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Teaching computers to acquire knowledge 

omputer programs that 
learn are called Machine 
Learning programs. 

These machine learning programs are 
being used to automatically create 
and maintain knowledge bases for 
such applications as: diagnosis, com- 
puter vision, speech understanding, 
autonomous robots, discovery learn- 
ing systems, and intelligent tutoring 
systems. Some researchers are work- 
ing on computer programs that learn 
to make philosophical assessments ! 

Using mathematics and logic, re- 
searchers have constructed programs 
capable of “learning.” These programs 
develop concepts, infer new concepts 
from existing concepts and revise in- 
correct concepts. Similar to humans, 
machine learning usually focuses on 
one or two subjects at a time, and 
builds on knowledge already learned. 
For example, humans learning about 
the design of microcomputers must 
use their knowledge about Boolean 
algebra. In machine learning, the 
subject area being learned is called the 
domain. 

The set of concepts created by a 
machine learning algorithm is referred 
to as a knowledge base. Knowledge 
bases for one domain may be com- 
bined with knowledge bases for other 
domains. This notion is similar to the 
way humans increase their knowl- 
edge. Knowledge bases can be used to 
answer questions and make conjec- 
tures about new situations. For ex- 
ample, a knowledge base containing 
concepts about a particular set of cir- 
cuit boards might be used to diagnose 
defective boards. While conventional 
programs have been written for such 
purposes, they are unable to make 
conjectures about situations for which 
they have not been trained. 

The actual learning of concepts 
may be supervised or unsupervised. 
In supervised learning a “teacher” 
guides the program through the learn- 
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ing process by providing information 
about the domain being studied. This 
guidance may be in the form of sets of 
examples which are then used to train 
the system. Some programs require that 
information be in the form of a model 
of the domain. Programs requiring only 
training examples are often referred to 
as empirical learning algorithms while 
those that require a model are called 
knowledge intensive algorithms. 

Unsupervised or discovery learning 
programs develop concepts by perform- 
ing various analyses of the input they 
receive. Many of these programs de- 
pend on statistical techniques to help 
them discover patterns in input informa- 
tion. They may or may not rely on 
knowledge learned previously. This 
approach has been used to discover 
concepts completely unanticipated by 
researchers and domain experts. 

Difficulties 
One major problem in building these 

programs is that computers and humans 
are not good at the same types of learn- 
ing tasks. For example, consider the 
several types of inference shown in 
Fig. 1. Inference is the process of devel- 
oping concepts from specific inputs such 
as examples, facts, and descriptions. The 
arrow labeled “computer inference” 
indicates that role leaming is easier for 
computers than learning concepts from 
observation and discovery. The arrow at 
the bottom indicates that humans, in 
general, are much better at learning from 
observation and discovery than they are 
at rote learning or at learning by being 

told. (Perhaps professors should be I 

lecturing computers instead of stu- 
dents.) In any case, while scientists 1 

understand many things about the 
learning of concepts, they have been 
unable to completely define concept 
learning in an algorithmic way. If this 
were possible, computer programs 
could be written which would cause 
computers to behave in more “human 
like” ways. To better understand the 
complexity of machine learning, con- 
sider the set of objects shown in Fig. 2 .  
The concept to be learned from these ~ 

objects so simple it could easily be 
understood by a child of age five. 
However, the challenge lies not in the 
difficulty of the concept but in know- 
ing which features of the figure are 
significant. I 

Suppose the learner is told that 
rectangles A, B, C, and D are ex- 
amples of the desired concept and 
rectangles E, F, G, and H are counter 
examples of the concept. While this 
information influences one’s thinking 
about the problem, the concept to be 
learned is still not evident. Next, sup- 
pose the learner is told that the con- 
cept of interest is associated with 
square #3 in each rectangle. The prob- 
lem is now trivial since examination 
of these squares reveals that the right- 
most triangle in square #3 of rec- 
tangles A, B, C, and D is oriented in 
exactly the same direction! Those of 
rectangles E, F, G, and H are not. This 
simple example illustrates a very dif- 
ficult problem in developing com- 
puter programs that learn. In order to 
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Fig. 2 Example of Simple Concept Learning 
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Fig. 3 Physical Data (Source: Quinlan, J. R., 
“Induction of Decision Trees,” Machine 
Learning, Kluwer Academic Publishers , Vol. 

be able to learn concepts, 
humans as well as comput- 
ers must be able to decide 
what information is impor- 
tant and what information 
can be discarded. 

Learning concepts in 
the real world is further 
complicated by factors 
such as the quality and 
quantity of inputs the 
learnerreceives. Too many 
inputs adds unnecessary 
complexity to the learning 
task. Too few inputs or 
noisy inputs result in the 
formulation of incomplete 
and incorrect concepts. For 
example, in many machine 
learning applications 
where real data is used for 
training, it is often difficult 
to separate noisy data from 
“sparse but accurate” data. 
Sparse but accurate data 
occurs when you have only 
a few correct training ex- 
amples of a particular 
concept. The training ex- 
amples are so few that sta- 
tistical noise reduction 
techniques often label these 
training examples as noise 
and tag them for removal 
from the training data. This 
situation occurs in the di- 
agnosis of aircraft avion- 
ics systems where test pro- 
grams are used to identify 
most diagnostic situations. 
Current avionics test pro- 
grams do an excellent job 
of circuit diagnosis; how- 
ever, rare, but valid situ- 
ations may occur which are 
not in the current diagnos- 
tic knowledge base. Con- 
cepts surrounding these 
situations must be learned 
if avionics diagnostics are 
to be performed in a timely 
manner. Machine learning 
algorithms must be able to 
distinguish sparse but ac- 
curate inputs from noisy 
inputs. 

1, 1986, pp. 81 - 106.) 
Some current armroaches 
to machine leaining 

Knowledge created by machine 
learning algorithms takes one of two 
basic forms: symbolic or analog. Sym- 

bolic machine learning algorithms cre- 
ate knowledge bases whose contents 
can be thought of as rules and facts. For 
example, a knowledge base might con- 
tain the ru1e:If the switch is on, and the 
car won’t start,then check the bat- 
tery. If it is known that the hypotheses 
are true; i.e.. the switch is on, and the car 
wont start, then the resulting action is to 
check the battery. 

One well-known symbolic algo- 
rithm, ID3, was developed by Dr. Ross 
Quinlan in 1979. The ID3 algorithm 
uses training examples as input. From 
these examples, ID3 constructs a deci- 
sion tree. Each path in the decision tree 
corresponds to a rule. 

The set of training data shown in Fig. 
3 can be used to illustrate ID3. Associ- 
ated with each set of features or attrib- 
utes; outlook, temperature, humidity, and 
windy is a classification of pos (posi- 
tive) or neg (negative). The objective is 
to develop rules which use one or more 
of the attributes; outlook, temp, humid- 
ity, and windy to predict classification. 

Applying ID3 to this data produces 
the decision tree shown in Fig. 4. The 
dashed path illustrates the rule: If 
outlook is sunny, and humidity is 
normal, then class is pos. In develop- 
ing the tree, ID3 uses a special measure 
called entropy to select the attribute to 
be used at each node. The attribute is 
chosen which minimizes the depth of 
the resulting tree, since attributes are 
chosen locally In general, the smaller 
the depth of the tree, the more general 
and more powerful the set of rules repre- 
sented by the tree. 

The ID3 algorithm is popular be- 
cause it is relatively easy to program and 
to use. Other machine learning algo- 
rithms, such as Michalski’s AQ15 or 16, 
use training examples to form a set of 
rules. These rules constitute the knowl- 
edge base. However, AQ 15 requires the 
user to initialize numerous parameters 
while ID3 does not. Still other symbolic 
algorithms are called “knowledge inten- 
sive” because they require aprior knowl- 
edge about the domain being modeled. 

Explanation Based Learning sys- 
tems, EBL, are examples of knowledge 
intensive machine learning algorithms. 
These algorithms use prior domain 
knowledge consisting of facts and rules 
to form a generalization of each training 
example. These generalizations are not 
only used to extend the current knowl- 
edge base, but can be used to provide 
explanations of responses given by the 
system. 
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Fig. 6 Node Detail 

Genetic algorithms are another 
machine learning paradigm which gen- 
erate rules. They are interesting because 
their basic philosophy is patterned after 
natural genetics. Genetic algorithms 
represent rules as vectors containing bits. 
Each bit in the string corresponds to one 
value of one of the attributes. A string of 
bits is used to represent a rule. These bit 
strings are called chromosomes. Op- 
erations on chromosomes include muta- 
tion, crossover, and reproduction. Ge- 
netic algorithms have been successful in 
a number of applications. 

Analog machine learning algorithms 
represent knowledge in the form of 
weight parameters and functions. These 
weights and functions are chosen so as 
to represent the concepts being learned. 
Learning is effected by adjusting weight 
parameters and function definitions until 
the desired responses are achieved. This 
type of learning algorithm tends to be 
very mathematical in nature. Because of 
this, the knowledge created by analog 
machine learning algorithms is usually 
more difficult to understand because 
function and weight values are much 
less intuitive than sets of rules. 

Artificial Neural Networks (ANN) 
depict a broad class of analog learning 
algorithms. One type of ANN, 
Backpropagation (BP), represents 
knowledge as two or more layers of 
nodes. Each node is connected by one or 
more arcs. Figure 5 illustrates a BP net- 
work with four layers; an input layer (I), 
an output layer (0), and two hidden 
layers (H1 and H2). The number of 
nodes jn the input layer, I, corresponds 
to the number of input attributes. The 
number of output nodes, 0, correspond 
to the number of classifications. Deter- 
mining the number of nodes in each 
hidden layer as well as the number of 
hidden layers in a network are currently 
active areas of ANN research. 

Figure 6 illustrates the basic struc- 
ture of a node. Associated with each arc 
is a weight, w, and associated with each 
node is the threshold function, f(z). The 
first process performed at the node is to 
sum the weighted incoming signals, 

x2 

x3 

z = xi WiXi 

where x, denotes the output of node i 
from the previous layer. The ouput: 

is used as an input to nodes in the next 
level. There are several choices of acti- 
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vation functions. One function that works 
well in practice is the hyperbolic tangent 
function, viz. 

f(z) = (1 - e-2z ) / (l+e-2z) 

which produces values for f(z) in [ - 1,1] .  

Training examples are introduced at 
the input layer, 1. The values are then 
propagated through the network. For 
instance, output node with the highest 
value represents the network’s result. 
Training consists of using the training 
examples to adjust the values of appro- 
priate weights. Mathematical program- 
ming algorithms such as steepest de- 

scent or conjugate gradient are typically 
used to determine weight adjustments. 
Training can occur after each training 
instance is processed or after each Ep- 
och. An Epoch represents one complete 
pass through the training set. This pro- 
cedure is repeated until an acceptable 
number of training examples have been 
correctly classified. At this point, the 
network can be used to classify unseen 
inputs. 

NonDestructive 
Evaluation (NDE) 

One application of machine learning 
currently under investigation at McDon- 

~~~ ~~ 
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ne11 Douglas Research Laboratories in 
St. Louis, MO is the automation of 
NonDestructive Evaluation (NDE) tech- 
niques. The statement of the problem is 
simple: detect subsurface anomalies in 
aircraft structures. The identification of 
such anomalies is crucial to aircraft 
safety. Technicians often use ultrasonic 
waves to find and identify these anoma- 
lies. During the tests, a probe is placed at 
various locations on a structure and the 
resulting waveform outputs observed 
on a CRT. Waveform features indicate 
the location and type of any anomalies. 
Ultrasonic NDE testing and evaluation 
is presently carried out manually. Since 
each aircraft has several thousand points 
which have to be tested, the process is 
extremely time-consuming. In addition, 
the results require careful interpretation. 

Figure 7 illustrates an example test 
structure. Placing the test probe at posi- 
tion A gives a no-anomaly reading 
while placing it at position B gives an 
anomaly reading. Figure 8 shows the 
waveform taken from position B .  The 
waveform is produced by reflections of 
the ultrasonic waves. The high front and 
back surface amplitudes are produced 
when the ultrasonic waves reflect from 
the top and bottom of the structure. Note 
the additional high amplitude produced 
at the Anomaly position. The correspond- 
ing no-anomaly waveform is similar 
except there are no extreme amplitude 
changes between the Front and Back 
Surfaces. In addition, the amplitude at 
the Back Surface is about the same as it 
is at the Front Surface. All anomalies are 
not as easy to identify. For example, 
anomalies close to the Front /Back Sur- 
faces are not as pronounced. The struc- 
ture geometry also affects the ease with 
which anomalies can be detected. 

McDonnell Douglas Researchers 
have applied both symbolic and analog 
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machine leaning techniques to NDE 
waveforms. These algorithms produce 
knowledge bases which can be used to 
quickly and accurately evaluate wave- 
forms from NDE tests. Expert NDE test 
technicians have carefully supervised 
testing and have reviewed results. They 
indicate that the knowledge bases pro- 
duced perform at the “expert” level on 
the structures evaluated . 
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