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hen a person becomes
so involved in details
that they begin to lose
sight of the big pic-
ture, it is said “They
can’t see the forest for

the trees!” This saying illustrates per-
spective. Far from the forest, it is diffi-
cult to discern the individual trees. Close
up or actually in the forest, it is easy to
see the individual trees, but now the total
forest cannot be seen. The same can be
true in digital signal processing. When
we try to analyze the small details (high
frequency components) of the signal, we
can lose sight of the big picture (low fre-
quency components). However, if we try
to stand back from the signal such that
we can see the big picture, the details
often become too blurred to be useful.
The wavelet transform is a relatively
new signal processing tool that allows us
to efficiently analyze the small details
and the big picture.

What are wavelets?
When someone refers to wavelets,

they could be talking about functions,
filters, or transforms. A wavelet trans-
form is similar to a Fourier transform.
With a Fourier transform, a function (or
signal) is decomposed into a weighted
sum of sinusoids. With a wavelet trans-
form, a function (or signal) is decom-
posed into a weighted sum of wavelet
functions. Figure 1 shows some of the
commonly used wavelet functions. The
decomposition involves many convolu-
tions (or inner products), so it can be
very expensive computationally.
However, algorithms for fast wavelet
transforms have been developed, like
those for fast Fourier transforms
(FFTs). For many of these algorithms,
filters associated with particular
wavelet functions (referred as wavelet
filters) are used. Thus, wavelet func-
tions can be used to compute wavelet
transforms, or wavelet filters can be
used to compute wavelet transforms.

The continuous wavelet transform
(CWT) is simply the correlation of a set
of wavelet functions with an input func-
tion. The set of wavelet functions is
generated from a single wavelet called
the mother wavelet. Figure 1 shows
some of the commonly used mother
wavelets. Given a real mother wavelet,
ψ(t), the set of wavelet functions is gen-
erated by scaling (dilating or compress-
ing) the mother wavelet (eq. 1),

, 1)

where a is referred to as scale. This set
of wavelet functions are referred as
wavelet basis. The CWT of an input
function, x(t), is defined as a set of cor-
relations for varying a’s (eq. 2),

Wx(a,t) = x(t) ⊗ ψa(t) = x(t)* ψa(-t) 2),
where ⊗ and * represent correlation
and convolution, respectively. Think of
convolution in terms of flip-shift-multi-
ply-and-add. Then, correlation can be
thought of as convolution without the
flip or convolution with one of the
functions flipped beforehand. It is also
useful to think of correlation in terms of
inner products. For each shift, the out-
put of the correlation is the inner prod-
uct of the wavelet and the input func-
tion. The results of the inner products

are referred to as wavelet coefficients. If
we are shifting the wavelet function,
then for each shift, b, of the correlation
the output would be (eq. 3)

Also note that not just any function can
be called a mother wavelet. It must sat-
isfy an admissibility condition. 

When dealing with Fourier trans-
forms, we often use the discrete Fourier
transform (DFT), such that discrete-

time signals may be analyzed and the
computational expense is decreased.
Similarly, discrete wavelet transforms
(DWTs) have been developed. One
type of DWT uses dyadic wavelets
(with a dyad referring to a pair, objects
that come in two’s). In this case, the set
of wavelet functions is again formed
from scaling the mother wavelet.
However, we only use scales that are
powers of two, 2-j. Also, when comput-
ing the correlations, not all shifts are
used. Only dyadic shifts are used. A
dyadic shift is a translation of the
wavelet by the amount k/2j, which is an
integer multiple of the dyadic scale.
Figure 2 shows an example of a
wavelet at various dyadic scales and
shifts.  For the example shown, at scale
a=20 there exists only one shift and
thus one inner product. Similarly at
scale a=2-3 there are 8 shifts, and thus 8
inner products are required to compute
the wavelet transform for that scale. So
for our example, 8 wavelet coefficients
are produced at scale 2-3. 

If the mother wavelet satisfies cer-
tain criteria related to multiresolution,
then the DWT can be computed even
more efficiently using a method known
as the fast wavelet transform (FWT).
Associated with the mother wavelet,
there will be a lowpass and a highpass
filter. By passing the input function (or
signal) through the filters in a repetitive
fashion, the wavelet coefficients can be
obtained. 

Figure 3 illustrates the FWT
method; the figure is generally referred
to as a dyadic filter tree. In Fig. 3, HP
refers to highpass filter; LP refers to
lowpass filter; and 2↓ refers to down-
sampling by a factor of 2 (removing
every other sample). The input signal
x(t), is fed to the initial set of high pass
and low pass filters. The output from
the high pass filter represents the
wavelet coefficients (high frequency
information) at the highest level. The
output from the low pass filter is down
sampled by a factor of 2 and again fed
to a high pass filter. The output of the
high pass filter represents detailed
information in the next level. Each level
of the filter tree corresponds to a scale.
This process is repeated. At the highest
level, the output corresponds to the
wavelet coefficients at the highest scale
and represents high frequency informa-
tion. The filter tree can be extended
until the last level produces one coeffi-
cient. The wavelet coefficient at the last
level (the output of the low pass filter)
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represents the least approximation of
the original signal. This output corre-
sponds to the wavelet coefficient at the
lowest scale, a=20.

Why wavelets?
One might ask why decompose a sig-

nal into a weighted sum of wavelets
rather than a weighted sum of sinusoids?
To understand why, we will compare
the wavelet transform to the Fourier
transform. The well-known definition of
the Fourier transform is (eq. 4)

4)

From this equation, we can see the fol-
lowing: to analyze any particular fre-
quency, x(t) is evaluated over all time
(−∞,∞). There are two immediate prob-
lems with this scenario: 1) evaluating a
signal over infinite time is typically not
practical, and 2) the signal could be
changing with time (be non-stationary).
For example, observe the original signal
in Fig. 2. The first half of the signal is
distinctly different from the second half
of the signal; the first half has higher
frequencies than the second half. If we
observed the magnitude of the Fourier
transform of this signal, we would not
be able to resolve where in time the
high frequencies occurred. These prob-
lems can be addressed by using a short-
time Fourier transform (STFT). 

Using the STFT, we analyze small
windows (or segments) of the signal.
We take the Fourier transform of a seg-
ment; then slide along to the next seg-
ment and do the same. Various types of
windows can be used: rectangular,
Bartlett (triangular), Hamming, or
Hanning, for example. This begs the
question how long or short (in time) are
the individual windows to be. This
depends on the nature of the signal
being analyzed, whether it contains
high frequencies, low frequencies, or a
combination of frequencies. High fre-
quency components take very little
time to go through a complete oscilla-
tion (T=1/ƒ), and low frequency com-
ponents take a relatively long time to
go through a complete oscillation. 

Let’s assume that the input signal
has a combination of frequencies. If a
short window is used, high frequency
components can be located (or
resolved) very well in time; however,
short duration windows are insufficient
for analyzing low frequency compo-
nents. See Fig. 4. Thus, one might con-

clude that longer windows should be
used. If a long window is used, low fre-
quency components can be analyzed;
that is, the signal can be resolved very
well in frequency. Now the high fre-
quency components can no longer be
located very well in time. We sacrificed
time resolution for frequency resolution. 

This trade-off between localization in
time and frequency is referred to as the
Heisenberg Uncertainty Principle. Simply
put, just as one cannot know the exact
momentum and location of an electron
simultaneously, one cannot know the
exact frequency and location of a signal
component simultaneously. However, one
can know the time intervals in which cer-
tain bands of frequencies exist. 

For lower frequencies, we can
choose longer time
intervals (or win-
dows). We gain
knowledge about the
frequency of the sig-
nal component, but
we lose knowledge
about the time loca-
tion of the signal
component.  For
higher frequencies,
we can choose short-
er time intervals.
We gain knowledge
about the time loca-
tion of the signal
component, but we
lose knowledge

about the frequency of the signal com-
ponent.  This varying of the time inter-
val, or window length, is exactly what
the wavelet transform accomplishes.

Referring back to Fig. 2, we can see
that when the mother wavelet is dilated
or stretched, it appears to contain low
frequencies, and its duration in time is
relatively long. However, when the
mother wavelet is compressed, it
appears to contain high frequencies, and
its duration in time is relatively short.

Recall that the CWT is computed by
correlating the scaled wavelets with the
input signal. Also recall that when two
signals are correlated with each other,
we obtain a measure of the similarity
between the two signals. Thus, when
the wavelet transform is computed at a
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scale such that the wavelet is com-
pressed, we obtain a measure of how
similar the input signal is to the high
frequency wavelet. Likewise, when the
wavelet transform is computed at a
scale such that the wavelet is dilated,
we obtain a measure of how similar the
input signal is to the low frequency
wavelet. This kind of analysis is also
referred as multiresolution analysis.

Let’s suppose that the mother
wavelet is chosen such that it is a sym-
metric finite impulse response (FIR) of
an ideal bandpass filter. Then, its
Fourier transform would be a perfect
rectangle centered about some particular
frequency. Further, the only difference

between correlation and
convolution is a flip of the
impulse response. If the
impulse response is sym-
metric, correlation is equiva-
lent to convolution. When
the wavelet is correlated
with the input signal, it is
equivalent to convolution.
The result will be a filtered
version of the input signal. 

What happens when the
wavelet is stretched to vary-
ing scales? The scaling
property of the Fourier
transform tells us that when
a signal is stretched in time
it is compressed in frequen-
cy. Thus, the varying scales
of the wavelet transform
would represent the input
signal bandpass filtered at

varying bands of frequency. 
Now consider the DWT. It analyzes

the input signal at dyadic scales using
inner products at shifts equal to the
length of the wavelet. See Fig. 2. For
the scale 20, the wavelet is stretched
such that only one inner product is
computed; thus the DWT will produce
just one coefficient at this scale. Since
the wavelet is stretched in time, it is
compressed in frequency. As a result,
the one coefficient represents a very
narrow band of frequencies. 

Figure 5 is referred to as the dyadic
tiling of the time-frequency plane. For
scale 2-1, the wavelet is compressed to
half the original length, such that two

inner products can be computed. The
DWT will produce two coefficients for
this scale. Since the wavelet is com-
pressed to half the length in time, it is
stretched to twice the length in frequency. 

From Fig. 5, we see that this process
is repeated, but how many times can it
be repeated? The answer depends on
the original sampling rate used for the
input signal. Recall from Nyquist’s
Theorem that if a sampling rate of fs is
used, the input signal will contain fre-
quency information up to ƒs/2. The rep-
etition continues until ƒs/2 is reached. 

Another way of looking at this fre-
quency division is by considering the
DFT. Figure 6 illustrates the unit circle on
the z-plane, which is where the coeffi-
cients of the DFT lie. The angle from the
positive real axis around the z-plane
denotes different frequency information.
In the unit circle, the area near the 0° rep-
resents low frequency, the area close to
90° represents mid frequency and the area
close to 180° represents high frequency. 

Let’s assume the original signal con-
tained N samples, and we computed an
N-point DFT. Then N equally spaced
points along the unit circle represent
the frequency content of the signal. The
wavelet coefficient produced at scale
a=20 represents the one point lying on
the positive real-axis, the DC compo-
nent (zero frequency component) of the
input signal (the blue band on Fig. 6). 

At scale a=2-1, the wavelet trans-
form produces two coefficients. The
first coefficient represents the frequen-
cy content residing in the green bands
on Fig. 6 for the first window (first
half) of the input signal. The second
coefficient represents the same frequen-
cy content for the second window (sec-
ond half) of the input signal. 

Likewise, at scale a=2-2 the wavelet
transform produces four coefficients.
Each represents the frequency content
within the peach-colored bands on Fig. 6,
with each corresponding to a different
time window of the input signal. This
continues until N/2 points are produced at
scale a=2-j, where j=log2(N). The wavelet
coefficients contained in the yellow band
on Fig. 6 represents the high frequency
information of the input signal.

Figure 7 illustrates the frequency
bands without consideration of the time
duration needed for each band. We can
see that the wavelets correspond to
ideal bandpass filters. However, Gibb’s
phenomenon tells us that with FIR fil-
ters, ideal bandpass filters cannot be
achieved. So practical filters must be
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used, such as those illustrated in Fig. 7. 
With the use of non-ideal filters, the

wavelet coefficients no longer exactly
represent the frequency content of the
ideal bands. In fact, for some applica-
tions the goal is not to use wavelets that
subdivide the frequency content into
ideal bands. The goal may be to select a
wavelet that represents a pattern for
which someone is searching. 

The wavelet transform correlates the
scaled mother wavelet with the input
signal. Thus, the wavelet transform can
be used to search for similarities
between a “pattern template” at varying
scales and the input signal. If the pat-
tern template does not closely represent
a bandpass filter, the wavelet coeffi-
cients can be drastically different from
the Fourier coefficients. 

Applications
Wavelet analysis is a relatively new

technique in signal processing.
However, it has proven to be a power-
ful technique and has been extensively
applied to diverse fields of engineering,
such as medical imaging, aerial and
satellite remote sensing, industrial
robotics, seismology, and so on. The
applications of wavelets in signal pro-
cessing have included compression,
denoising, and pattern recognition. 

Wavelets have proven to be well
suited for these applications for various
reasons. One reason is its division of
frequency into octaves. Natural signals,
such as visual images and speech and
audio signals, are often well suited for
this type of analysis. In fact, experi-
mental research has indicated that the
human visual cortex uses a multifre-
quency channel decomposition when
processing images. Some experiments
have shown that the widths of the fre-
quency channels vary on an octave
scale. This may provide some insight
into why wavelet processed images can
appear more pleasing visually as com-
pared to other processing schemes.
Similarly, consider how audio signals
are typically organized according to
octaves. With the use of wavelets, fre-
quency octaves, which contain more
(or less) useful information, can be sep-
arated and processed accordingly.

Conclusion
This has been an extremely brief

introduction to wavelets and their use in
signal processing. Wavelets have been
shown to be very useful for signal com-
pression, denoising and pattern recogni-

tion. This should not be
surprising since they pro-
vide an efficient method
for analyzing non-station-
ary signals at varying fre-
quencies. With wavelets,
we can analyze low fre-
quencies (the forest) at
very fine frequency resolu-
tion, and we can analyze
high frequencies (the trees)
at a very fine time resolu-
tion. Indeed, wavelets do
allow us to see the forest
and the trees!
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