
APRIL/MAY 2001 0278-6648/01/$10.00 © 2001 IEEE 25

T
he Genetic Algorithm (GA) is
becoming a flagship among
various techniques of machine
learning and function optimiza-

tion. In simple terms, an algorithm is a
set of sequential steps requiring execu-
tion to achieve a task. A GA is an algo-
rithm with principles of genetics includ-
ed in it. The genetic principles “Natural
Selection” and “Evolution Theory” are
main guiding principles in implement-
ing a genetic algorithm. The GA com-
bines the adaptive nature of natural
genetics and search through a random-
ized information exchange.

There is a multitude of search tech-
niques. Among them calculus-based,

enumerative, and random search tech-
niques are mostly used. Calculus-based
and enumerative techniques can arrive
at reasonably good solutions for search
spaces of smaller sizes. But when con-
fronted with search spaces of enormous
size and wide variation from point to
point in their precinct, their efficacy in
delivering solutions is drastically low.
They are insufficiently robust for com-
plex problems involving huge search
space. This is due to their lack of ability
to overcome the local optimum points
and reach the global optimum point.

To overcome these local optimum
points, we use a random search tech-
nique. Keep in mind that this random-
ized search is not a directionless search.
The search is carried out randomly;
however, the information gained from
the search is utilized in guiding the next
search. Genetic algorithms are an
example of such a search technique.

Genetic algorithms surpass all the
aforementioned limitations of conven-
tional algorithms by using different
basic building blocks. They are in the
following aspects.

• GA works with a coding of the
parameter set, and not the parameters
themselves.

• GA searches from a population of
points, and not from a single point like
conventional algorithms.

• GA uses objective function infor-
mation, and not derivative or other aux-
iliary data.

• GA use probabilistic transition
rules by stochastic operands, and not
deterministic rules.

The first step of a GA is randomly
selecting initial search points from
the total search space. Each and every
point in the search space corresponds
to one set of values for the problem’s
parameters. Each parameter is coded
with a string of bits. The individual
bit is called a “gene.” The content of
each gene is called an “allele.” The
total string of such genes for all para-
meters in a written sequence is called
a “chromosome.” So there exists a
chromosome for each point in the
search space.

The set of search points selected and
used for processing is called a “popula-
tion”; i.e. a population is a set of chro-
mosomes. The number of chromosomes
in a population is called the “population
size.” The total number of genes in a
string is called the “string length.”

The population is processed and
evaluated through various operators of

the GA to generate a new population.
This process is carried out until a global
optimum point is reached. The two
parts of this process are called
“Generation” and “Evaluation.”

During evaluation, we define a fit-
ness function and evaluate the fitness
for each chromosome of the population.
This fitness indicates the suitability of
the values of the parameters—as repre-
sented by that chromosome—to create
an optimal solution for the problem.
This fitness is used as a bias for select-
ing the parents and generating a new
population from the existing one.

Thus, we are testing a significant
number of solutions simultaneously

since each chromosome represents a
solution. This is referred to as “Implicit
Parallelism.” GA is the only search tech-
nique that employs implicit parallelism.

The three phases
A Genetic Algorithm includes: a

string representation of points in a
search space; a set of genetic operators
for generating new search points; a fit-
ness function to evaluate the search
points and a stochastic assignment to
control the genetic operations.
Simplicity of operation and power of
effect are two main attractions of the
GA approach. The approach typically
has three phases:

1. Initialization
2. Evaluation
3. Genetic Operation

Initialization
Initialization is the generation of the

The optimal basics for GAs

Har inath Babu Kamepal l i

The optimal basics for GAs

© Photo Disc

26 IEEE POTENTIALS

initial population of chromosomes; i.e.,
the initial search points. Two parame-
ters—population size and string
length—need to be judiciously selected
before this job is performed.

The population size is a direct indica-
tion of how effective the representation is
for the whole search space. The popula-
tion size affects both the ultimate perfor-
mance and the efficiency of the GA. If
too small, the chance that the chromo-
somes in the population cover the entire
search space is low. This makes it diffi-
cult to obtain the global optimum solution
and leads to a local optimum solution.

Please note that this stagnation at the
local optimum is a result of premature
convergence. Thus, a large population
size is preferable to avoid this prema-
ture convergence and to reach a global
optimum point. But a population size
that is too large decreases the rate of
convergence. In the worst case scenario,
it may lead to divergence. Hence, the
population size needs to be selected
based on the size of the search space.

Deciding the string’s length depends
on the accuracy requirements of the
optimization problem. The higher the
string length, the higher will be the reso-
lution and accuracy. But this leads to a
slow convergence. Also, the number of
parameters in the optimization problem
will directly effect the number of bits in a
chromosome, i.e. string length. Keeping
all the above constraints in mind, the
string length is chosen appropriately.

After selecting string length and pop-
ulation size, the initial population is
generated as a set of strings of bits,
either “0” or “1.” Random number gen-
eration techniques are used to accom-
plish this task. These strings of bits con-
tain the information related to the prob-
lem’s parameters in an encoded format.
Any encoding technique can be used
but binary encoding is convenient and
the one mostly used.

Now, from the initial population,
chromosomes are decoded and all para-
meters of the optimization problem are
calculated for each chromosome. This
results in a set of solutions whose size is
equal to population size.

Evaluation
In the evaluation phase, the suitabili-

ty of each solution from the initial set as
the solution for the problem is deter-
mined. To do this, a function called the
“fitness function” is defined. This is
used as a deterministic tool to evaluate
the fitness of each chromosome. The

optimization problem may be a mini-
mization or a maximization type. In
either case, the fitness function is select-
ed so that the fittest solution is the one
nearest to the global optimum point.
The programmer is allowed to use any
fitness function that adheres to these
requirements. This flexibility with the
GA is one of its fortes.

Overall for a typical optimization
problem, the evaluation phase involves:
calculating individual parameters of the
problem by decoding the encoded strings
from the population; testing any equality
or inequality constraints that need to be
satisfied; evaluating the objective func-
tion and, finally, evaluating fitness based
on the fitness function. This evaluation is
discrete in nature vis-à-vis some genetic
operators which operate on more than
one chromosome at a time.

Genetic operation
In this phase, a new population is gen-

erated from the existing one by examin-
ing the fitness values of various chromo-
somes and applying the genetic operators.
These genetic operators are reproduction,
crossover and mutation. This phase is
carried out if we are not satisfied with the
solution obtained earlier. The survival of
the fittest means transferring the highly fit
chromosomes to the next generation of
strings and combining different strings to
explore new search points.

Reproduction
Reproduction is simply an old chro-

mosome being copied into a mating
pool based on its fitness value. Highly
fit chromosomes get a higher number of
copies in the next generation. Copying
chromosomes according to their fitness
means that the chromosomes with a
higher fitness value have a higher prob-
ability of contributing one or more off-
spring in the next generation.

Crossover
Crossover is a recombination opera-

tion. Here the gene information con-
tained in the two selected parents is uti-
lized to generate two children bearing
some of their parents’ useful character-
istics. The kids are expected to be more
fit than the parents.

There are various techniques that are
used for performing this crossover. But
first, we need to pick up two parents from
the existing population to perform the
crossover. This selection can be done
using the random selection or the roulette
wheel selection method. In the random

selection technique, the parents are picked
up randomly from the existing population.
In roulette wheel selection process, a little
more streamlining is involved.

Basically, a linear search is usually
implemented through a roulette wheel
whose “slot sizes” are in proportion to
the string’s fitness values. This is
achieved using the following steps.

1. The fitness of all the strings (fit-
sum) is totaled.

2. A random real number (rand-sum)
between 0 and fitsum is generated.

3. Starting with the first member of
the existing population, for each mem-
ber “n,” the fitness sum of its members
“1” to “n” is compared with the ran-
domly generated number.

4. If ∑(fitness of member n) is > than
rand-sum, n is selected as a parent.
Otherwise, the process is continued by
incrementing n.

All four steps are useful in selecting
a parent. So before performing a
crossover, we execute these steps twice.
Obviously through this roulette wheel
process, we are giving more reproduc-
tive chances to the fitter population
members. Thus, we are ensuring that
the parent chromosomes are chosen
based on their objective function values.

The convergence rates and efficiency
of GA with the roulette wheel selection
technique is far superior than the random
selection technique. With the roulette
wheel selection technique, a still faster
rate of convergence can be achieved by
sorting the population in descending order
of “fitness” before selecting parents.

Now the crossover is carried out
using any one of these three methods.

1. Simple or single point crossover
2. Multipoint crossover
3. Uniform crossover

Simple point crossover
In this method, crossover is carried out

at a single point as illustrated in the fol-
lowing example. Let Parl and Par2 be the
two parents selected for crossover.
Assume the strings parl and par2 as
below.

Parl: 1 1 0 0 0 1 0 1
Par2: 1 0 1 1 0 1 1 1
Now, a crossover site is selected ran-

domly as an integer between 1 and the
string length. Here this crossover site is
4. Then children Chldl and Chld2 are
generated as follows.
Chld1: 1 2 3 4 5 6 7 8 = 1 1 0 0 0 1 1 1

<-Parl->|<-Par2->
Chld2: 1 2 3 4 5 6 7 8 = 1 0 1 1 0 1 0 1

<-Par2->|<-Parl->

APRIL/MAY 2001 27

Multipoint crossover
This method is similar to single

point crossover except that more than
one crossover site is randomly selected.
Also, the contents of Chld1 and Chld2
are selected alternatively from Parl and
Par2 by changing from one parent to the
another at the crossover sites.

Uniform crossover
In this method, a crossover is per-

formed over the entire string length of
bits. First, a mask is generated random-
ly. This mask is nothing but a string of
bits of “0” or “1” with the same length
size. With the information in the mask,
we generate the children as follows.

Parl: 1 1 0 0 1 0 1 1
Par2: 0 1 0 0 0 1 0 0
Mask: 0 0 1 0 1 1 0 1
Chld1: 1 1 0 0 0 1 1 0 (If mask=0,

Chld1=Par1 & Chld2=Par2)
Chld2: 0 1 0 0 1 0 0 1 (If

mask=1,Chld1=Par2 & Chld2=Par1)
Here we need to generate for each

crossover. Thus, the number of masks
needed is equal to the number of
crossovers to be performed. But we
don’t need to store these masks. We
generate them as and when required and
discard them thereafter.

As we have seen, each crossover
results in two children. So the number
of crossovers required for the next gen-
eration depends on the number of chil-
dren we need. Usually, some of the best
parents are copied “as is” into the next
generation with the additional required
strings generated as children. This phe-
nomenon of copying the best parents
into the next generation is called
“Elitism.” The number of parents so
copied is indicated by a parameter of
GA called the “Percentage of Elitism
(Pe).” This is nothing but the percentage
of parents directly copied out of the
total number. This elitism is basically
carried out so the best strings obtained
so far are not lost.

To control the number of crossovers,
there also is a parameter called
“Crossover Probability (Pc).” This proba-
bility is used as a decision variable before
performing the crossover. A random num-
ber between “1” and “0” is generated. If
that number is less than Pc, a crossover is
performed. If the randomly generated
number is greater than Pc, Chldl and
Chld2 are directly selected as Parl and
Par2. This is equivalent to when the
crossover site is equal to the string length.
There are various other techniques too for

implementing the Pc and the programmer
of GA is free to choose any one. But this
technique is commonly used.

Mutation
This operator can create new genetic

material in the population to maintain
the population’s diversity. It is nothing
but a random alteration of a bit value at
a particular bit position in the chromo-
some. The following example illustrates
the mutation operation.

Original String: 1011001
Mutation site: 4 (assumption)
String after mutation: 1010001
Some programmers randomly

choose whether to alternate or keep the
same a particular bit in the mutation
site. “Mutation probability (Pm)” is a
parameter used to control the mutation.
For each string, a random number
between “0” and “1” is generated and
compared with the Pm. If it is less than
Pm, a mutation is performed on the
string. Sometimes a mutation is per-
formed bit by bit rather than by strings.
This results in substantial increase in
CPU time without the GA’s perfor-
mance increasing appreciably. So this is
usually not preferred.

Thus, mutation brings in some points
from the regions of search space that
otherwise might not be explored.
Generally, the mutation probability will
be in the range of 0.001 to 0.01.

The overall process
Overall, the optimization problem

that is to be solved using GA is attempt-
ed as follows.

Step 1: Necessary data of the prob-
lem is collected and entered as input.

Step 2: Phase 1 - Initialization is
done for all the problems.

Step 3: Phase 2 and Phase 3 -
Evaluation and Genetic Operation are
performed repeatedly until the conver-
gence is achieved.

Based on different combinations of
operators and strategies, GAs are classi-
fied as three types.

1. Simple GA: The multipoint
crossover and mutation are the opera-
tors used and the roulette wheel is the
selection technique.

2. Refined GA: Uniform crossover
and mutation are the operators and the
roulette wheel is the selection technique.
Strategies such as elitism and changing
Pc and Pm are also implemented.

3. Crowding GA: This consists of
uniform crossover and mutation, the ran-
dom selection technique and strategies

such as parent replacement and chang-
ing Pc and Pm are also implemented.

Remember, there is no hard and
bound restrictions on what operator and
strategies of GA a programmer has to
use. The programmer can choose the
operation and strategies in any combi-
nation according to his or her views.

Summary
Genetic algorithms were introduced

by John Holland in early seventies as a
special technique for function optimiza-
tion. They are quite different from other
more conventional optimization methods
that are mainly stochastic in nature. A
typical GA will have three phases; i.e.,
initialization, evaluation and genetic
operation. In each phase, various parame-
ters of GA need to be selected based on
the nature of the optimization problem. A
genetic algorithm is also classified based
on the various combinations of parame-
ters and strategies employed. However,
the designer is free to develop a hybrid
genetic algorithm. The main goal is to
deliver the most enhanced performance
possible to the optimization problem.

Read more about
• Goldberg. D.E., Genetic Algorithms

in Search, Optimization and Machine
Learning, Addison Wesley, 1989.

• Davis. L., Handbook of Genetic
Algorithms, Van Nostrand Reinhold, ’91.

• John R. Koza, Genetic program-
ming—On the Programming of
Computers by Means of Natural
Selection, MIT press, 1992.

• Albrecht, Reeves, Steele,
“Artificial Neural Networks and
Genetic Algorithms,” Proceedings of
International Conference in Innsbruck,
Austria, 1993.

About the author
Mr. Harinath Babu Kamepalli wrote

this article in his final year as a B.Tech
(Electrical and Electronics Engineering)
student of Regional Engineering College,
Warangal, India. Mr. Kamepalli received
a medal and special ranks in A.P. State
Mathematical Olympiad in the years
1996, 1994, and 1997 respectively.

After his B. Tech., Mr. Kamepalli
obtained a Master of Science in EE
from the University of Minnesota, Twin
Cities, MN. Currently, he is working as
a CAD Engineer at Sun Microsystems,
Inc. Sunnyvale, CA. For additional
details, you can e-mail him at
<hbk@ieee.org>or visit the web site
<http://www.angelfire.com/on/hbk>.

