
Recently, there has been interest in so-
called alternative computing paradigms
that differ from traditional silicon-based
computing architectures. One such alter-
native is chaos computing which exploits
the inherent dynamics of chaotic systems.

In everyday language, the words
random and chaotic are often inter-
changed. However, in the mathematical
sense, chaos is not unpredictable or
random at all. A given chaotic system
behaves in a totally predictable and
fully reproducible way (given the same
initial conditions). So what is the differ-
ence between a chaotic and a non-
chaotic system?

Chaos has three defining charac-
teristics. The first characteristic is
sensitivity to initial conditions. If
one was to input a value x into a
system, we might obtain result y.
However, in a chaotic system even
if we only slightly perturbed x say
by 0.0000001 we would obtain a
completely different result from y.
In fact, such trajectories originating
from differing initial conditions separate
exponentially fast. This outcome has
been most famously stated as the so-
called “butterfly effect”:

The flapping of a single butter-
fly’s wing today produces a tiny
change in the state of the atmos-
phere. Over a period of time,
what the atmosphere actually
does diverges from what it would
have done. So, in a month’s time,
a tornado that would have devas-
tated the Indonesian coast doesn’t
happen. Or maybe one that
wasn’t going to happen, does.

(Ian Stewart, Does God Play
Dice? The Mathematics of Chaos,
pg. 141)
This result is clearly different from

the ones engineers usually deal with
which are typically linear and, thus,
have a linear response curve.

A second characteristic of chaos is
aperiodic long-term behavior. In other
words, there are no fixed points, peri-
odic orbits, or quasi-periodic orbits in
the behavior of the system (as t → ∞).
Note that this does not mean that the
time evolution of the system is random!
However, this property has been
exploited to generate an approximation
to seemingly random numbers in so-
called pseudo-random number genera-
tors. Such numbers are not truly ran-
dom since if given the chaotic equation
governing the behavior of the system
and the exact initial conditions, the

numbers generated are completely pre-
dictable and reproducible. Thus, the
system is not really random, since a
random signal requires that it be neither
predictable nor reproducible.

This leads to the third characteristic
of a chaotic system. It is wholly deter-
ministic. This means that the “chaos” in
the system (its irregular behavior) is
solely a function of the system’s inher-
ent nonlinearity as opposed to some
other driving force. Random or noisy
inputs or parameters are not the
cause of the aperiodic behavior in
the system. The system behaves
as it does solely based on its

own internal dynamics. Therefore, if
we were to start a chaotic system twice
with the exact same initial conditions,
we would obtain the exact same result
just as if we were using any other deter-
ministic system.

Perhaps a simple example will help.
If you’ve ever watched the popular

game show, “The Price is Right,” you’ve
probably seen the game “Plinko.” In
this game, the contestant drops a circu-
lar disc down a surface that has pegs
placed at regular intervals. The disc
then seemingly follows a random path
down the surface bouncing left and
right off the pegs until finally it reaches
the bottom (see Fig. 1) of a slot with
monetary value. One potential path of
the disc is shown by the solid line. So is
this system a chaotic one?

Well, the first condition is that the
path of the disc be dependent on the
initial conditions. If you’ve seen this
game enough times, you’ll know that
even if you drop the disc at the same
starting point every time with approxi-
mately the same starting velocity, the
disc doesn’t seem to follow the same
path. This is because if you change the

starting position and velocity even slight-
ly, it will hit the pegs differently during
every bounce. This difference becomes
larger and larger over time until finally
the path of the disc changes from the
previous one.

The second con-
dition is that
it must

b e
a p e r i -

odic. Well,
the path taken

doesn’t seem peri-
odic. Does the disc go

right or left of a peg in any
repeatable pattern in a long term pre-
dictable way? Not really.

The third condition is that the system
must be deterministic. If we exclude
outside perturbations, like maybe vibra-
tions on the stage, then the system is
certainly deterministic. The disc is only
subject to the laws of Newtonian
physics. Thus, the system has no sto-
chastic or random behaviors. So Plinko
does behave as a chaotic system.

In fact, for years scientists have
observed a rich variety of behaviors in
the natural world with many being chaot-
ic, such as population dynamics, cardiac
rhythms and EEG recordings of brain
activity. However, most mathematical,
computational and modeling tools are lin-
ear and, thus, cannot reproduce chaotic
behavior (which is inherently nonlinear).
The reason for this is the simplicity and
significant successes of using linear sys-
tem models. In contrast, chaotic nonlinear
models do not have a unifying theory
and are difficult to analyze and model.
Thus, it has been common, especially in
the engineering community to engineer
away chaos in systems and models.

But with the internal processes of liv-
ing systems often being chaotic (e.g. the
brain and heart), there must be benefits
to its use. It has been theorized that
chaos provides flexibility in the perfor-
mance of a system and provides a wide
range of dynamic behaviors that can be
utilized to improve performance. One
example where chaotic unpredictability

APRIL/MAY 2005 0278-6648/05/$20.00 © 2005 IEEE 13

Dwight Kuo

Chaos and its
computing paradigm

Table 1
X1 X2 AND(X1,X2)

False False False

False True False

True False False

True True True

©
D

O
V

E
R

 C
O

M
P

O
S

IT
E

: M
K

C

is useful is in escape
from predators. Unpre-
dictable patterns of
escape behavior might
give an advantage to a
prey. Another example
is in the ability of the
brain to continually learn
new concepts. It is
hypothesized that this is
due to the inherent
chaotic dynamics in the brain. So what
if it were possible to exploit such well
understood physical phenomena for the
purpose of computations?

William Ditto of the Georgia Institute
of Technology and his collaborator,
Sudeshna Sinha of the Institute of
Mathematical Sciences in Madras, have
proposed that useful computations can be
performed from coupling chaotic ele-
ments, a process that they call “chaos
computing.” The general idea is to have
many chaotic systems whose inputs and
outputs are coupled to each other and to
use a threshold to convert the output to a
logical true/false.

Logistic map
Before we discuss the chaos-comput-

ing paradigm, we should formulate the
behavior of a chaotic system. Here, we
use the Logistic Map, a very simple exam-
ple of a chaotic system originally used as
a simple population (demographic)
model. The system is defined as follows:

xn+1 = λxn(1 − xn)

where λ is a positive parameter and x is
between 0 and 1. The first term, x ,
denotes the growth due to reproduction
that is proportional to the size of the cur-
rent population. The second term, (1 − x)
denotes the loss in the population from
starving to death (due to the environment
and poor government policy). Therefore,
the population decreases at a rate propor-
tional to the theoretical “carrying capacity”
(in this case “1”) of the environment
minus the current population size (x).

The parameter λ controls the com-
bined rate of reproduction and starva-
tion. Its value largely determines the
behavior of the system. Figure 2 shows
the logistic map’s sensitivity to initial
conditions for λ = 4.0. The system is
run for 50 iterations with slightly differ-
ent initial conditions (x 0). It can be
seen that system runs approximately the
same for a few iterations. However, at
about iteration 23, the trajectories of the
systems begin to diverge. By iteration
35, the trajectories of the three systems
bear little resemblance to each other.

Another way to
display the behavior
of the logistic map is
with a bifurcation dia-
gram. The bifurcation
diagram of the logistic
map is shown in Fig.
3. This shows the
behavior of the system
for various values of
the parameter λ. For

many values of λ ≤ 4 and λ > 3.57, the
logistic map displays chaotic behavior.
The dots represent points which have
been visited during 100 iterations of the
logistic map for a given initial condition.
Regions of the plot that are broadly filled
in are areas where the system behaves
chaotically. In fact, the bifurcation dia-
gram is itself a fractal.

Computing with chaos
Now that we have a definition of

chaos, and an example of a chaotic sys-
tem, how do we use this to perform
computations? The following process
describes how a chaotic element may
be used to perform a computation:

1. Initialize the state of the system
and the external inputs (define the ini-
tial conditions)

x = x 0 + X 1 + X 2 for AND, OR,
XOR, and NAND gate

x = x 0 + X for NOT gate
X 1 and X 2 define the input values to

the system that are normalized to [0,1].

2. Update the chaotic system (run
the system)

xn+1 = f (xn)

where ƒ(x) is defined as a chaotic
function.

3. Obtain the output of the system
by utilizing the threshold

Z =
{

false if f (x) ≤ x∗
true if f (x) > x∗

where Z is the logical output of the
chaotic element, and x∗ is the threshold.

Note that Z is a logical value
(true/false). The actual numerical value
of the chaotic system that corresponds
to logical true is:

δ = f (x) − x∗

This is best illustrated by an example.
The AND gate (Z =AND(X 1, X 2)) has
four possible input combinations, (0,0),
(0,δ), (δ, 0), and (δ,δ) which yield the
results 0, 0, 0, and δ respectively which
is replaced by logical true in the truth
table. In order for a chaotic element to

implement the AND gate, it must satisfy
this input output relationship.

Thus, for the first combination, $$
(false,false) → false, the system is thus
initialized: x = x 0 + 0 + 0. We require
that the output of the system be zero
(i.e. Z = false). To accomplish this, we
require f (x 0) ≤ x∗ in step 3.

For the second and third combination
of inputs, either X 1 or X 2 is 0 (logical
false) while the other value is δ.
Therefore, the initial value of the system
is x 0 + δ. Since the output value of the
system is true, we require
f (x 0 + δ) ≤ x∗For the final input com-
bination, both X 1 and X 2 are δ .
Therefore, the initial value of x is x + 2δ.
We must then have f (x 0 + 2δ) > x∗
and also δ = f (x + 2δ) − x∗ . We can
combine these two requirements to
obtain f (x 0 + 2δ) − x∗ = δ .

Now we know the conditions that
must be satisfied simultaneously for a
given chaotic element to implement the
AND gate:

1. f (x 0) ≤ x∗
1. f (x 0 + δ) ≤ x∗
3. f (x 0 + 2δ) − x∗ = δ .
Similar constraints can be found for

other logical operations such as NAND,
OR and XOR. In addition, if the value
of δ is made to be a common positive
constant between these logical opera-
tions, the output from one gate can be
inputted directly into another. This
brings about the possibility that we
could couple such elements together to
perform useful computations.

Using the logistic map as our chaotic
element, by for example selecting
x 0 = 0 and x∗ = 3/4 , the conditions
presented would be:

1. f (x 0) = f (0) = 0 = 3/4 = x∗
2. f (x 0 + δ) = f (1/4) = 3/4x∗
3. f (x 0 + 2δ) = f (1/2) − 3/4

= 1 − 3/4 = 1/4 = δ

The parameter values for implement-
ing other logical gates using the logistic
maps are shown in the Operations
table. Thus by simply changing the
threshold value of a chaotic element, it
can be made to behave as a logical
gate. Of course, we are not limited to
using the logistic map. Any chaotic sys-
tem can be substituted such as the
Lorenz, Duffing, or Rössler equations.

The advantages
Eventually, fundamental physical lim-

its will be reached for squeezing even
more transistors on a chip. Either it will
be technologically impossible or prohibi-
tively expensive. Because of this eventu-

14 IEEE POTENTIALS

Fig. 1 The game of Plinko

ality, scientists and engineers have been
considering alternatives to the traditional
silicon based architectures for
microchips. This is one of the reasons
that schemes such as quantum comput-
ing, DNA computing and, now, chaos
computing are being investigated.

But why would computing with
chaotic elements be any more advanta-
geous than using traditional silicon-
based Boolean gates? The key lies in the
way chaotic elements are made to
behave like logic gates. By changing the
threshold value, a given chaotic element
can act like a different logic element. A
completely different circuit could be
implemented on the same hardware.
But how is this different from standard
field programmable gate arrays (FPGAs)?
The difference is that the configuration
of chaotic elements can be changed
simply by changing the threshold.

In practice, this could be accom-
plished extremely fast, so fast in fact that
it may be possible to completely change
the function of a given circuit with each
tick of the Central Processing Unit’s
(CPUs) clock. The idea is to try and
exploit the complicated inherent dynam-
ics of chaotic systems for computation
instead of trying to eliminate them. This
could allow computations significantly
faster than conventional logical circuits.

In addition, many current devices
and systems display chaotic properties.
Examples of such systems are lasers,
electrical circuits and neurons in the
brain. Thus, a wide variety of candi-
dates exist for use as chaotic elements
in a chaos computing scheme. In fact,
rudimentary chaos computers have
been constructed using resistors and

capacitors, a pair of leech neurons
placed on a microchip, and lasers.

In the specific case of the neurons,
they were extracted from leeches,
placed in a Petri dish and allowed to
form synapses of their own accord and
connected through micro-electrodes to a
computer. By stimulating the neurons
with specific minute electrical inputs
and recording the responses, it was pos-
sible to get the neurons to perform rudi-
mentary calculations such as the addi-
tion of two numbers. In this way, by
exploiting the inherent chaos in such
devices, we may be able to obtain com-
putations “for free” simply by coupling
them together and applying a threshold.

The chaos computing architecture
can also easily be parallelized either by
executing many “processors” in parallel,
or by utilizing the high dimensionality
(number of variables) in some chaotic
systems. By simply using a device with
higher dimensions of chaos, the ideas
presented on the logistic map can be
extended so as to perform computations
in the separate dimensions. (The logistic
map has one dimension but other
chaotic systems have many more.)

Since research in chaos computing is
only in its infancy it is as yet not appro-
priate to debate the optimality of comput-
ing using chaos. However, unlike other
alternative computing paradigms such as
DNA computing and quantum computing
which are designed to handle specific

problem instances, chaos computing pre-
sents a framework which one day might
be appropriate for a general purpose
machine. Current work in this area has
been focused on increasing the speed of
such computations which depend on the
particular updating of the chaotic system
used and the quick calculation and set-
ting of the aforementioned thresholds.

Read more about it
• Sinha, S., Munakata, T. and Ditto,

W.L. (2002) Parallel computing with
extended dynamical systems. Physical
Review E, Vol. 65, 036214

• Munakata, T., Sinha, S., and Ditto,
W.L. (2002) Chaos Computing:
Implementation of Fundamental Logical
Gates by Chaotic Elements. IEEE
Transactions on Circuits and Systems-I:
Fundamental Theory and Applications,
Vol. 49(11), 1629-1633

• Strogatz, S. H. (1994) Nonlinear
dynamics and chaos: With applications to
physics, biology, chemistry, and engineer-
ing. Reading, MA: Perseus Books,
Cambridge MA

About the author
Dwight Kuo obtained a Bachelor’s of

Applied Science in Systems Design
Engineering at the University of
Waterloo and is currently pursuing post-
graduate studies in Computational
Sciences at Memorial University of
Newfoundland.

APRIL/MAY 2005 15

Fig. 2 Sensitivity to initial conditions in the logistic map

x(0)=0.60000000
x(0)=0.60000001
x(0)=0.59999999

Iterations of the Logistic Map for Different Initial Conditions
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25 30 35 40 45 50

P
op

ul
at

io
n

S
iz

e
(x

)

of Iterations

Fig. 3 Bifurcation diagram for the logistic map

P
op

ul
at

io
n

S
iz

e
(x

)

0.8

0.9

1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
42.6 2.8 3 3.2 3.4 3.6 3.8

Parameter (λ)

Bifurcation Diagram of the Logistic Map

Table 2
Operation AND OR NAND NOT XOR

x0 0 1/8 3/8 _ 1/4

x* 3/4 11/16 11/16 _ 3/4

