats of modern comput- 
ers, we are still a long way away from 
eliminating the negative effects of 
round-off in extensive computations. 
Therefore, the user is left with no alter- 
native but to exercise care. This in- 
volves efficient algorithm and pro- 
gramming, verification of results, and 
keeping an eye on the specifi- 
cations of the computers being used. 
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