
Simulating nature's methods of evolving the best design solution

radually, problem solving
is becoming dynamic
agents interacting with the G surrounding world rather

than by isolated operations. Some
methods are coming from nature,
where organisms both cooperate ancl
compete for environmental resources.
This has led to the design of algo-
rithms which simulate these natural
processes. The genetic algorithm
(CA) represents one of the most suc-
cessful approaches.

Genetic algorithms are adaptive
search methods that simulate natural
processes such as: selection. informa-
tion inheritance. random mutation,
and population dynamics. At first,
GAS were most applicable to nunieri-
cal parameter optimizations due to an
easy mapping from the problem to
representation space. Today, they find
more and more general applications
thanks to: 1) understanding better the
necessary properties of the required
mapping, and 2) new ways to process
problem constraints.

GAS at a glance
A genetic algorithm operates as :I

simulation in which individual agents.
organized in a population, compete
for survival and cooperate to achievc
a better adaptation. The agents are
called chronzo.sotne.s. The chromo-
some structure (genotype) is made up
of genes. The meaning of a particular
chromosome {phcwotypr) is defined
externally by the user so that a com-
plete chromosome represents a poten-
tial solution to a problem at hand.
Traditional genetic algorithms operate
on strings of bits.

Genetic algorithms use two mecha-
nisms to provide for the adaptive
behavior: selective pressure and infor-
mation inheritance. Selection, or com-
petition, is a stochastic process with
survival chances of an agent propor-
tional to itc adaptation level. The aclap-

tation is measured by evaluating
the phenotype in the problem
environment. This selection
imposes a pressure promoting
survival of better individuals,
which subsequently produce off-
spring. Cooperation is achieved
by merging information usually
from two agents, with the hope of
producing more adapted individu-
als (better solutions). This is
accomplished by crossover. The
merged information is inherited
by the offspring. Additional mutu-
tion aims at introducing extra
variability. Algorithms utilizing
these mechanisms exhibit great
robustness due to their ability to
maintain an adaptive balance
between efiiciency and efficacy.

The simulation is achieved by
iterating the basic steps of evalu-
ation, selection, and reproduction,
after some initial population is
generated (see Fig. 1). The initial
population is usually generated
randomly, but some knowledge of
the desired solution may be used to an
advantage. The iterations continue
until some resources are exhausted.
For example, the simulation may be
set for a specific time limit or a fixed
number of iterations. Alternatively, if
some information about the sought
solution is available, the simulation
may continue until some criteria are
met. Finally, the population dynamics
may be observed and the simulation
may stop if convergence to a solution
is detected.

A single iteration is illustrated in
the bottom of Fig. 1, where the bullets
represent individual chromosomes
with intensity proportional to levels of
adaptation-evaluation results. This
evaluation is performed by a task-spe-
cific evaluation function. Each oval
group represents the population
instance at the single iteration. Sto-
chastic selection (with replacement) is

applied to the beginning population
instance, producing the intermediate
state. Because of the selective pressure
favoring survival of better fitted indi-
viduals, the average fitness (manifest-
ed by darkness) of the chromosomes
increases. However, no new individu-
als appear. Following the selection,
reproduction operators are applied to
members of the intermediate popula-
tion. In this process, some chromo-
somes are modified. Therefore, the
third population instance will finally
contain some new chromosomes. This
process continues for a number of iter-
ations. The described iterative model is
called the generational GA. Variations
of this model are often used instead.

The two reproductive operators are
visualized in Fig. 2 , which assumes
binary coding for a chromosome
(white and black genes). Mutation is
performed here on the third bit of the

FEBRUARYIMARCH 1995 0278-6648/95/$4.00 0 1995 IEEE 3

Generate initial popillation P (0)
EVahJate P (0)
While resoiirces not exhausted end not done Ilerals

Select P (t=t+l) I' an intermediate population ' I
Reproduce P (l),I',the final population for current iteration *I
Evaluate P (1)

Mutstlon: Crossover: eoe.00
"OOmO Par*nts ~ l u ~ o u

Offspring ...0.0 Onspring OO0.00
DB0.00

Intermedlaln Final Beg l n n i n g

7g. 1 A GA and a graphical iilustration of a & g l e s

mm 00 a 1 Two schemata examples

~ m ~ o ~ o Exampies of member o ~ ~ ~ ~ o
represented by the two
schemata

Bm0umm chromosomes mooemo

chromosome by flopping the allele.
Crossover exchanges some genes
between two chromosomes. Here, the
exchange starts at the third bit. A mech-
anism is needed to apply the reproduc-
tive operators.

A simple approach is to use a sto-
chastic firing mechanism with some
prior probabilities for mutation and
crossover. A more sophisticated
approach is to update these probabilities
based on history, or information con-
tained in the population or individual
chromosomes.

If these generic crossover and muta-
tion operators are used, the only relation
to the process at hand is the.evaluation
function providing the simulated envi-
ronment. This is a great advantage,
leading to domain-independent charac-
teristics of the algorithm. This is also a
great limitation, prohibiting use of
available information about the problem.

A theoretical
and intuitive look

Genetic algorithms are not random
searches. They explore regularities in
the information the chromosomes repre-
sent. In a sense, the chromosomes are
not really individuals but representa-
tives of different species. Two different
chromosomes may have similar adapta-
tion levels if they represent similar
species. However, the same two chro-

mosomes may have different evalua-
tions if the difference between them is
significant. To explore such chromo-
some similarities, schemata are used.
Schemata are similarity templates that
contain fixed alleles for some genes but
arbitrary alleles for others.

For example, Fig. 3 illustrates two
different schemata in the top row-the
shaded alleles represent the don't care
positions. The left schema represents
species that can only have two different
chromosome instances, all shown below.
The right schema is more general (actu-
ally, the left schema is a specialization,
or subspecies, of the right one). A few of
its representative-chromosomes are
shown below. This schema can represent
up to sixteen different chromosomes.

Unfortunately, schemata cannot be
processed explicitly because they do not
provide complete phenotype informa-
tion needed for evaluations. Instead, a
CA processes complete chromosomes.
However, for practical problems, all
possible chromosomes cannot be
processed. Therefore, the information
about individual chromosomes is gener-
alized to draw conclusions about
implicit schemata.

The selective pressure causes the
search to proceed by working with
increasingly representative chromo-
somes of the above-average schemata.
The process continues by having more
and more specific schemata represented

in the population. For example, if all the
chromosomes on the right of Fig. 3
evaluate high, a likely conclusion is that
the third gene of the solution must con-
tain a white allele and the fifth black.

The schemata can also be seen as
hyperplanes of the search space. A
schema with no fixed positions is a
hyperplane that spans the complete
search space. A schema with only one
fixed position is a hyperplane.that
halves the search space, and so forth.
For example, the right schema of that
example, which has two fixed positions,
represents exactly one-fourth of the pos-
sible number of chromosomes.

The iterative selection terminates
when the represented schemata converge
to a single most specific schema-a
fixed chromosome. However, no schema
can be reached that was not represented
in the initial population. To extend the
search to other schemata, the reproduc-
tive operators are used. Therefore, repro-
duction causes exploration of new
schemata as well as generation of new
instances of the present schemata.

Unfortunately, both mutation and
crossover can disrupt currently represent-
ed schemata, in addition to generating
new ones. Given a proper balance, the
algorithm will continue exploring better
and better hyperplanes. Because of the
trade-off and the limited resources nor-
mally available for the search, there is no
guarantee that the globally optimal chro-
mosome will be found.

The hyperplanes identified during
the search as those that are above-aver-
age provide building blocks (the fixed
positions) for the algorithm. Then, the
same iterative search can be seen as a
process in which very short building
blocks, those in the very general
schemata, are put together to form
longer and longer blocks (more specific
schemata) until a particular chromo-
some is generated. This hypothesis is
called the Building Block Hypothesis.
Using building blocks, the reproductive
crossover can be explained as a mecha-
nism that assembles the building blocks
identified by different chromosomes
and promoted by selection.

t d

I r n I I
~ -~

Fig. 3 Illustration of the schemata concept.

32 IEEE POTENTIALS

Since all this depends on the genes’
locations in the chromosome, the
crossover will minimize disruption of
schemata with short building blocks
(short substructures). Mutation intro-
duces much smaller disruptions, espe-
cially for the more-general schemata.
These properties guarantee that the
above average schemata, which are pro-
moted by the selection mechanism, will
not be over-disrupted. This, along with
the selection itself, explains why genetic
algorithms work and is called the
Schemata Theorem.

Because GAS work by processing
implicit schemata by means of explicit
chromosomes, and the number of
schemata having chromosome represen-
tatives in a population of some fixed
size is exponential, genetic algorithms
are said to exhibit implicit parallelism.
Genetic algorithms also exhibit explicit
parallelism, that is, the processing can
be parallelized. This property allows
GAS to utilize fast-advancing parallel
processing technologies.

An example
The first example illustrates popula-

tion dynamics as a search of the poten-
tial solution space. Consider a very
simple problem of finding a maximum
of an unknown function over integers 1
through 16, whose evaluation is the
number of positive integers evenly
dividing the argument-

f(n): [1,16]+[1,6]. For example, 4
can be divided by three different inte-
gers: 1, 2, 4. his, f(4)=3.
The maximal value 6
belongs to the argument 12.

Furthermore, suppose we
use a population of 10 chro-
mosomes, each represented
by a binary sequence of four
bits blb2b3b4. The value
that the sequence codes is
assumed to be the decimal
equivalent of the binary
number plus 1-giving the
range 1 through 16. For
example, 00 10 represents
the value 3. Fig. 4 plots the
original function f(), along
with chromosome-value
distributions in the initial
population, and after 10 and
25 generations.

This is a very simplistic
examule since the number

Therefore, an exhaustive search could
have been performed at a smaller cost.
Nevertheless, it illustrates the dynamics
of the population. Initially, the chromo-
somes are randomly distributed over the
range, and the algorithm is said to per-
form exploration of the search space.
After 10 iterations, the distribution con-
centrates around regions with higher
expected payoff. After 25 iterations, all
but a few chromosomes represent the
sought maximum. These few solutions
are results of random mutation. At this
stage, the algorithm is said to perform
exploitation of the search space. Actual-
ly, an important property of a genetic
algorithms is that both exploration and
exploitation are performed simultane-
ously during the search.

This example is actually an illustra-
tion of a problem not suitable for genetic
algorithms. The search space of this
problem was too small to justify the
overhead of such a sophisticated algo-
rithm. In fact, the GA performed worse
than any exhaustive method would have.
Problems suitable for GA applications
are those with large search spaces, which
cannot be searched exhaustively and for
which no efficient algorithms exist.

Applications
Genetic algorithms are applicable to

problems that cannot be solved by other
less expensive methods. The algorithm
itself is a simulation which cannot pro-
vide real-time responses. Moreover, in
general it can only find a “good’ solu-

tion, that is an approximation of the
solution. However, there is a wide vari-
ety of such problems for which any
“close” solution is acceptable.

Genetic algorithms are most success-
ful in numerical parameter optimization.
The reason is that numerical solutions
can be easily represented as linear chro-
mosomes-both crossover and mutation
act on linear sequences of alleles. Also,
the quality assessment of such chromo-
somes is reduced to evaluations of the
original function.

In general, a GA application
requires:

1. A clear understanding of the prob-
lem and its objectives.

2. A genetic algorithm with
a. chromosome representation

with its semantics defined,
b. evaluation function utilizing the

representational semantics, and
a selective pressure mechanism
favoring better solutions,

c. a population of randomly or oth-
erwise generated representation
structures-the chromosomes,

d, reproductive operators, with
some firing mechanisms often
based on static probabilities.

A problem must be expressed in
terms suitable for GA optimization. The
most general problems suitable for
applications are:

1. Search for a topological structure.
2. Numerical parameter optimiza-

3. Combinations of these two.
tion.

of chromosomes is similar
to the range of the function.

Fig. 4 The orfgind funcflon and the chromasome distribution
during simulation.

Most problems can be
mapped into parameter
optimization problems.
This is especially easy for
those dealing with num-
bers. Moreover, such
applications are the easiest
to design, even in the
domain-specific model,
since only numbers are
being processed.

However, a numerical
problem does not neces-
sarily imply a vector rep-
resentation. Following the
domain-specific model,
the representation may be
based on properties of the
problem. A good example
here is the transportation
problem, where the objec-
tive is to set up transports
between some sources and
some destinations in such

FEBRUARYIMARCH 1995 33

- 6) domain-specific GA.

a way that the delivery costs are mini-
mized and all demands are met. Chro-
mosomes for this problem are best
processed as two-dirnensional arrays.

However, some probletns are not
easily mapped this way and must be
processed as topological structures. This
is the case, for example, for combinato-
rial problems such as the rrclvellitzt:
.su/esrnun problem. Here the objective is
to find a tour topology linking a nuniber
of cities in such a way that each city is
visited exactly once and the tour‘s cost
is minimized. Another example is thc
problem of learning inductive concept
descriptions, where the objective is to
find the best generalized description of
provided examples. This case is much
more difficult and requires some level
of domain-specific processing since thc
operators need to be properly designed
to process structures of the problem.

Yet, most practical problems are best
represented as a combination of topo-
logical and numerical processing. An
example is the problem of designing
and tuning a neural network for feed-
forward propagation. Here. the sought
solution has to represent both the best

methodologies implemented
in new operators, and a rep- =l resentation more suitable
for the problem at hand.

One first successful
application was work done
on the travelling salesman
pro b 1 em, ~h~ e, some
ieordering operators were

used to modify the explicitly represent-
ed tour rather than blindly cutting and
putting chromosomes together in hope
of finding the right structure. The com-
plexity of this approach is much greater,
as it often requires designing a tailored
representation, and a better understand-
ing of the problem so specific method-
ologies can be implemented in the
tailored operators.

On the bright side, this approach
generally provides performance increas-
es in orders of magnitude. For a number
of problems, thi? is the only feasible
approach. A good example of this
approach is the machine learning sys-
tem GIL, which has been designed for
learning symbolic descriptions from
example\ (e.g., learning descriptions of
patients with a specific disease from a
ho\pital database). There, the chromo-
somes are symbolic concept descrip-
tions and the operators implement
inductive learning methodology. Figure
5 shows the two extreme approaches.

Another potential disadvantage of
the domain-independent model is that
the syntactical structures identified for
the problem might not be quite suitable

network structure and its
weights. Another good
example is the problem of
optimizing i’uzzy rules for
control or classification,
where i t is necessary to
process high-level rules
along with some numerical
components such as rule
weights.

Level of
independence

Most early GA applica-
tions were based on a
df)mclin-ind~I~etzdnt model.
Dissatisfaction with its per-
formance on real-life prob-
lems led to effort\ to utilize
some do m ai n - s pec i f i c
information. This informa-
tion may include rich

for applications of operators. In other
words. even though this approach forces
identification and processing of building
blocks, such building blocks might be
difficult to combine in some cases.

An example here is the problem of
discovering the best topology of a neur-
al network. In these cases an extreme
effort must be made to designing a
domain-specific model. This often caus-
es the actual approach to sett1.e some-
where in between these two extreme
models. This trade-off is very often
profitable in that the resulting algorithm
exhibits satisfactory performance given
the design effort.

Constraints
In many applications. an additional

difficulty is the constraints the sought
solution must satisfy. Constraints cause
the most serious problems in the domain-
independent model, where the fixed rep-
resentation is often incapable of
representing only the desired chromo-
somes. This may cause the search to drift
into improper regions of the search space.

The most common way to deal with
these problems is to penalize chronio-
somes for not satisfying the constraints.
This works quite well with cr’eak con-
straints: those which can be violated to
some extent. However, this approach
often proves disastrous for strong con-
straints, which must be satisfied.

Another approach is to have follow-up
routines for all the operators. This “fixes”
the generated chromosomes by bringing

them into the feasible space.

1 o o - - y 0 1 I

I

f i e b& qolulton

iterations
0 50-

O M) I

1 6 11 15 20 25

I

However, for many applica-
tions, these routines are non-
trivial and introduce
additional computational
complexity.

A better approach is possi-
ble in the domain-specific
model. Here the representa-
tion is not fixed and can be
bound to the problem. Thus,
the genotype spans only the
potential solution space. This
action, alone, often causes the
chromosomes to satisfy all
the strong constraints. GIL
uses this approach. In other
applications, this may not be
possible or sufficient. Then
the obvious choice is to
require the operators to be
closed in the feasible space
(i.e., produce only feasible
offspring).

I ‘

34 IEEE POTENTIALS

GA variations
Today, there exist a number of vari-

ants of the generational approach to
genetic algorithms. This is because
many problems require special treat-
ment. In the basic iterative simulation,
two major alternatives emerged. First,
the selective pressure is often based on
ranks instead of actual values. This
makes the algorithm’s performance
independent of some of the problem’s
unknown characteristics and allows
control of the convergence speed. Sec-
ond, the iteration may have only one
operator, whose resulting chromosomes
replace the weakest ones in the popula-
tion (steady-state algorithm).

Other important modifications allow
adaptation of the decisions that inher-
ently affect GA performance: 1) proba-
bilities of operator applications and
their behavior, and 2) representation
that promotes development and propa-
gation of the building blocks.

Operator probabilities can be adapt-
ed by providing dynamic performance
measures for the operators and linking
their application to this measure. Adap-
tive operator behavior can be based on
context detection. For example, GIL
uses problem heuristics to trigger the
most appropriate operators. Finally,
adaptive representation can be provided
by extending the representation, so that
it becomes another parameter being
optimized. (A good example is the so
called messy GAS.)

An important GA extension is using
new representation, which can be gener-
ic (e.g. the domain-independent model),
but is more flexible than the originally
proposed linear representation. The
most studied and utilized is a tree-like
representation borrowed from LISP pro-
grams. An additional advantage is that
complete LISP programs do not require
any additional drivers to utilize the gen-
erated information. This leads to hopes
for automatic programming based on
genetic algorithms.

An application
As an application example, consider

the problem of minimizing a function of
N variables with domains [O,l]. The
function uses an index to measure the
sum of squares of distances between all
neighboring (by an index) variables. It
can be shown analytically that the sum
is minimized when all the distances are
the same. To avoid the trivial case when
all variables are the same, let us assume

that the first variable must be zero and
the last must be one (these are strong
constraints). Then, the minimal sum
will be produced when each variable I+
has the value v, = v, + 1/N (e.g., for
N=5, the five variables have values 0,
0.25, 0.5, 0.75, 1). In other words, the
optimal solution vector will span a
straight line between 0 and 1.

To solve the problem, one must
select a representation for a potential
solution, provide operators to manipu-
late this representation, provide an
objective function evaluating chromo-
some quality, provide a population of
some initial chromosome-solutions, and
iterate the algorithm.

Since a solution is a vector of N
bounded real variables, we decided on a
floating point representation for a single
variable, and a vector of such to repre-
sent a potential solution. To manipulate
the representation, we provided: 1) a
crossover operator with possible split
locations between any two neighboring
variables, 2) an operator averaging two
vectors, and 3) a mutation operator
modifying a single variable’s value,
within the domain [0,1], with non-uni-
form probability density. The modifica-
tion’s expected magnitude would
decrease as the population aged.

As usual with numerical parameter
optimization, the function itself provid-
ed the objective evaluations. Each chro-
mosome was judged by its sum of
squared distances. We decided on a
population of fifty chromosomes, which
were initialized randomly. To deal with
the constrained variables, we narrowed
the domains for the first and the last
variable to [O,O] and [1,1], respectively.

A trace of a 5000-iteration simula-
tion is illustrated in Fig. 6 for N=25,
which presents values of the best chro-
mosomes at some iteration intervals.
The algorithm fiids a plausible solution
after a small number of iterations, then
uses the remaining iterations to fine-
tune this solution. In this constrained
case of N=25, the absolute minimal sum
is 0.041667. The best solution found
after 5000 iterations was 0.041791.

Summary
Genetic algorithms enjoy more and

more successful applications, often in
completely new fields such as machine
learning and job scheduling. The most
important factor in these advancements
is building applications utilizing prob-
lem-specific representations, operators,

and heuristics. At the same time, it is
important to realize disadvantages and
limitations of these approaches. The
simulative nature prevents real-time
applications and set-up costs do not
stand up against other simpler
approaches, if such are possible.

The experiments reported in this paper
were performed using GenET-a genetic
algorithm implementing different variants
of the basic model. It also prqvides a
library of representations and operators to
choose from when writing an application.
This system has been designed to speed
up problem-specific genetic algorithm
applications. An initial release, along
with the user’s manual, is available in
public domain from the authors. Send
inquiries to janikow @radom.umsl.edu
with subject GenET.

Read more about it
Davis, L., (ed.), Handbook of

Genetic Algorithms. Van Nostrand
Reinhold, 199 1.

Evolution Computation, MlT Press,
publishes articles on GAS and other
evloution-based algorithms.

Goldberg, D.E., Genetic Algo-
rithms in Search, Optimization &
Machine Learning. Addison Wesley,
1989.

Grefenstette, J.J., “Genetic Algo-
rithms and Their Applications,” In A.
Kent & J. Williams (eds.), The Encyclo-
pedia of Computer Science and Tech-
nology. Marcel Dekker, 1990.

Holland, J., Adaptation in Natural
and Artificial Systems. University of
Michigan Press, 1975.

Machine Learning publishes a spe-
cial issue on GAS every other year.
Kluwer Academic Publishers. The 1993
issue describes the GIL system.

Proceedings of the International
Conference on Genetic Algorithms,
which has been held every second year
since 1985. Morgan Kaufmann.

About the authors
Cezary Z. Janikow is Assistant Pro-

fessor of Computer Science a the Uni-
versity of Missouri-St. Louis. His work
focuses on genetic algorithms for
numerical optimization with constraints
and for symbolic concept learning.

Daniel St. Clair is Professor of Com-
puter Science at the University of Mis-
souri-Rolla. He also holds the position
of Visiting Principle Scientist at
McDonnell Douglas Research Labora-
tory in St. Louis.

FEBRUARY/MARCH 1995 35

mailto:radom.umsl.edu

