
Simulating nature's methods of evolving the best design solution 

radually, problem solving 
is becoming dynamic 
agents interacting with the G surrounding world rather 

than by isolated operations. Some 
methods are coming from nature, 
where organisms both cooperate ancl 
compete for environmental resources. 
This has led to the design of algo- 
rithms which simulate these natural 
processes. The genetic algorithm 
(CA) represents one of the most suc- 
cessful approaches. 

Genetic algorithms are adaptive 
search methods that simulate natural 
processes such as: selection. informa- 
tion inheritance. random mutation, 
and population dynamics. At first, 
GAS were most applicable to nunieri- 
cal parameter optimizations due to an 
easy mapping from the problem to 
representation space. Today, they find 
more and more general applications 
thanks to: 1 )  understanding better the 
necessary properties of the required 
mapping, and 2) new ways to process 
problem constraints. 

GAS at a glance 
A genetic algorithm operates as :I 

simulation in which individual agents. 
organized in  a population, compete 
for survival and cooperate to achievc 
a better adaptation. The agents are 
called chronzo.sotne.s. The chromo- 
some structure (genotype) is made up 
of genes. The meaning of a particular 
chromosome {phcwotypr) is defined 
externally by the user so that a com- 
plete chromosome represents a poten- 
tial solution to a problem at hand. 
Traditional genetic algorithms operate 
on strings of bits. 

Genetic algorithms use two mecha- 
nisms to provide for the adaptive 
behavior: selective pressure and infor- 
mation inheritance. Selection, or com- 
petition, is a stochastic process with 
survival chances of an agent propor- 
tional to itc adaptation level. The aclap- 

tation is measured by evaluating 
the phenotype in the problem 
environment. This selection 
imposes a pressure promoting 
survival of better individuals, 
which subsequently produce off- 
spring. Cooperation is achieved 
by merging information usually 
from two agents, with the hope of 
producing more adapted individu- 
als (better solutions). This is 
accomplished by crossover. The 
merged information is inherited 
by the offspring. Additional mutu- 
tion aims at introducing extra 
variability. Algorithms utilizing 
these mechanisms exhibit great 
robustness due to their ability to 
maintain an adaptive balance 
between efiiciency and efficacy. 

The simulation is achieved by 
iterating the basic steps of evalu- 
ation, selection, and reproduction, 
after some initial population is 
generated (see Fig. 1). The initial 
population is usually generated 
randomly, but some knowledge of 
the desired solution may be used to an 
advantage. The iterations continue 
until some resources are exhausted. 
For example, the simulation may be 
set for a specific time limit or a fixed 
number of iterations. Alternatively, if 
some information about the sought 
solution is available, the simulation 
may continue until some criteria are 
met. Finally, the population dynamics 
may be observed and the simulation 
may stop if convergence to a solution 
is detected. 

A single iteration is illustrated in 
the bottom of Fig. 1, where the bullets 
represent individual chromosomes 
with intensity proportional to levels of 
adaptation-evaluation results. This 
evaluation is performed by a task-spe- 
cific evaluation function. Each oval 
group represents the population 
instance at the single iteration. Sto- 
chastic selection (with replacement) is 

applied to the beginning population 
instance, producing the intermediate 
state. Because of the selective pressure 
favoring survival of better fitted indi- 
viduals, the average fitness (manifest- 
ed by darkness) of the chromosomes 
increases. However, no new individu- 
als appear. Following the selection, 
reproduction operators are applied to 
members of the intermediate popula- 
tion. In this process, some chromo- 
somes are modified. Therefore, the 
third population instance will finally 
contain some new chromosomes. This 
process continues for a number of iter- 
ations. The described iterative model is 
called the generational GA. Variations 
of this model are often used instead. 

The two reproductive operators are 
visualized in Fig. 2 ,  which assumes 
binary coding for a chromosome 
(white and black genes). Mutation is 
performed here on the third bit of the 
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chromosome by flopping the allele. 
Crossover exchanges some genes 
between two chromosomes. Here, the 
exchange starts at the third bit. A mech- 
anism is needed to apply the reproduc- 
tive operators. 

A simple approach is to use a sto- 
chastic firing mechanism with some 
prior probabilities for mutation and 
crossover. A more sophisticated 
approach is to update these probabilities 
based on history, or information con- 
tained in the population or individual 
chromosomes. 

If these generic crossover and muta- 
tion operators are used, the only relation 
to the process at hand is the.evaluation 
function providing the simulated envi- 
ronment. This is a great advantage, 
leading to domain-independent charac- 
teristics of the algorithm. This is also a 
great limitation, prohibiting use of 
available information about the problem. 

A theoretical 
and intuitive look 

Genetic algorithms are not random 
searches. They explore regularities in 
the information the chromosomes repre- 
sent. In a sense, the chromosomes are 
not really individuals but representa- 
tives of different species. Two different 
chromosomes may have similar adapta- 
tion levels if they represent similar 
species. However, the same two chro- 

mosomes may have different evalua- 
tions if the difference between them is 
significant. To explore such chromo- 
some similarities, schemata are used. 
Schemata are similarity templates that 
contain fixed alleles for some genes but 
arbitrary alleles for others. 

For example, Fig. 3 illustrates two 
different schemata in the top row-the 
shaded alleles represent the don't care 
positions. The left schema represents 
species that can only have two different 
chromosome instances, all shown below. 
The right schema is more general (actu- 
ally, the left schema is a specialization, 
or subspecies, of the right one). A few of 
its representative-chromosomes are 
shown below. This schema can represent 
up to sixteen different chromosomes. 

Unfortunately, schemata cannot be 
processed explicitly because they do not 
provide complete phenotype informa- 
tion needed for evaluations. Instead, a 
CA processes complete chromosomes. 
However, for practical problems, all 
possible chromosomes cannot be 
processed. Therefore, the information 
about individual chromosomes is gener- 
alized to draw conclusions about 
implicit schemata. 

The selective pressure causes the 
search to proceed by working with 
increasingly representative chromo- 
somes of the above-average schemata. 
The process continues by having more 
and more specific schemata represented 

in the population. For example, if all the 
chromosomes on the right of Fig. 3 
evaluate high, a likely conclusion is that 
the third gene of the solution must con- 
tain a white allele and the fifth black. 

The schemata can also be seen as 
hyperplanes of the search space. A 
schema with no fixed positions is a 
hyperplane that spans the complete 
search space. A schema with only one 
fixed position is a hyperplane.that 
halves the search space, and so forth. 
For example, the right schema of that 
example, which has two fixed positions, 
represents exactly one-fourth of the pos- 
sible number of chromosomes. 

The iterative selection terminates 
when the represented schemata converge 
to a single most specific schema-a 
fixed chromosome. However, no schema 
can be reached that was not represented 
in the initial population. To extend the 
search to other schemata, the reproduc- 
tive operators are used. Therefore, repro- 
duction causes exploration of new 
schemata as well as generation of new 
instances of the present schemata. 

Unfortunately, both mutation and 
crossover can disrupt currently represent- 
ed schemata, in addition to generating 
new ones. Given a proper balance, the 
algorithm will continue exploring better 
and better hyperplanes. Because of the 
trade-off and the limited resources nor- 
mally available for the search, there is no 
guarantee that the globally optimal chro- 
mosome will be found. 

The hyperplanes identified during 
the search as those that are above-aver- 
age provide building blocks (the fixed 
positions) for the algorithm. Then, the 
same iterative search can be seen as a 
process in which very short building 
blocks, those in the very general 
schemata, are put together to form 
longer and longer blocks (more specific 
schemata) until a particular chromo- 
some is generated. This hypothesis is 
called the Building Block Hypothesis. 
Using building blocks, the reproductive 
crossover can be explained as a mecha- 
nism that assembles the building blocks 
identified by different chromosomes 
and promoted by selection. 

t d 
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Fig. 3 Illustration of the schemata concept. 
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Since all this depends on the genes’ 
locations in the chromosome, the 
crossover will minimize disruption of 
schemata with short building blocks 
(short substructures). Mutation intro- 
duces much smaller disruptions, espe- 
cially for the more-general schemata. 
These properties guarantee that the 
above average schemata, which are pro- 
moted by the selection mechanism, will 
not be over-disrupted. This, along with 
the selection itself, explains why genetic 
algorithms work and is called the 
Schemata Theorem. 

Because GAS work by processing 
implicit schemata by means of explicit 
chromosomes, and the number of 
schemata having chromosome represen- 
tatives in a population of some fixed 
size is exponential, genetic algorithms 
are said to exhibit implicit parallelism. 
Genetic algorithms also exhibit explicit 
parallelism, that is, the processing can 
be parallelized. This property allows 
GAS to utilize fast-advancing parallel 
processing technologies. 

An example 
The first example illustrates popula- 

tion dynamics as a search of the poten- 
tial solution space. Consider a very 
simple problem of finding a maximum 
of an unknown function over integers 1 
through 16, whose evaluation is the 
number of positive integers evenly 
dividing the argument- 

f(n): [ 1,16]+[1,6]. For example, 4 
can be divided by three different inte- 
gers: 1, 2, 4.  his, f(4)=3. 
The maximal value 6 
belongs to the argument 12. 

Furthermore, suppose we 
use a population of 10 chro- 
mosomes, each represented 
by a binary sequence of four 
bits blb2b3b4. The value 
that the sequence codes is 
assumed to be the decimal 
equivalent of the binary 
number plus 1-giving the 
range 1 through 16. For 
example, 00 10 represents 
the value 3. Fig. 4 plots the 
original function f(), along 
with chromosome-value 
distributions in the initial 
population, and after 10 and 
25 generations. 

This is a very simplistic 
examule since the number 

Therefore, an exhaustive search could 
have been performed at a smaller cost. 
Nevertheless, it illustrates the dynamics 
of the population. Initially, the chromo- 
somes are randomly distributed over the 
range, and the algorithm is said to per- 
form exploration of the search space. 
After 10 iterations, the distribution con- 
centrates around regions with higher 
expected payoff. After 25 iterations, all 
but a few chromosomes represent the 
sought maximum. These few solutions 
are results of random mutation. At this 
stage, the algorithm is said to perform 
exploitation of the search space. Actual- 
ly, an important property of a genetic 
algorithms is that both exploration and 
exploitation are performed simultane- 
ously during the search. 

This example is actually an illustra- 
tion of a problem not suitable for genetic 
algorithms. The search space of this 
problem was too small to justify the 
overhead of such a sophisticated algo- 
rithm. In fact, the GA performed worse 
than any exhaustive method would have. 
Problems suitable for GA applications 
are those with large search spaces, which 
cannot be searched exhaustively and for 
which no efficient algorithms exist. 

Applications 
Genetic algorithms are applicable to 

problems that cannot be solved by other 
less expensive methods. The algorithm 
itself is a simulation which cannot pro- 
vide real-time responses. Moreover, in 
general it can only find a “good’ solu- 

tion, that is an approximation of the 
solution. However, there is a wide vari- 
ety of such problems for which any 
“close” solution is acceptable. 

Genetic algorithms are most success- 
ful in numerical parameter optimization. 
The reason is that numerical solutions 
can be easily represented as linear chro- 
mosomes-both crossover and mutation 
act on linear sequences of alleles. Also, 
the quality assessment of such chromo- 
somes is reduced to evaluations of the 
original function. 

In general, a GA application 
requires: 

1. A clear understanding of the prob- 
lem and its objectives. 

2. A genetic algorithm with 
a. chromosome representation 

with its semantics defined, 
b. evaluation function utilizing the 

representational semantics, and 
a selective pressure mechanism 
favoring better solutions, 

c. a population of randomly or oth- 
erwise generated representation 
structures-the chromosomes, 

d, reproductive operators, with 
some firing mechanisms often 
based on static probabilities. 

A problem must be expressed in 
terms suitable for GA optimization. The 
most general problems suitable for 
applications are: 

1. Search for a topological structure. 
2. Numerical parameter optimiza- 

3. Combinations of these two. 
tion. 

of chromosomes is similar 
to the range of the function. 

Fig. 4 The orfgind funcflon and the chromasome distribution 
during simulation. 

Most problems can be 
mapped into parameter 
optimization problems. 
This is especially easy for 
those dealing with num- 
bers. Moreover, such 
applications are the easiest 
to design, even in the 
domain-specific model, 
since only numbers are 
being processed. 

However, a numerical 
problem does not neces- 
sarily imply a vector rep- 
resentation. Following the 
domain-specific model, 
the representation may be 
based on properties of the 
problem. A good example 
here is the transportation 
problem, where the objec- 
tive is to set up transports 
between some sources and 
some destinations in such 
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- 6) domain-specific GA. 

a way that the delivery costs are mini- 
mized and all demands are met. Chro- 
mosomes for this problem are best 
processed as two-dirnensional arrays. 

However, some probletns are not 
easily mapped this way and must be 
processed as topological structures. This 
is the case, for example, for combinato- 
rial problems such as the rrclvellitzt: 
.su/esrnun problem. Here the objective is 
to find a tour topology linking a nuniber 
of cities in such a way that each city is 
visited exactly once and the tour‘s cost 
is minimized. Another example is thc 
problem of learning inductive concept 
descriptions, where the objective is to 
find the best generalized description of 
provided examples. This case is much 
more difficult and requires some level 
of domain-specific processing since thc 
operators need to be properly designed 
to process structures of the problem. 

Yet, most practical problems are best 
represented as a combination of topo- 
logical and numerical processing. An 
example is the problem of designing 
and tuning a neural network for feed- 
forward propagation. Here. the sought 
solution has to represent both the best 

methodologies implemented 
in new operators, and a rep- =l resentation more suitable 
for the problem at hand. 

One first successful 
application was work done 
on the travelling salesman 
pro b 1 em,  ~h~ e,  some 
ieordering operators were 

used to modify the explicitly represent- 
ed tour rather than blindly cutting and 
putting chromosomes together in hope 
of finding the right structure. The com- 
plexity of this approach is much greater, 
as it often requires designing a tailored 
representation, and a better understand- 
ing of the problem so specific method- 
ologies can be implemented in the 
tailored operators. 

On the bright side, this approach 
generally provides performance increas- 
es in orders of magnitude. For a number 
of problems, thi? is the only feasible 
approach. A good example of this 
approach is the machine learning sys- 
tem GIL, which has been designed for 
learning symbolic descriptions from 
example\ (e.g., learning descriptions of 
patients with a specific disease from a 
ho\pital database). There, the chromo- 
somes are symbolic concept descrip- 
tions and the operators implement 
inductive learning methodology. Figure 
5 shows the two extreme approaches. 

Another potential disadvantage of 
the domain-independent model is that 
the syntactical structures identified for 
the problem might not be quite suitable 

network structure and its 
weights. Another good 
example is the problem of 
optimizing i’uzzy rules for 
control or classification, 
where i t  is necessary to 
process high-level rules 
along with some numerical 
components such as rule 
weights. 

Level of 
independence 

Most early GA applica- 
tions were based on a 
df)mclin-ind~I~etzdnt model. 
Dissatisfaction with its per- 
formance on real-life prob- 
lems led to effort\ to utilize 
some do m ai n - s pec i f i c 
information. This informa- 
tion may include rich 

for applications of operators. In other 
words. even though this approach forces 
identification and processing of building 
blocks, such building blocks might be 
difficult to combine in some cases. 

An example here is the problem of 
discovering the best topology of a neur- 
al network. In these cases an extreme 
effort must be made to designing a 
domain-specific model. This often caus- 
es the actual approach to sett1.e some- 
where in between these two extreme 
models. This trade-off is very often 
profitable in that the resulting algorithm 
exhibits satisfactory performance given 
the design effort. 

Constraints 
In many applications. an additional 

difficulty is the constraints the sought 
solution must satisfy. Constraints cause 
the most serious problems in the domain- 
independent model, where the fixed rep- 
resentation is often incapable of 
representing only the desired chromo- 
somes. This may cause the search to drift 
into improper regions of the search space. 

The most common way to deal with 
these problems is to penalize chronio- 
somes for not satisfying the constraints. 
This works quite well with cr’eak con- 
straints: those which can be violated to 
some extent. However, this approach 
often proves disastrous for strong con- 
straints, which must be satisfied. 

Another approach is to have follow-up 
routines for all the operators. This “fixes” 
the generated chromosomes by bringing 

them into the feasible space. 
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However, for many applica- 
tions, these routines are non- 
trivial and introduce 
additional computational 
complexity. 

A better approach is possi- 
ble in the domain-specific 
model. Here the representa- 
tion is not fixed and can be 
bound to the problem. Thus, 
the genotype spans only the 
potential solution space. This 
action, alone, often causes the 
chromosomes to satisfy all 
the strong constraints. GIL 
uses this approach. In other 
applications, this may not be 
possible or sufficient. Then 
the obvious choice is to 
require the operators to be 
closed in the feasible space 
(i.e., produce only feasible 
offspring). 

I ‘  
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GA variations 
Today, there exist a number of vari- 

ants of the generational approach to 
genetic algorithms. This is because 
many problems require special treat- 
ment. In the basic iterative simulation, 
two major alternatives emerged. First, 
the selective pressure is often based on 
ranks instead of actual values. This 
makes the algorithm’s performance 
independent of some of the problem’s 
unknown characteristics and allows 
control of the convergence speed. Sec- 
ond, the iteration may have only one 
operator, whose resulting chromosomes 
replace the weakest ones in the popula- 
tion (steady-state algorithm). 

Other important modifications allow 
adaptation of the decisions that inher- 
ently affect GA performance: 1) proba- 
bilities of operator applications and 
their behavior, and 2) representation 
that promotes development and propa- 
gation of the building blocks. 

Operator probabilities can be adapt- 
ed by providing dynamic performance 
measures for the operators and linking 
their application to this measure. Adap- 
tive operator behavior can be based on 
context detection. For example, GIL 
uses problem heuristics to trigger the 
most appropriate operators. Finally, 
adaptive representation can be provided 
by extending the representation, so that 
it becomes another parameter being 
optimized. (A good example is the so 
called messy GAS.) 

An important GA extension is using 
new representation, which can be gener- 
ic (e.g. the domain-independent model), 
but is more flexible than the originally 
proposed linear representation. The 
most studied and utilized is a tree-like 
representation borrowed from LISP pro- 
grams. An additional advantage is that 
complete LISP programs do not require 
any additional drivers to utilize the gen- 
erated information. This leads to hopes 
for automatic programming based on 
genetic algorithms. 

An application 
As an application example, consider 

the problem of minimizing a function of 
N variables with domains [O,l]. The 
function uses an index to measure the 
sum of squares of distances between all 
neighboring (by an index) variables. It 
can be shown analytically that the sum 
is minimized when all the distances are 
the same. To avoid the trivial case when 
all variables are the same, let us assume 

that the first variable must be zero and 
the last must be one (these are strong 
constraints). Then, the minimal sum 
will be produced when each variable I+ 
has the value v,  = v, + 1/N (e.g., for 
N=5, the five variables have values 0, 
0.25, 0.5, 0.75, 1). In other words, the 
optimal solution vector will span a 
straight line between 0 and 1. 

To solve the problem, one must 
select a representation for a potential 
solution, provide operators to manipu- 
late this representation, provide an 
objective function evaluating chromo- 
some quality, provide a population of 
some initial chromosome-solutions, and 
iterate the algorithm. 

Since a solution is a vector of N 
bounded real variables, we decided on a 
floating point representation for a single 
variable, and a vector of such to repre- 
sent a potential solution. To manipulate 
the representation, we provided: 1) a 
crossover operator with possible split 
locations between any two neighboring 
variables, 2) an operator averaging two 
vectors, and 3) a mutation operator 
modifying a single variable’s value, 
within the domain [0,1], with non-uni- 
form probability density. The modifica- 
tion’s expected magnitude would 
decrease as the population aged. 

As usual with numerical parameter 
optimization, the function itself provid- 
ed the objective evaluations. Each chro- 
mosome was judged by its sum of 
squared distances. We decided on a 
population of fifty chromosomes, which 
were initialized randomly. To deal with 
the constrained variables, we narrowed 
the domains for the first and the last 
variable to [O,O] and [ 1,1], respectively. 

A trace of a 5000-iteration simula- 
tion is illustrated in Fig. 6 for N=25, 
which presents values of the best chro- 
mosomes at some iteration intervals. 
The algorithm fiids a plausible solution 
after a small number of iterations, then 
uses the remaining iterations to fine- 
tune this solution. In this constrained 
case of N=25, the absolute minimal sum 
is 0.041667. The best solution found 
after 5000 iterations was 0.041791. 

Summary 
Genetic algorithms enjoy more and 

more successful applications, often in 
completely new fields such as machine 
learning and job scheduling. The most 
important factor in these advancements 
is building applications utilizing prob- 
lem-specific representations, operators, 

and heuristics. At the same time, it is 
important to realize disadvantages and 
limitations of these approaches. The 
simulative nature prevents real-time 
applications and set-up costs do not 
stand up against other simpler 
approaches, if such are possible. 

The experiments reported in this paper 
were performed using GenET-a genetic 
algorithm implementing different variants 
of the basic model. It also prqvides a 
library of representations and operators to 
choose from when writing an application. 
This system has been designed to speed 
up problem-specific genetic algorithm 
applications. An initial release, along 
with the user’s manual, is available in 
public domain from the authors. Send 
inquiries to janikow @radom.umsl.edu 
with subject GenET. 
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