A Model of Saliency-Based Visual Attention for Rapid Scene Analysis

Itti, L., Koch, C., Niebur, E.

Presented by Russell Reinhart
CS 674, Fall 2018
Presentation Overview

- Saliency concept and motivation
- Gaussian pyramid
- Salient feature extraction
- Improvements
Saliency

- Biology: humans (aka animals) need to focus on stimuli relevant to their survival
- Saliency ~ the most interesting stimulus
 - music in subway station
 - chocolate chip cookie smell
 - painting on blank wall
- Saliency in Image processing/computer vision:
 - Portion of image most interesting / important for humans

Saliency Map = grayscale image where higher intensities correspond to regions of interest for humans

Original image (top) and saliency map (bottom) [2].
Algorithm Overview

1. Calculate **Gaussian pyramids** for:
 a. Intensity
 b. Color
 c. Orientation

2. Combine images from different levels of the Gaussian pyramids to create **conspicuity maps**

3. Merge conspicuity maps to create **saliency map**

4. Remove most salient region, identify other most salient region,

5. Return to step 4
Gaussian Pyramid

Idea:

1. Apply Gaussian smoothing to image A, gives image A'
2. Create a new image A'' by downsampling A' by a factor of 2
3. Go to step 1, starting with A''
Combine Intensity Images from Different Levels of Pyramid

- **Operations:**
 - Cross-scale subtraction/addition:
 \[
 I(c, s) = |I(c) ⊕ I(s)|
 \]
 - Normalization:
 \[
 \mathcal{N}(I) = (M - \bar{m})^2 I
 \]
 \[
 M = \text{global max of } I, \quad \bar{m} = \text{average local maxima of } I
 \]

- **Intensity Conspicuity Map:**
 \[
 \bar{I} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(I(c, s))
 \]
 Upsample to allow addition and subtraction of different scale images
Cross-Scale subtraction example:

\[\mathcal{I}(c, s) = |I(4) \odot I(1)| \]
Repeat Similar Procedure for Color Channels

- Image has RGB channels, create a Yellow channel

\[Y = \frac{R + G}{2} - \frac{|R - G|}{2} - B \]

- Gaussian pyramid for each color channel

\[R(\sigma), G(\sigma), B(\sigma) \text{ and } Y(\sigma) \quad \sigma \in [0..8] \]
Repeat Similar Procedure for Color Channels

- Compute “color-opponents”

\[
\mathcal{RG}(c, s) = |(R(c) - G(c)) \odot (G(s) - R(s))|
\]

\[
\mathcal{BY}(c, s) = |(B(c) - Y(c)) \odot (Y(s) - B(s))|
\]

- Compute conspicuity map for “color-opponent” channels

\[
\overline{C} = \bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \left[N(\mathcal{RG}(c, s)) + N(\mathcal{BY}(c, s)) \right]
\]

ALGORITHM SUMMARY

1) Difference of color channels at scale \(c \)
2) Difference of color channels at scale \(s \)
3) Upsample to perform subtraction between different scales
4) Normalize
5) Sum to create color conspicuity map
Repeat Similar Procedure for Orientation

- Compute Gabor Pyramid
 - Gaussian pyramid with additional complex exponential term in low pass filter [4]
 \[
 \mathcal{O}(\sigma, \theta) = \text{Gaussian LPF} \left(e^{i\theta(x+y)} \cdot I(x, y) \right)
 \]
 \[
 \theta = \{0, 45, 90, 135\}, \quad \sigma = [0, 1, \ldots, 8]
 \]

- Combine different layers from pyramid to create conspicuity map
 \[
 \mathcal{O}(c, s, \theta) = |\mathcal{O}(c, \theta) \ominus \mathcal{O}(s, \theta)|
 \]
 \[
 \mathcal{\overline{O}} = \sum_{\theta \in \{0^\circ, 45^\circ, 90^\circ, 135^\circ\}} \mathcal{N} \left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{N}(\mathcal{O}(c, s, \theta)) \right)
 \]
Saliency Map

- Normalize and add the conspicuity maps to get the saliency map:

\[
S = \frac{1}{3} \left(\mathcal{N}(\bar{I}) + \mathcal{N}(\bar{C}) + \mathcal{N}(\bar{O}) \right)
\]

![Saliency Map Diagram](image-url)
Algorithm Recap:

1. Calculate **Gaussian pyramids** for:
 a. Intensity
 b. Color
 c. Orientation

2. Combine images from different levels of the Gaussian pyramids to create **conspicuity maps**

3. Merge conspicuity maps to create **saliency map**

4. Remove most salient region, identify other most salient region,

5. Return to step 4
Algorithm Example:

Input image

Linear filtering

- Colors
- Intensity
- Orientations

Center-surround differences and normalization

- Feature maps (12 maps)
- Intensity maps (6 maps)
- Orientation maps (24 maps)

Across-scale combinations and normalization

- Conspicuity maps

Linear combinations

Saliency map

Winner-take-all

Inhibition of return

Attended location

Input image

Output (FOA)

92 ms

145 ms
Example: noise tolerance
Improvement: **Variable weighting** for Intensity, Orientation, Color

Three Components:

- **Salient point set determined by a threshold**
- **Spatial compactness**
 - Require salient region of conspicuity map to be enclosable in polygon
 - Smaller area polygon -> more salient
- **Saliency density**
 - Want high variability in salient regions

Example: Only color map used in saliency map
Improvement: *Variable weighting* for Intensity, Orientation, Color

Better defined salient regions are obtained by variable weighting of color, intensity, and orientation maps
Direct comparison: **Variable vs. Constant** weighting of feature maps

Fig. 4. (a) Original Image; (b) Saliency Map using Itti et al’s model [4]; (c) Cropped Image using Itti et al’s model [4]; (d) Saliency Map using CSI; (e) Cropped Image using CSI.
References

Bonus: Saliency-Aware Autonomous Exploration… here at UNR

https://www.youtube.com/watch?v=-ReBwdzJoIM

- Autonomous Robots Lab (Dr. Alexis)
- This work done by PhD. Candidate Tung Dang