
C
ombinatorial optimization prob-
lems typically require every
possible solution to be evaluat-
ed to ensure finding the optimal

solution. Since such exhaustive search-
es are often impractical, there is now a
vast body of heuristic algorithms for
them. Among the algorithms are those
based on metaphors borrowed from
other areas of science. The idea is that
key elements of physical processes can
be used abstractly to form the basis of
an optimization algorithm. This article
presents a broad overview of several
metaphor-based algorithms, including
the widely-used genetic and simulated
annealing algorithms.

Possibly the most famous combina-
torial optimization problem is the
Traveling Salesman Problem: Given a
set of points, either nodes on a graph or
cities on a map, the objective is to find
the shortest possible tour that visits
every single point exactly once and
then returns to its starting point. Simple
heuristics for choosing a tour, such as
iteratively picking the closest city to the
current one, do not necessarily yield
optimal tours. At the same time, an
exhaustive search of all the possible
tours to find the best one can be compu-
tationally impractical.

There are (n-1)!/2 possible tours for
any n-city traveling-salesman problem.
Thus, while there are only 2520 possible
solutions (tours) for a small 8-city prob-
lem, there are 653,837,184,000 possible
solutions for a 16-city problem. Even if
a computer could evaluate a single tour
in one-millionth of a second, it would
require almost eight straight days to
evaluate all of the possible solutions to a
16-city problem. Furthermore, this
extensive computation would be of little
use in another instance (with different
data) of the same problem.

Another example of a combinatorial
optimization problem is the Location-
Allocation Problem. Given a set of facil-
ities, each of which can serve a certain
number of nodes on a graph, the objec-
tive is to place the facilities on the graph
so that the average distance between
each node and the facility that serves it is
minimized. That is, where should the
police department build stations (of pos-
sibly different sizes) so that the residents
are as close as possible to the stations
that serve them? Figure 1 (pg 22) shows
an example of a location-allocation
problem and its solution. The square
nodes represent facilities serving nodes
in their respective regions.

Strictly speaking, any problem that
has a large set of discrete solutions and
a cost function that rates those solutions
relative to one another is a combinatori-
al optimization problem. In combinato-
rial optimization problems, the number
of solutions grows exponentially as the
size of the problem grows. This is what
makes them so challenging.

For traveling salesman problems, for
example, the size of the problem is the
number of cities to visit. The solution
set is the set of all possible tours
through those cities. The cost function
for a traveling salesman problem is the
length of the tour.

Meanwhile, for location-allocation
problems, the size of the problem is
affected by both the number of nodes in
the graph and the number of facilities.
The solution set is the number of possi-
ble ways that the facilities can be
placed on the graph crossed with the
number of possible ways that the nodes
can be assigned to facilities. The cost
function is the average distance from
each node to its corresponding facility.

The engineer’s job is to find algo-
rithms that can reliably produce results
that are close to optimal in a reasonable
amount of time. We will look at four suc-
cessful attempts to apply metaphors from
other sciences to develop algorithms for
combinatorial optimization problems.
We will also look at less successful
results using the same approach.

Evolution and the
Genetic Algorithm

As their name suggests, genetic algo-
rithms attempt to mimic the process of
biological evolution in developing a
solution. The algorithm begins by ran-
domly generating a reasonably large set
of candidate solutions (the initial “popu-
lation”). Then, each solution is rated for
its “fitness” according to some metric
that is appropriate for the problem.

For example, an attempt to solve a
traveling salesman problem would start
by generating a set of possible tours and
then calculating each tour’s length. The
shorter the tour length, the higher the
fitness of the solution.

After all of the solutions’ fitnesses
are calculated, a new set of solutions is
produced by randomly picking solu-
tions (with some replication, to keep
the population more or less constant)
out of the original set with a preference
for the solutions with higher fitness.
This is the “natural selection” of biolo-

APRIL/MAY 2001 0278-6648/01/$10.00 © 2001 IEEE 21

Nature’s

algorithms

Social and natural metaphors
in algorithm design

Joseph Carnahan
and

Rahul S imha

©
P

ho
to

 D
is

c

Nature’s

algorithms

Social and natural metaphors
in algorithm design

Joseph Carnahan
and

Rahul S imha

22 IEEE POTENTIALS

gy, weeding out the weaker
members of the population of
solutions.

Next, members of the new set
of solutions are paired. Parts of
their solutions are swapped
within each pair, followed by an
occasional “mutation” to change
a solution slightly. In theory, this
swapping reflects the way that
DNA is combined in sexual
reproduction. Then, this pattern
of evaluation, reproduction,
swapping and mutation is
repeated until a sufficiently sat-
isfactory (low-cost) solution
appears to dominate the rest of
the population.

Genetic algorithms have
been shown to perform fairly well in a
wide variety of problems. The largest
difficulties arise when there is no
obvious way to “mate” solutions.
Also, since genetic algorithms are a
general-purpose problem solver, they
can often be outperformed by more
specialized algorithms designed for
that particular problem.

Metallurgy & the simulat-
ed annealing algorithm

Simulated annealing is another gen-
eral-purpose optimization problem
solver. Its metaphor comes from metal-
lurgy instead of biology. When molten
metal cools too quickly, many desirable
qualities, such as strength or magnet-
ism, are lost or degraded. In contrast,
when molten metal is cooled slowly by
a process called annealing, these prop-
erties are retained or enhanced. This
idea of slow cooling has been applied in
the abstract to solving combinatorial

optimization problems.
The simulated annealing

algorithm is most easily
understood as an improve-
ment on a very simple
heuristic, called “greedy
local search.” It operates as
follows:

1. Start with any proposed solution.
2. Change the solution slightly. (For

example, swap two cities in a traveling
salesman tour).

3. Check to see if the new solution is
better than the original. If not, undo the
change.

4. Keep going back to step 2 until it
is apparent that any small change will
only make the solution worse.

Greedy local search has a major
weakness: what if a dramatically better
solution can be reached by making two
or more consecutive changes? This
algorithm finds a result that is only
locally optimal: it is better than any of
the results that are close to it, but it may
not be the best result overall. The best
result overall, which is what the algo-
rithm is seeking, is called the “globally
optimal” result. Figure 2 shows both a
locally optimal solution and the globally
optimal solution to an arbitrary func-
tion. Note that a genetic algorithm with-
out mutation is also likely to get “stuck”
in a local optimum.

Simulated annealing attempts to
improve on greedy local search by
occasionally taking a risk and accepting
a worse solution. Specifically, when a
solution less optimal than the current
solution is proposed, the algorithm
starts by computing ∆C, the difference
between the cost of current solution and
the cost of the proposed one. Then, the
algorithm generates a random number r

(the function Random() below) in the
range 0 < r < 1. If r is less than e -∆C/T

then the proposed change is accepted.
Here, T is the metaphoric “tempera-
ture,” that is iteratively decreased to
make this probability of acceptance low
at low temperatures. An outline of the
algorithm is shown in Box A.

At the search’s beginning, the tem-
perature is high and the algorithm is
very likely to explore new solutions.
This holds true even if those new solu-
tions are slightly less desirable than the
current one. However, as the search
progresses, the temperature is slowly
lowered and the algorithm is less and
less likely to accept a switch to a locally
less optimal solution.

Theoretically, it is possible to show
that the temperature should be lowered
in proportion to (1/log(n)). However, at
that rate, the cooling is too slow for the
algorithm to terminate within a reason-
able amount of time. Realistically, the
temperature is usually lowered at a lin-
ear or exponential rate. Even with these
faster cooling schemes, simulated
annealing’s compromise between
exploring all the possibilities and hom-
ing in on a locally optimal result has
proven to be a very effective.

Physics and the location-
allocation problem

The previous two examples are gener-
al purpose algorithms designed to handle

Box A
S = initial_state; // The current “working” solution
minS = S; // The best solution so far
T = initial-temperature;
while (T > final-temperature)
S’ I = Generate_New_State (S);
if (Cost(S’) < C(S))
S = S’;

else if (Random() < exp((Cost(S) - Cost(S’)) / T))
S = S’;// even though Cost(S’) > Cost(S)

else
// do nothing - stay in same state

end if;
if Cost(S) < Cost(minS)
minS = S;

end if;
T=Get_New_Temperature();

end while;
output minS, Cost(minS);

Fig. 2 Local and global optima

Locally
optimal

Globally
optimal

Possible solutions

F
un

ct
io

n
va

lu
e

Fig. 1 A solution to an arbitrary loca-
tion-allocation problem

1

2

3
4 8

5

7

6

APRIL/MAY 2001 23

any combinatorial. optimization prob-
lem. However, the characteristics of a
particular problem often lend themselves
to a more specialized heuristic. Here, too,
physical metaphors have played a role in
inspiring optimization algorithms.

To solve the location-allocation
problem discussed in the beginning, an
approach called the Simulated N-Body
Algorithm has been adapted from the
study of moving particles in physics.
The facilities that need to be placed on
the graph are modeled as particles. The
mass of each particle is proportional to
the capacity of the facility that it repre-
sents. Particles are allowed to move
from node to node around the graph.

There is a repulsive force between
each pair of particles that is inversely
proportional to the distance between the
particles. This means that to minimize
the potential energy of the system, the
particles will tend to spread out from one
another. Also, to keep the particles from
all being pushed to the outer edge of the
graph, a repulsive force from an artificial
surrounding “boundary” is added.

To fix the particles into a low-energy
configuration, a process of aggregation
and decomposition is used. Initially,
every particle is aggregated into one
large particle with the combined mass
of all of its member particles. Then, the
smallest of all of the particles is
removed from the large aggregate parti-
cle. Next, the large particle and the
small one are moved into whatever
positions will give them the lowest
potential energy. The smallest particle is
fixed into place, and then the process is
repeated by removing the next-smallest
particle from the large aggregate parti-
cle. From smallest to largest, the parti-
cles are all eventually attached to vari-
ous nodes. The configuration of parti-
cles that results from this approach turns

out to be a reasonably good configura-
tion of facility locations.

Math economics and
computer networks

A familiar pricing mechanism from
economics has been used as a metaphor
for an algorithm targeted at some opti-
mization problems in computer net-
works and distributed systems.
Although not strictly a combinatorial
optimization algorithm, the algorithm
can be applied to certain classes of con-
tinuous (real-variable) optimization
problems. They also work for combina-
torial optimization problems that can be
approximated by transformation to a
continuous optimization problem.

While the details may vary, the idea
is to identify certain parts of the system
as “commodities” and other parts of the
system as “consumers” competing for
these commodities. In a real economy,
such competition is settled by prices:
Each consumer buys as much as they
can afford, buying more of whichever
commodities they need more than oth-
ers. The prices, in turn, are influenced
by the demands of the consumers.
Commodities that are in high demand
become more expensive.

This system of pricing prevents any
one consumer from purchasing all the
valuable commodities. Yet, it still
allows consumers to buy more or less of
a given commodity, depending on how
important that commodity is to them. In
effect, the consumer is maximizing a
utility function. This is a function that
weights the importance of each com-
modity to the consumer.

A similar process can be used for a
distributed system: Each consumer has
a utility function and a fixed amount of
money with which to bid. Whether the
commodity is processor time, access to

a networked printer, or anything else,
the bidding process establishes an equi-
librium that takes into account the
demands of each of the consumers.

For example, consider the situation
where two computer terminals wish to
share two database files. The files can be
stored at either location, but accessing a
part of the file stored at the other location
is much slower than accessing it from the
locally stored one. So, a decision must be
made regarding how much of each file
should be stored at each terminal.

Now, suppose that information has
been gathered about the probability that
an access at each location will require
either file. Based on this probability and
based on the amount of each file already
stored locally, a utility function can be
defined for each terminal. It is the prob-
ability that any given access at that ter-
minal can be handled locally.

Each file is given an arbitrary start-
ing price and each terminal is given a
fixed amount of simulated money with
which to bid. Maximizing the utility
functions within the constraints of the
amount of money that they have, each
terminal asks for a certain portion of
each file. After that, the prices of each
commodity are adjusted in proportion to
how much each of them was requested.
Based on the new prices, the two termi-
nals recompute their utility functions
and make a new bid for a share of the
two files. This iterative process (called
tatonnement in microeconomics) is
repeated until the prices have stopped
changing and some sort of equilibrium
has been achieved.

At any point in the bidding process,
if either terminal starts requesting enor-
mous amounts of either file, the price of
that file will jump up. With only a fixed
amount of money to bid with, the termi-
nal will be forced to ask for less of the
now expensive file. Similarly, if either
file is accessed less often than the other
one, its price will drop. This encourages
both terminals to bid for more of it to
increase the likelihood that database
queries can be satisfied locally.

Particle physics, elasticity
& the traveling salesman

The paper, “Emergent Collective
Computational Abilities in Interacting
Particle Systems,” by Z. Zhang, S. Bai,
and G. Li, is another example of an
attempt to apply a metaphor from parti-
cle physics to solving a combinatorial
optimization problem. Specifically, the

Fig. 3 An initial layout for the 10 city
string-particle model (The brown
points are the cities. The beige
points are the moving particles.)

Fig. 4 An in-progress snapshot of the
10 city string-particle model

24 IEEE POTENTIALS

goal is to solve traveling salesman prob-
lems with a simulation of charged parti-
cles connected by elastic bands.

The algorithm operates as follows:
The cities that the traveling salesman
seeks to visit are modeled as N fixed
negatively-charged particles. Then, N
freely moving, positively-charged parti-
cles are placed in a circle around the
center of mass of the cities. The radius
of this circle is equal to the average dis-
tance of the cities from their collective
center of mass. The moving particles
are connected by a loop of elastic string
that applies a force proportional to the
distance between the particles. Figure 3
shows an example of the particles in
their initial configuration for a 10 city
traveling salesman problem.

To find a solution, the particles are set
free to move under the influence of their
electric charges and the force of the elas-
tic string. Figure 4 shows the particles for
the example problem after they have
begun moving. Whenever a moving par-
ticle collides with a city, it locks into
place there and stops. When all of the
particles stop moving, the elastic string
now traces a tour through all of the cities.

This string-particle metaphor shows
some promise as an algorithm, since the
force of the elastic bands will try to
minimize the distance between adjacent
particles. However, some empirical test-
ing has shown that other methods pro-
duce better solutions to traveling sales-
man problems.

Figure 5 is a graph that compares the
costs of the traveling salesman solutions
with the string-elasticity model to solu-
tions found by two other metaphor-
based algorithms. Clearly, simulated
annealing produces the lowest-cost
tours, followed by genetic algorithms.

(In fact, genetic algorithms
do not perform well for
traveling salesman prob-
lems because most schemes
for mating two different
tours actually reduce the
average fitness of the two
tours.) Also, the particle
physics metaphor does not
work well for the traveling
salesman problem.

Discussion
As we have seen, a vari-

ety of algorithms are
inspired by processes and
systems studied in other sci-
ences. These metaphor-
based algorithms often suc-

ceed by introducing a completely new
approach to a familiar problem. This
new idea may or may not be better than
any previous ones. But, the novelty itself
has propelled several of these metaphor-
based algorithms to popularity.

However, the catchy sound of a new
metaphor does not necessarily reflect on
the algorithm based on that metaphor. It
certainly gives no guarantees about the
quality of a particular implementation
of that metaphor-based algorithm. In
particular, genetic algorithms seem very
intriguing since as human beings, we
ourselves are the result of an evolution-
ary process. Naturally, there is some
appeal in the assertion, “The algorithm
that created me is a good algorithm.”

Personal appeal aside, there has been
a fair amount of empirical testing of sev-
eral metaphor-based algorithms.
Particularly for combinatorial optimiza-
tion problems, metaphor-based algo-
rithms have provided useful alternatives.

In addition, metaphor-based algo-
rithms are often fairly simple to imple-
ment. It is usually quicker to apply sim-
ulated annealing than to custom design
a heuristic for a particular problem.
However, experience shows that spe-
cially designed heuristics can often out-
perform general purpose heuristics such
as annealing. Also, some metaphor-
based algorithms lend themselves very
well to parallel processing. Whereas,
considerable parallelization effort may
be required for a custom heuristic.

Finally, we note that genetic algo-
rithms can be confused with two other
areas of research, namely DNA comput-
ing and evolutionary algorithms. The
former involves storing data in strands
of actual DNA and using enzymes to
break down and recombine the DNA to

process the data. The latter is the idea of
applying genetic algorithms to the
process of algorithm development itself.
In this case, the population of solutions
is actually replaced by a population of
algorithms. They are allowed to com-
pete and recombine to produce new
algorithms. Also, the term “emergent
behavior” is sometimes used to describe
macro-behavior obtained from interact-
ing components. This leads to yet
another biology-inspired optimization
algorithm, the neural network.

Read more about it
• D.E. Goldberg. Genetic Algorithms

in Search, Optimization and Machine
Learning. AddisonWesley Pub. Co.,
Reading, Mass., 1989.

• E. Aarts and J. Korst. Simulated
Annealing and Boltzmann Machines.
John-Wiley Sons, 1989.

• R. Simha, W. Cai and V. Spitkovsky.
Simulated N-Body: A New Particle
Physics-Based Heuristic for a Euclidean
Location-Allocation Problem. J.
Heuristics, Vol. 7, No. 1, 2001, pp. 23-36.

• J.F. Kurose and R. Simha. A
Microeconomic Approach to Optimal
Resource Allocation in Distributed
Computer Systems. IEEE Transactions
on Computers, May 1989.

• D.F. Ferguson, C. Nikolaou, J.
Sairamesh and Y. Yemini. Economic
Models for Allocating Resources in
Computer Systems, in Market based
Control of Distributed Systems, Ed. Scott
Clearwater, World Scientific Press, 1996.

• X. Yao (Ed.). Evolutionary
Computation: Theory and Applications.
World Scientific Pub., 1999.

• L.M. Adleman. Molecular computa-
tion of solutions to combinatorial prob-
lems. Science, 266:1021, 1994.

• S.S. Haykin. Neural Networks: A
Comprehensive Foundation. Prentice-
Hall, 1998.

About the authors
Joseph Carnahan graduated from the

College of William and Mary, Virginia
in 2000. He is currently a scientist
a t the Advanced Computational
Technology Group at the Naval Surface
Warfare Center, Dahlgren Division.

Rahul Simha is an Associate
Professor of Computer Science at The
George Washington University,
Washington DC, 20052. Email:
simha@seas. gwu. edu.

This work has been supported in part
by grant CDA-9712718 from the
National Science Foundation.

Fig. 5 Comparing algorithms for solving traveling
salesman problems

0
0

5

10

15

20

25

30

35

40
Simulated annealing

Genetic algorithm
String-particle Metaphor

Number of cities

A
ve

ra
ge

 p
at

h
le

ng
th

 fo
un

d

20 40 60 80 100

