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W
e are witnessing phenomenal
increases in the use of images
in many different applications.
This is mainly due to: 1) tech-

nological advances impacting several
image operations; 2) the availability of
sophisticated software tools for the
manipulation and management, and 3)
the World Wide Web (WWW) provid-
ing easy access to a wide range of users.
Typical applications using huge
amounts of images are medical imaging,
remote sensing, entertainment, digital
libraries, distance learning and training
and multimedia.

Digital images require huge
amounts of space for storage and large
bandwidths for transmission. For
example, a single 640 × 480 pixel color
image using 24 bits/pixel requires close
to one megabyte of space. Despite the
technological advances in storage and
transmission, the demands placed on
the storage capacities and on the band-
width of communication exceed the
availability. Image compression has
proved to be a viable technique as one
solution response.

Digital images generally contain sig-
nificant amounts of spatial and spectral
redundancy. Spatial redundancy is due
to the correlation between neighboring
pixel values, and spectral redundancy is
due to the correlation between different
color planes. Image compression (cod-
ing) techniques reduce the number of
bits required to represent an image by
taking advantage of these redundancies.
An inverse process called decompres-
sion (decoding) is applied to the com-
pressed data to get the reconstructed
image. The objective of compression is
to reduce the number of bits as much as
possible, while keeping the resolution
and the visual quality of the reconstruct-
ed image as close to the original image
as possible.

This article gives an overview of the
major image compression techniques.
The decoding steps for most of the cod-
ing schemes are quite intuitive and are
usually the reverse of the encoding steps.
The reader is referred to the “Read more
about it” for the details. In this article,
the terms compression and coding are
used synonymously.

Basics of image

representation

An image is essentially a 2-D signal
processed by the Human Visual System.
The signals representing images are usu-

ally in analog form. However, for pro-
cessing, storage and transmission by
computer applications, they are convert-
ed from analog to digital form. For dis-
play and presentation, however, they
usually need to be in analog form.

In this article, the term “image”
refers to “digital image.” A digital
image is basically a 2-dimensional array
of pixels (picture elements). An image
whose pixels have one of only two
intensity levels (black and white) is
called a bi-tonal (or bi-level) image.
Printed text on paper is a common
example of this class of images.

In a continuous-tone image, the
pixels have a range of values. For
example, in a typical gray-scale
image, the pixels could have val-
ues in the range [0 - 255], repre-
senting different gray levels.

In a typical color image
used for display, each pixel
has three color components
(R, G, B) corresponding to
the three primary colors,
red, green and blue. Each
pixel of a typical color
image to be transmitted has
three components (Y, I, Q),
where Y is the luminance
(brightness) component and
I and Q are chrominance
(color) components. Each
component of (R, G, B) or
(Y, I, Q) requires 8
bits/pixel. Thus, color
images (usually) require 24
bits/pixel. The number of
pixels in each dimension in
an image defines the
image’s resolution—more
pixels mean more details are
seen in the image.

The taxonomy
The image compression techniques

are broadly classified as either lossless or
lossy, depending, respectively, on
whether or not an exact replica of the
original image could be reconstructed
using the compressed image. Lossless
compression is also referred to as
entropy coding. In addition to using the
spatial and spectral redundancies, lossy
techniques also take advantage of the
way people see to discard data that are
perceptually insignificant.

Lossy schemes provide much higher
compression ratios than lossless
schemes. Lossless compression is used
only for a few applications with stringent
requirements such as medical imaging.

Lossy schemes are widely used since the
quality of the reconstructed images is
adequate for most applications. A taxon-
omy of image compression techniques is
given in Fig. 1.

Practical compression systems and
standards use hybrid coding. This is a
combination of several basic lossy
coding techniques. They include:
a) transform coding and predic-
tive coding, b) subband
coding and transform
coding and c) predic-
tive coding and vec-
tor quantization. In
addition, the output

of the
lossy cod-
ing scheme is
further com-
pressed using a
lossless coding scheme
such as Huffman or
Arithmetic coding.

Lossless image

compression

In lossless compression techniques,
the original image can be perfectly recov-
ered from the compressed (encoded)
image. These are also called noiseless
[since they do not add noise to the signal
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(image)], or entropy coding (since they
use statistical/decomposition techniques
to eliminate/minimize redundancy).

Run length encoding. This technique
replaces sequences of identical symbols
(pixels), called runs by shorter symbols.
This technique is usually used as a post-
processing step after applying a lossy
technique to the image and obtaining a
set of data values that are suitably re-
ordered to get long runs of similar values.

Huffman coding. This is a general
technique for coding symbols based on
their statistical occurrence frequencies
(probabilities). The pixels in the image
are treated as symbols. The symbols that
occur more frequently are assigned a
smaller number of bits, while the sym-
bols that occur less frequently are
assigned a relatively larger number of
bits. Huffman code is a prefix code. This
means that the (binary) code of any sym-
bol is not the prefix of the code of any
other symbol. Most image coding stan-
dards use lossy techniques in the earlier
stages of compression and use Huffman
coding as the final step.

Arithmetic coding. Like Huffman
coding, this is a statistical technique.
However, instead of coding each symbol
separately, the whole data sequence is
coded with a single code. Thus, the cor-
relation between neighboring pixels is
exploited. Arithmetic coding is based on
the following principle. Given that a) the
symbol alphabet is finite; b) all possible
symbol sequences of a given length are
finite; c) all possible sequences are
countably infinite; d) the number of real
numbers in the interval [0, 1] is uncount-
ably infinite, we can assign a unique
subinterval for any given input
(sequence of symbols). This is the code
(tag) for the input.

The cumulative density function
(CDF) of the symbol probabilities is used
to partition the interval (usually [0, 1])
into subintervals and map the sequence
of symbols to a unique subinterval. This
scheme is well suited to small set of
symbols with highly skewed probabili-
ties of occurrence. Arithmetic coding is
used as the final step in several image
coding applications and standards.

Lempel-Ziv coding. This is based on

storing frequently occurring sequences
of symbols (pixels) in a dictionary
(table). Such frequently occurring
sequences in the original data (image)
are represented by just their indices into
the dictionary. This has been used in
TIFF (Tagged Image File Format) and
GIF (Graphical Interchange Format) file
formats. This scheme has also been used
for compress-
ing half-tone
images. (Half-
tone images
are binary
images that
provide the
visual effect of continuous-tone gray
images by using variations of the density
of black dots in the images).

Predictive coding. This is based on
the assumption that the pixels in images
conform to the autoregressive model,
where each pixel is a linear combination
of its immediate neighbors. The lossless
differential pulse code modulation
(DPCM) technique is the most common
type of lossless predictive coding. In the
lossless DPCM scheme, each pixel
value (except at the boundaries) of the
original image is first predicted based
on its neighbors to get a predicted
image. Then the difference between the
actual and the predicted pixel values is
computed to get the differential or
residual image. The residual image will
have a much less dynamic range of
pixel values. This image is then effi-
ciently encoded using Huffman coding.

Bit-plane encoding. In this scheme,
the binary representations of the values
of the pixels in the image are considered.
The corresponding bits in each of the
positions in the binary representation
form a binary image of the same dimen-
sions as the original image. This is called
a bit plane. Each of the bit planes can
then be efficiently coded using a lossless
technique.

The underlying principle is that (in
most images) the neighboring pixels are
correlated. That means the values of the
neighboring pixels differ by small
amounts. They can be captured by the
representation of pixel values in gray
code so that the values of neighboring

bits in the bit planes are similar. This
makes the individual bit planes
amenable for good compression.

Lossy image compression
All known lossy image compres-

sion techniques take advantage of how
we see things. The human visual sys-

tem is more sensitive to the lower fre-
quencies than to the higher frequencies
in the visual spectrum. Thus, we derive
the (spatial) frequencies of an image and
suitably allocate more bits for those fre-
quency components that have more visu-
al impact. We then allocate less bits, or
even discard, the insignificant compo-
nents. The resulting image is represented

with fewer bits and reconstructed with a
better closeness to the original.

To achieve this goal, one of the fol-
lowing operations is generally per-
formed: 1) a predicted image is formed.
Its pixels are predicted based on the val-
ues of neighboring pixel of the original
image, and then a differential (residual)
image is derived (it is the difference
between the original and the predicted
image.); 2) a transformed image is
derived by applying a transform to the
original image. This essentially trans-
forms the pixel values to the frequency
domain; 3) the original image is decom-
posed into different components (in the
frequency domain).

In 1), the dynamic range of the signal
values is reduced; in 2) and 3) a repre-
sentation that is more efficiently coded is
derived. In each case, there exits an
inverse operation, which yields the origi-
nal image (lossless), when it is applied to
the new representation.

However, to achieve compression the
“redundant” information the human eye
considers perceptually insignificant is
discarded. This is done using quantiza-
tion. The new representation has desir-
able properties. The quantized data has
much less variance than the original.
Entropy coding is then applied to achieve
further compression.

The outline of lossy compression
techniques is shown in Fig. 2. Please
note that the prediction-transformation-
decomposition process is completely
reversible. The quantization process (see
box) results in loss of information. The
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entropy coding after the quantization
step, however, is lossless. The decoding
is a similar but reverse process: a)
entropy decoding is applied to the com-
pressed data to get the quantized data, b)
dequantization is applied to it, and then
c) the inverse transformation to get the
reconstructed image. (This is an approxi-
mation of the original image.)

Major performance considerations of
a lossy compression scheme are: a) the
compression ratio (CR), b) the signal-to-
noise ratio (SNR) of the reconstructed
image with respect to the original, and c)
the speed of encoding and decoding. The
compression ratio is given by:

The PSNR is given by:
PSNR = 20 log10(peak data value/RMSE)

where RMSE is the root mean square
error, given by:

where N × M is the image size, Ii,j and Ii,j
are values of pixels at (i,j) in the original
and the reconstructed (compressed-
decompressed) images, respectively.

Predictive coding. In most images,
there is a high correlation among neigh-
boring pixels. This fact is used in pre-
dictive coding. Differential Pulse Code
Modulation (DPCM) is a popular pre-
dictive coding technique. The lossy
DPCM is very similar to the lossless
version. The major difference is that in
lossy DPCM, the pixels are predicted
based on the “reconstructed values” of
certain neighboring pixels. The differ-
ence between the predicted value and
the actual value of the pixels is the dif-
ferential (residual) image. It is much
less correlated than the original image.
The differential image is then quantized
and encoded.

The schematic for lossy DPCM coder
is shown in Fig. 3, along with a third-
order predictor. (In a third-order predic-
tor, three previous values are used to pre-
dict each pixel.) Note that the decoder
has access only to the reconstructed val-
ues of (previous) pixels while forming
predictions of pixels. Since the quantiza-
tion of the differential image introduces
error, the reconstructed values generally
differ from the original values. To ensure
identical predictions at both the encoder
and decoder, the encoder also uses the
“reconstructed pixel values” in its predic-
tion. This is done by using the quantizer
within the prediction loop. (In essence,

the decoder is built into the encoder).
The design of a DPCM coder

involves optimizing the predictor and the
quantizer. The inclusion of the quantizer
in the prediction loop results in a com-
plex dependency between the prediction
error and the quantization error.
However, the predictor and quantizer are
usually optimized separately, since a
joint optimization is usually complex.
[Under mean-squared error (MSE) opti-
mization criterion, independent optimiza-
tions of the predictor and quantizer are
good approximations to the jointly opti-
mized solution.]

Block truncation coding. In this
scheme, the image is divided into non-
overlapping blocks of pixels. For each
block, threshold and reconstruction val-
ues are determined. The threshold is
usually the mean of the pixel values in
the block. Then a bitmap of the block is
derived by replacing all pixels whose
values are greater than or equal (less
than) to the threshold by a 1 (0). Then
for each segment (group of 1s and 0s) in
the bitmap, the reconstruction value is
determined. This is the average of the
values of the corresponding pixels in the
original block. The broad outline of
block truncation coding of images is
shown in Fig. 4.

Transform coding. In this coding
scheme, transforms such as DFT
(Discrete Fourier Transform) and DCT
(Discrete Cosine Transform) are used to
change the pixels in the original image
into frequency domain coefficients
(called transform coefficients).

These coefficients have several desir-
able properties. One is the energy com-
paction property that results in most of

the energy of the original data being con-
centrated in only a few of the significant
transform coefficients. This is the basis
of achieving the compression. Only
those few significant coefficients are
selected and the remaining are discarded.
The selected coefficients are considered
for further quantization and entropy
encoding. DCT coding has been the most
common approach to transform coding.
It is also adopted in the JPEG image
compression standard. The broad outline
of transform coding of images is shown
in Fig. 5.

Subband coding. In this scheme, the
image is analyzed to produce the compo-
nents containing frequencies in well-
defined bands, the subbands.
Subsequently, quantization and coding is
applied to each of the bands. The advan-
tage of this scheme is that the quantiza-
tion and coding well suited for each of
the subbands can be designed separately.
The broad outline of transform coding of
images is shown in Fig. 6.

Vector quantization. The basic idea in
this technique is to develop a dictionary
of fixed-size vectors, called code vectors.
A vector is usually a block of pixel val-
ues. A given image is then partitioned
into non-overlapping blocks (vectors)
called image vectors. Then for each

image vector, the closest matching vector
in the dictionary is determined and its
index in the dictionary is used as the
encoding of the original image vector.
Thus, each image is represented by a
sequence of indices that can be further
entropy coded. The outline of the scheme
is shown in Fig. 7.

Fractal coding. The essential idea
here is to decompose the image into seg-
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ments by using standard image process-
ing techniques such as color separation,
edge detection, and spectrum and texture
analysis. Then each segment is looked
up in a library of fractals. The library
actually contains codes called iterated
function system (IFS) codes, which are
compact sets of numbers. Using a sys-
tematic procedure, a set of codes for a
given image are determined, such that
when the IFS codes are applied to a suit-
able set of image blocks yield an image
that is a very close approximation of the
original. This scheme is highly effective
for compressing images that have good
regularity and self-similarity. The broad
outline of fractal coding of images is
shown in Fig. 8.

Image compression
standards

Image compression standards have
been developed to facilitate the interop-
erability of compression and decompres-
sion of schemes across several hardware
platforms, operating systems and appli-
cations. Most standards are hybrid sys-
tems making use of a few of the basic
techniques already mentioned. The major
image compression standards are Group
3, Group 4, and JBIG (Joint Bi-level
Image Group) for bi-tonal images, and
JPEG (Joint Photographic Experts
Group) for continuous-tone images. The
most common application that uses com-
pression of bi-tonal images is digital fac-
simile (FAX).

Group 3 Fax
The image is scanned left-to-right and

top-to-bottom and the runs of each
color—black and white—are deter-
mined. A run refers to a sequence of con-

secutive pixels of the same value. The
first run on each line is assumed to be
white. Each line is considered to be made
up of 1728 pixels. Thus each line is
reduced to alternating runs of white and
black pixels. The runs are then encoded.
Each end of a line is marked with an
EOL. Page breaks are denoted with two
successive EOLs.

Two types of encodings are used for
run lengths—terminating codes and
make-up codes. Terminating codes are

used for runs with lengths less than 64.
For runs with length greater than 64, a
make-up code is followed by a terminat-
ing code. The make-up codes represent
run lengths of multiples of 64
(64,128,192,...). Tables specifying the
terminating codes and make-up codes for
the white and black runs are provided by
the standard.

Group 4 Fax
The Group 4 (G4) fax standard is a

superset of the Group 3 standard and is
backwards compatible with it. The G4
standard is said to use a 2-dimensional
coding scheme. This is because it uses
spatial redundancy in the vertical direction
also by making use of the previous line as
a reference while coding the current line.

Most runs on a line usually lie nearly
directly below a run of the same color in
the previous line. The differences in the
run boundaries between successive lines
are coded. The cases where a line may
have fewer or more lines than the refer-
ence lines are suitably handled. The
Group 4 standard generally provides
more efficient compression than Group 3.

JBIG
The Joint Bi-Level Image Group

(JBIG) standard was developed by the

Fig. 6  Outline of subband coding of images
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Scalar quantization
Quantization is a process (function) that maps a very large (possibly infinite)

set of values to a much smaller (finite) set of values. In scalar quantization, the
values that are mapped are scalars (numbers). In the context of image coding
and decoding, the range of pixel values say N, is divided into L non-overlapping
intervals, also known as quantization levels.

Each interval i is defined by its decision boundaries (di, di+1). During encod-
ing, the quantizer maps a given pixel value x to a quantization level
l: l = Q(x), such that dl ≤ x < d l+1. Each quantization level i has its associated

reconstruction level ri.
During decoding, the (de)quantizer maps a given level l to a reconstruction

pixel value rl = x, x = Q-1 (l). This introduces noise or error in the image (signal)
called quantization error. This is the root mean square value of the x - x.

The essential difference among various types of quantizers is in terms of how
the forward and inverse mappings are defined. These definitions are dictated
according to the number of quantization levels, the decision boundaries and
the reconstruction values. The basic design objective of a quantizer is to minimize
the quantization error, while being computationally simple. The quantizer has a
large impact on the compression ratio and image quality of a lossy scheme.

There are two broad types of scalar quantizers—uniform and non-uniform. In
a uniform quantizer of k levels, the range of values is divided into k equally
spaced intervals. The reconstruction values are the mid-points of the intervals.
This is simple to implement but it does not attempt to minimize the quantization
error. A quantizer that takes into account the probability distributions of the pix-
els in images performs better. Such a quantizer is a non-uniform quantizer,
where the intervals are non-uniform. The most common non-uniform quantizer
is the Lloyd-Max quantizer. For it, the decision boundaries and the reconstruc-
tion levels are determined using the probability model of the image pixels such
that the quantization error is minimized.—SRS

ˆ
ˆ  ˆ
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International Standards Organization
(ISO) for the lossless compression of
bi-level images. Typically, these are
printed pages of text whose corre-
sponding images contain either black
or white pixels.

JBIG uses a combination of bit-plane
encoding and arithmetic coding. The
adaptivity of the arithmetic coder to the
statistics of the image results in the
improved performance of JBIG. JBIG
also incorporates a progressive transmis-
sion mode. This can be used for the
compression of gray-scale and color
images. Each bit plane of the image is
treated as a bi-level image. This provides
lossless compression and enables pro-
gressive buildup.

JPEG
The Joint Photographic Experts

Group (JPEG) is a standard developed
for compressing continuous-tone still
images. JPEG has been widely accepted
for still image compression throughout
the industry. JPEG can be used on both
gray-scale and color images. JPEG con-
sists of four modes: lossless, sequential,
progressive and hierarchical. The first
one is a lossless mode and the other
three are lossy modes. The sequential
mode, also called baseline JPEG, is the
most commonly used scheme.

The lossless JPEG mode uses linear
predictive schemes. It provides seven
different predictors. Pixel values (except
those at the boundaries) are predicted
based on neighboring pixels. The resid-
ual, which is the difference between the
original and the predicted image, is
encoded using entropy (lossless) coding
such as Huffman or arithmetic coding.

In the baseline JPEG scheme, the
image is divided into non-overlapping
blocks of 8 x 8 pixels. DCT is applied to
each block to obtain the transform coef-
ficients. The coefficients are then quan-
tized using a table specified by the stan-
dard, which contains the quantizer step
sizes. The quantized coefficients are then
ordered using a zigzag ordering. The
ordered quantized values are then encod-
ed using Huffman coding tables, speci-
fied by the standard.

Progressive JPEG compression is
similar to the sequential (baseline)
JPEG scheme in the formation of DCT
coefficients and quantization. The key
difference is that each coefficient
(image component) is coded in multi-
ple scans instead of a single scan. Each
successive scan refines the image until
the quality determined the quantization

tables are reached.
Hierarchical JPEG compression

offers a progressive representation of a
decoded image similar to progressive
JPEG, but also provides encoded images
at multiple resolutions. Hierarchical
JPEG creates a set of compressed
images beginning with small images,
and continuing with images with
increased resolutions. This process is
also called pyramidal coding.
Hierarchical JPEG mode requires signif-
icantly more storage space, but the
encoded image is immediately available
at different resolutions.

Summary
The generation and use of digital

images is expected to continue at an ever
faster pace in the coming years. The
huge size requirements of images cou-
pled with the explosive increases are
straining the storage capacities and trans-
mission bandwidths. Compression is a
viable way to overcome these bottle-
necks.

All the techniques described here are
considered “first-gen-
eration” techniques.
The second generation
of compression tech-
n i q u e s — a l r e a d y
underway—use a
mode-based approach.
The images are ana-
lyzed using image
processing and pattern
recognition techniques
to derive high-level
objects. The images

a r e
then described with well-defined image
models. They are expressible using
much less information than the original
data. The challenge is in devising good
models that achieve good compression
without loss of fidelity.
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Fig. 8  Outline of fractal coding of images

Fig. 7  Outline of vector quantization of images
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