1. [20 pts] For each of the following statements, indicate whether it is true or false. To get credit, you must give brief reasons for your answer.

T F InsertionSort’s running time is $\Theta(n^2)$

T F Both MergeSort and QuickSort have $\Theta(n\log n)$ running time.

T F The Master method can be used to solve the recurrence $T(n) = \sqrt{n}T(n/2) + n$, but not the recurrence $T(n) = 2T(n/\sqrt{n}) + n$.

T F Suppose that you write a program that frequently sorts arrays whose size varies between 5 and 10. You should do this using MergeSort instead of InsertionSort, since the running time of MergeSort is $\Theta(n\log n)$, while that of InsertionSort is $O(n^2)$

T F QuickSort’s running time depends on whether the partitioning is balanced or unbalanced. If the partitioning is balanced, running time is $\Theta(n\log n)$, however, when the partitioning is unbalanced, the running time is $\Theta(n^2)$.
2. [20 pts] Prove the following:

(a) $2^{n-3} = \Omega(2^{n+1})$

(b) $n \log n = O(n^{3/2})$
3. [20 pts] Solve the following recurrences:

(a) $T(n) = 7T(n/3) + n^2$

(b) $T(n) = 2T(n - 2) + 2$
4. [20 pts] Consider sorting n numbers in array A by first finding the smallest element of A and putting it first. Then find the second smallest of A and put it second. Continue in this manner for the n elements of A. This algorithm is known as *SELECTION-SORT*; the pseudocode is shown below.

```
Alg.: SELECTION-SORT(A)
    n <-- length[A]
    for j <-- 1 to n - 1
        do smallest <-- j
            for i <-- j + 1 to n
                    then smallest <-- i
```

(a) [7.5 pts] How many key comparisons does SELECTION-SORT do? Justify your answer.

(b) [7.5 pts] What arrangement of keys is a worst case for SELECTION-SORT? What arrangement of keys is a best case?
5. (**Undergraduate Students only**) **[20 pts]** Consider the following algorithm. Given an array L of n values, it places in $L[i]$ the sum of the elements from 1 to i.

```c
PartSum(L, n)
    if (n==1) return;
    for (i=1; i<n; i++)
        L[n]=L[n]+L[i];
    PartSum(L, n-1);
```

(a) **[10 pts]** Find the recurrence that describes the running time of the above algorithm.

(b) **[10 pts]** Solve the recurrence describing the running time of the above algorithm.
5. (Graduate Students only) [20 pts] The following algorithm finds the maximum value in an array $A[1..n]$.

$\text{Maximum}(A,p,r)$

if $r-p \leq 1$ then return $(\max(A[p],A[r]))$

else

$\max1 = \text{Maximum}(A,p,\frac{(p+r)}{2})$

$\max2 = \text{Maximum}(A,\frac{(p+r)}{2}+1,r)$

return ($\max(\max1,\max2)$)

(a) [10 pts] Find the recurrence that describes the running time of the above algorithm.

(b) [10 pts] Solve the recurrence describing the running time of the above algorithm.