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he events of 11
September 2001
sent a ripple of fear
across the United
States. The US gov-
ernment sought to

alleviate the increased concerns by
enforcing strict security in airports,
government buildings and athletic sta-
diums; however, with any security
there is a price. For airline passengers
that price was long lines caused by
multiple security checks placed
throughout the nation’s airport termi-
nals. At each stop, passengers were
required to present their plane tickets
and personal identification and to allow
their bags, garments and even shoes to
be checked. Even so, reports filled the
papers of what was able to get aboard
some airplanes. Also, security was
infringing upon privacy and coming up
with very few results. A secure method
for authenticating airline passengers
while allowing a certain level of priva-
cy would need to be found. 

Zero-knowledge
To provide security while maintain-

ing privacy is the primary goal of
Zero-knowledge. Zero-knowledge, as
its name suggests, is an area of mathe-
matics and computer science where
the existence of a solution to a prob-
lem can be proved without giving
away the solution. 

So if one posed the question, “Is
this person a valid passenger on this
plane?” The answer could be found, in
a manner of speaking, without having
to reveal the person’s name, social
security number,
address, or any other
piece of information
that citizens would
rather keep secret. In
this environment, the
user becomes the
Prover who will
attempt to prove to
the airline, or
Verifier, that he or
she is a valid passen-
ger. 

The goal is to cre-
ate an application that
could be run from
any airport terminal
to quickly and
securely verify a pas-
senger while preserv-
ing the passenger’s
privacy. The Zero-

knowledge authentication protocol will
rely on a category of mathematics
problems called NP-Hard, where NP
means non-probabilistic. 

NP-hard is a classification of prob-
lems that, at this time, cannot be solved
in polynomial time. This unique nature
makes them a desirable choice when
constructing a Zero-knowledge situa-
tion. The specific NP-Hard problem
used in this implementation is called
the MinRank Problem. 

The MinRank Problem touches
upon an area of linear algebra where

certain unknown variables of a Matrix
are chosen to give the Matrix a desired
rank. For its portability and flexibility,

the JAVA programming language has
been chosen for implementing the pro-
tocol. This MinRank Authentication
Scheme should not be considered a
cure-all solution for airline security.
But, rather, it is a small step towards
securing the world’s airports. 

The ground zero goal
The goal of a Zero-knowledge pro-

tocol is to provide an algorithm that is
capable of proving “a statement with-
out yielding anything beyond its validi-
ty,” writes Oded Goldreich in

Foundations of Cryptography. In
other words, a Prover could con-
vince a Verifier of a solution to a
publicly known problem without
ever revealing the solution. 

Implementation of a Zero-
knowledge requires interaction
between the Prover and Verifier.
After the initial setup of defining
the problem and deriving a solu-
tion by the Prover, the interac-
tion occurs in two distinct phas-
es. The commit phase, which
begins the process, forces the
Prover to commit to a unique
value. This phase is constructed
to yield no knowledge to the
Verifier. The interaction between
Prover and Verifier finishes with
the reveal phase where the
Prover reveals a response to the
Verifier that should coincide
with the original unique value
to which the Prover was com-

mitted. The Verifier will validate this
assertion. If so, the protocol is consid-
ered viable according to Goldreich. 
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Two properties central to the devel-
opment of Zero-knowledge are sound-
ness and completeness. The soundness
property relates to the assertion that the
Verifier cannot be “tricked” into accept-
ing false statements from the Prover.
Completeness, most appropriately,
refers to the Prover’s capacity to con-
vince the Verifier of true statements,
says Goldreich. The probabilities of
soundness and completeness determine
a protocol’s strength. 

For a typical protocol the probability
for each to occur is about fifty percent.
Therefore, the Prover can trick the
Verifier one out of every two interac-
tions. Such a revelation would appear to
offset any security benefits. However,
“if one executes one Zero-knowledge
proof after another, then the composed
execution must be Zero-knowledge,”
according to Goldreich. 

This allows the Prover to develop
accreditation, or “the building of confi-
dence through each iteration of the pro-
tocol,” points out Professor Aronsson,
at Helsinki University of Technology
(Finland). So if the initial probability is
50 percent, the probability of tricking
the Verifier is two-fifths of a percent, or
1 out of 256, after ten consecutive inter-
actions. This assumes that any false
interaction will invalidate the entire
interaction. 

Zero-knowledge seeks to help vali-
date solutions of publicly known prob-
lems. Therefore, it is necessary to
investigate certain sets of problems that
might be used to construct a sufficient
protocol. 

NP
NP is a class of problems that, by

their nature, proceed nicely into Zero-
knowledge protocols. Goldreich
demonstrates in Foundations of
Cryptography “a method for construct-
ing Zero-knowledge proofs for every
language in NP.” So if one considers a
problem within NP, a Zero-knowledge
protocol implementing the problem is
not far off. 

Foremost, a NP problem must be a
decision problem. A decision problem
is any problem whose input requires a
yes or no answer. Furthermore, it must
be a decision problem of a certain com-
plexity. Complexity is determined by
the number of steps that would be
required to find or verify a solution. 

All NP problems can be verified in
polynomial time, or nk where n is prob-
lem specific and k is some constant.

The question is whether or not a solu-
tion can be discovered in polynomial-
time for a given problem. Or, rather,
whether or not P=NP where P is the set
of all problems that can be solved in
polynomial time. 

This unique characteristic is what
gives NP problems the ability to con-
struct a Zero-knowledge protocol.
Within NP are those problems consid-
ered NP-Complete. NP-Complete prob-
lems are the most difficult of the NP
problems. Any problems not considered
NP-Complete are just NP-Hard. From
this assertion, one looks to linear alge-
bra and the operation of constructing
matrices of desired rank. 

The MinRank problem
The MinRank problem concerns

itself with creating a matrix of mini-
mum rank. The rank of a matrix is the
maximum number of linearly indepen-
dent rows. The MinRank problem is a
problem of finding a linear combination
of some given matrices that has a small
rank according to Nicolas Curtois. That
is mathematically speaking, 

Let E, S be subsets of a commuta-
tive ring R.

Let x1, x2, …, xt be variables.
Given M � M(x1, x2, …, xt) with

entries chosen from 
the union of E and { x1, x2, �, xt }.

Then, 
MinRankS(M) = min{ rank M(_1,

_2, �, _t) where (_1, _2, �, _t) are
elements of St (Buss, et al).

Since solving multivariate quadratic
equations over a field is NP-Hard,
which is what MinRank attempts to do,
MinRank is NP-Hard. Buss, Frandsen,
and Jeffrey extend MinRank to NP-
Complete when S is a Gaussian Field.
A Gaussian Field, GF(q), is simply a set
of integers from 1 to q where q is a
prime number. Since the MinRank
Problem is NP-Complete over GF(q), a
Zero-knowledge protocol can be con-
structed. 

MinRank 
authentication system

The MinRank Authentication
System seeks to apply the MinRank
problem to construct a Zero-knowledge
Authentication protocol. (Note: This
protocol is adapted from Nicolas
Curtois, “Efficient Zero-knowledge
Authentication Based on a Linear
Algebra Problem MinRank,” CP8
Crypto Team, SchlumbergerSema. For
more information, visit

<http://www.MinRank.org.>.) 
Before any interaction between the

Prover and the Verifier takes place, the
public and private keys must be created.
Since finding a solution to the MinRank
problem is NP-Complete, the problem
must be created from a possible solution. 

To begin, a Gaussian Field, GF(q), is
created over q, a prime integer. Using
this field, m random n x n matrices, M0;
M1, …, Mm-1, are created. Next, a m-
tuple, _, is created from GF(q)m. This
m-tuple becomes the private key or
solution to the MinRank problem. The
final step is to create the final matrix
Mm, such that _ _iMi for all i = m is
equal to some rank, r. To reach this
conclusion a matrix, M, of rank r is
used to compute Mm as follows,

Mm = (M + M0 - _ _iMi)/_m
for all i<m

Now the linear combination of all m
matrices will have rank r as desired.
From this setup of the public and pri-
vate keys, subsequent interactions can
occur. 

The interaction between the Prover
and the Verifier must be developed
carefully in order to preserve the princi-
ples of Zero-knowledge, which in this
case is the private m-tuple. The Prover
begins by creating three random n x n
matrices S and T, which are invertible,
and X. Choosing a random _1 from
GF(q)m, the Prover creates, 

N1 = _ _1iMi for all i = m
and, 
N2 = _ _2iMi for all i = m
where _2 - _1 = _. 
Next, the Prover selects a collision-

intractable one-way hash function, H. A
hash function is simply an algorithm
that takes each matrix and sends it to a
unique value. As defined by Phillip
Rogaway of University of California-
Davis, for a hash function, H, to be col-
lision-intractable it must not be possible
to find M, M’ such that H(M) = H(M’).
Also, for the hash function to be one-
way there must be no way to find M
given H(M). One round of the Prover-
Verifier interaction goes as follows:

1. The Prover sends to the Verifier:
H(S, T, X), H(TN1S + X), H(TN2S +

X – TM0S)
This would be considered the com-

mitment phase of the interaction. 
2. The Verifier chooses a query Q of

{0,1,2} and sends Q to the Prover:
3. If Q=0 the Prover gives the fol-

lowing values:
(TN1S + X), (TN2S + X – TM0S)
Verification Q=0: The Verifier
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accepts if
H(TN1S + X) and H(TN2S + X – 

TM0S) are correct and if
(TN2S + X – TM0S) - (TN1S + X)

= TMS is indeed a matrix of 
rank r.

3�.   If Q = 1, 2 the Prover reveals:
S, T, X and _Q

Verification Q = 1, 2: The Verifier
checks if S and T are invertible and that
H(S, T, X) is correct. The he computes

TNQS
and verifies H(TN1S + X) or H(TN2S 

+ X – TM0S).
For a legitimate Prover, _ always

succeeds in making this protocol com-
plete. By this proof, states Curtois, the
algorithm has one-third soundness. To
achieve high probability, many rounds
of interaction can be performed, which
preserves the Zero-knowledge. 

Privacy advantage
The advantage of using Zero-knowl-

edge authentication is the privacy it
ensures. In most modern systems the
user is asked to give up some informa-
tion to the system in order to authenti-
cate, such as credit card numbers, moth-
er’s maiden name, or fingerprints. Once
the system has the information users
must trust that the system will protect it.
With Zero-knowledge authentication
the information exchanged doesn’t have
to be protected.

Computing disadvantage
MinRank Authentication relies

heavily on the strength of the hash algo-
rithm used. So any attack on the hash
algorithm is a possible attack on
MinRank. A temporal solution would
be to choose a stronger algorithm if
such an attack is found. But, the strength
of the algorithm is still limited by the
processing power of the smart card.

The application
The purpose of any sound theory is

to move toward a practical application.
The application here has been devel-
oped using JAVA. JAVA was chosen
for its flexibility and its portability. The
documentation and the source code for
the application can be found at
<http://csc.noctrl.edu/f/kwt>. 

The main class is called
MinRankAuthentication and it calls the
MinRank class, the true engine of the
protocol. Within the MinRank class are
two separate classes, the Prover and the
Verifier, that act as the separate parties
within the interaction. 

Both classes also utilize a
GFqMatrix class that provides matrix
creation and computation over a
Gaussian Field GF(q). This class was
derived from the matrix class within the
JAMA package. (This package was not
included within the standard JAVA
release.) All classes have been wrapped
within a MinRank package. 

SHA-512, as defined in Secure Hash
Standard, NIST FIPS 180-2, has been
selected as the hash algorithm. Any
other hash algorithm that preserves the
properties of being collision-intractable
and one-way could be substituted.

Implementation
Though the package is not imple-

mentable by itself, a possible imple-
mentation could proceed as follows.
Passengers would apply for their Travel
Card, the smartcard used for authentica-
tion, from a secure authority either pro-
vided by the government for use on all
airlines or by the airlines themselves.
Once the passenger had identified them-
selves with the secure authority a pri-
vate key would be stored upon the trav-
el card, while the public key would be
bound to the passenger. When booking
a flight, an airline would request the
passengers public from the secure
authority. Upon arriving at the airport
the passenger would proceed to the
Ticketing Terminal where they would
use their Travel Card to authenticate
themselves and receive another private
key corresponding to their reservation
on the plane. Since MinRank allows
multiple private keys for any given pub-
lic key, only one public key would need
to be stored for any flight. Before
boarding the airline, the passenger
would use their Travel Card to authenti-
cate both themselves and their reserva-
tion on the flight. Any implementation
would still require secure methods for
transferring and applying public and
private keys.

Conclusion
The MinRank Authentication

System attempts to provide a partial
solution toward securing airports.
Implementable in a smart card environ-
ment, airlines could quickly but securely
validate passengers boarding a plane.
Security measures, such as random bag
checks and shoe searches, have recently
discouraged many citizens from flying.
The privacy the MinRank
Authentication System could insure
would be comforting, attracting business

back to the world’s struggling airlines. 
No one wants to board an airplane

afraid of fellow travelers. As the reper-
cussions of 11 September continue to
play out, citizens will notice the restric-
tions caused by new policy and proce-
dure. Easing those restrictions, through
methods that preserve privacy, will be
instrumental. 
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