
CS 477/677 Analysis of Algorithms
Fall 2006 - Dr. George Bebis

Midterm Exam
Duration: 2:30 - 3:45

Student Name:

1. [20 pts] For each of the following statements, indicate whether it is true or false. To get credit,
you must give brief reasons for your answer.

T F InsertionSort’s running time is Θ(n2)

T F Both MergeSort and QuickSort have Θ(nlgn) running time.

T F The Master method can be used to solve the recurrence T (n) = √ nT (n/2) + n, but not the
recurrence T (n) = 2T (n/√ n) + n.

T F Suppose that you write a program that frequently sorts arrays whose size varies between 5
and 10. You should do this using MergeSort instead of InsertionSort, since the running time of
MergeSort is Θ(nlgn), while that of InsertionSort is O(n2)

T F QuickSort’s running time depends on whether the partitioning is balanced or unbalanced. If
the partitioning is balanced, running time is Θ(nlgn), however, when the partitioning is unbal-
anced, the running time is Θ(n2).



-2-

2. [20 pts] Prove the following:

(a) 2n−3=Ω(2n+1)

(b) nlgn = O(n3/2)



-3-

3. [20 pts] Solve the following recurrences:

(a) T (n) = 7T (n/3 ) + n2

(b) T (n) = 2T (n − 2) + 2



-4-

4. [20 pts] Consider sorting n numbers in array A by first finding the smallest element of A and
putting it first. Then find the second smallest of A and put it second. Continue in this manner for
the n elements of A. This algorithm is known as SELECTION-SORT; the pseudocode is shown
below.

Alg.: SELECTION-SORT(A)
n <-- length[A]
for j <-- 1 to n - 1

do smallest <-- j
for i <-- j + 1 to n

do if A[i] < A[smallest]
then smallest <-- i

exchange A[j] <-- A[smallest]

(a) [7.5 pts] How many key comparisons does SELECTION-SORT do ? Justify your
answer.

(b) [7.5 pts] What arrangement of keys is a worst case for SELECTION-SORT? What
arrangement of keys is a best case ?



-5-

5. (Undergraduate Students only) [20 pts] Consider the following algorithm. Given an
array L of n values, it places in L[i] the sum of the elements from 1 to i.

PartSum(L,n)
if (n==1) return;
for (i=1; i<n; i++)
L[n]=L[n]+L[i];

PartSum(L,n-1);

(a) [10 pts] Find the recurrence that describes the running time of the above algorithm.

(b) [10 pts] Solve the recurrence describing the running time of the above algorithm.



-6-

5. (Graduate Students only) [20 pts] The following algorithm finds the maximum value
in an array A[1 . . n].

Maximum(A,p,r)
if r-p ≤ 1 then return (max(A[p],A[r]))
else

max1=Maximum(A,p,
(p + r)

2
)

max2=Maximum(A,
(p + r)

2
+1,r)

return(max(max1,max2))

(a) [10 pts] Find the recurrence that describes the running time of the above algorithm.

(b) [10 pts] Solve the recurrence describing the running time of the above algorithm.


