
CS 477/677 Analysis of Algorithms 
Fall 2007 – Dr. George Bebis 

Course Project 
Due Date: 11/29/2007 

 
 

Part1: Comparison of Sorting Algorithms (70% of the project grade) 
 

The objective of the first part of the assignment is to study how the theoretical analysis 
of a variety of sorting algorithms compares with their actual performance. The sorting 
algorithms you will study are:  
 

• Insertion Sort  
• Merge Sort  
• Quick Sort  
• Heap Sort  
• Radix Sort  
 

The major emphasis of this assignment is on analyzing the performance of the 
algorithms, NOT on coding the algorithms. Therefore, you will be given a template 
program which implements the above algorithms. You will need to make only a few 
modifications to test out different strategies. Most of your time should be spent on 
designing careful test cases and analyzing your results in order to draw useful 
conclusions regarding the performance of the various algorithms.  
 
 
Template Program 
 
The code is documented well enough for you to take it and modify it. The template 
program can read the input from a file, or to create three types of input lists: (i) random 
generated elements, (ii) elements sorted in increasing order, (iii) elements sorted in 
decreasing order. If needed, you can add additional functionality to it. The format of the 
input files is as follows:  
 
[n]   /*number of positive integers to sort*/  
[element 1]  
[element 2] 
:  
[element n] 
 
The times returned are microseconds and seconds *on my machine*. However, the 
value returned is system dependent. The time reported as microseconds is 106 times 
the time reported as seconds. If you are unsure of the units you will have to check out 
the man page for your machine. However, primarily what it would be of interest to you is 



the *relative* times – i.e., the units should not matter except for determining the 
constants.  
 
I don't think you will find a random number generator that generates a number in a 
range you specify. You will need to do a man on "rand," "drand", and "random" and its 
counterparts to see how they work, but most of them return a number in a specified 
range, say (0,1). To get a number in the range you want, say [F,L], you would need to 
find a way to translate the random number r in (0,1) to something in [F,L]. There are a 
number of ways to do this. Here is just one:  

 
r1 = rand() /* random number between 0 and 1 */ 
t1 = r1*(L-F) /* random number between 0 and L-F */ 
r2 = F + t1   /* random number between F and L */ 

 
To compile the program, copy sort.c and Makefile into your directory and type make (it 
is written in C and uses the gcc compiler). 
 
 
Coding 
 
The version of QuickSort in the template program uses the first element in the array as 
the pivot element. You will study different strategies for selecting the pivot:  
 

• Pivot Choice 1: The first element in the list (used in the template program)  
• Pivot Choice 2: A random element in the array.  
• Pivot Choice 3: The median of the first, middle, and last elements in the array.  

 
You should implement the Pivot Choices 2 and 3 listed above. You will then have three 
different versions of QuickSort (you would need to add them to the template program as 
additional menu options).  
 
Graduate Students Only: Implement and compare two more sorting algorithms: 
Bubble Sort and Counting Sort 
 
 
Analysis  
 

1. [10 points] Theoretical question  
 

Assume the n input elements are integers in the range [0, n-1]. For each 
algorithm, determine what are best, average, and worst-case inputs. Your write-
up should list these for each algorithm. Include a sentence or two of justification 
for each one. You should answer what you expect to be true based on a 
theoretical analysis (and you should not refer to experimental results). In the 
subsequent questions we will compare the experimental results to these 
theoretical predictions 



. 
2. [5 points] Data generation and experimental setup.  
 

The choice of test data is up to you (i.e., for each sorting algorithm, which input 
sizes should be tested, how many different inputs of the same size, which 
particular inputs of a given size.) Be smart about which experiments to run, i.e., 
don't run larger or more tests than you need to answer the above questions 
reasonably well. Also, note that you will need to run your experiments several 
times in order to get stable measurements (i.e., times will vary depending upon 
system load, input, etc.). Your experimental setup must be described in terms of 
the following: 
 

o What kind of machine did you use?  
o What timing mechanism?  
o How many times did you repeat each experiment?  
o What times are reported?  
o How did you select the inputs?  
o Did you use the same inputs for all sorting algorithms?  

 
3. [10 points] Which of the three versions of Quick sort seems to perform the best?  

 
o Graph the best case running time as a function of input size n for all three 

versions (use the best case input you determined in each case in part 1). 
o Graph the worst case running time as a function of input size n for all 

three versions (use the worst case input you determined in each case in 
part 1).  

o Graph the average case running time as a function of input size n for all 
three versions.  

 
4. [15 points] Which of the five sorts seems to perform the best (consider the best 

version of Quicksort)? 
  

o Graph the best case running time as a function of input size n for the five 
sorts (use the best case input you determined in each case in part 1).  

o Graph the worst case running time as a function of input size n for the five 
sorts (use the best case input you determined in each case in part 1).  

o Graph the average case running time as a function of input size n for the 
five sorts.  

 
5. [15 points] To what extent does the best, average and worst case analyses 

(from class/textbook) of each sort agree with the experimental results?  
 

To answer this question you would need to find a way to compare the 
experimental results for a sort with its predicted theoretical times. One way to 
compare a time obtained experimentally to a predicted time of O(f(n)) (e.g., f(n)= 
n2) would be to divide the time for a number of runs with different input sizes by 
f(n) and see if you get a horizontal line (after some input size n0). That n0 would 



represent the n0 value for the asymptotic analysis. The value on the y-axis 
(assuming you put input size on the x-axis) will give you the constant value of the 
big-O.  

 
For each sort, and for each case (best, average, and worst), determine whether 
the observed experimental running time is of the same order as predicted by the 
asymptotic analysis. Your determination should be backed up by your 
experiments and analysis and you must explain your reasoning. If you found the 
sort didn't conform to the asymptotic analysis, you should try to understand why 
and provide an explanation.  

 
6. [15 points] For the comparison sorts, is the number of comparisons really a 

good predictor of the execution time? In other words, is a comparison a good 
choice of basic operation for analyzing these algorithms?  

 
To answer this question you would need to analyze your data to see if the 
number of comparisons is correlated with execution time. Plot (time / #comp) vs. 
n and refer to these plots in your answer. 

 
 
Deliverables 
 

• A HARDCOPY REPORT.It should address the points mentioned above. Your 
write-up must include a coherent discussion of which experiments you ran, how 
many times you ran them, etc. Grading on this assignment will put the greatest 
weight on the choice of test data and the quality and insightfulness of your 
discussion of your results. Don't be put off too much if there are some 
discrepancies between the theoretical results and the experiments. If that 
happens, try to explain why it occurred.  

 
 Reports must be typed and carry a high percentage of your grade. Write 
 your repot carefully; explain things as clearly as possible, check for spelling 
 errors. Answer the questions in the order presented. Use meaningful titles for 
 each subsection and figure captions to explain the graphs. Also, graphs should 
 be numbered and must be in the same section where they are discussed.    
 
• AN ELECTRONIC COPY OF YOUR CODE. If you have several files to turn in, 

then please submit them in a rar file by email. Provide instructions of how to run 
your codes. Please note that I do not want a hardcopy of your code, your raw 
output, or a log of your program's execution. 

 
 
 
 
 
 

Part2: Problem Solving and Analysis (30% of the project  grade) 



 
Design and implement an efficient algorithm that, given a set S of n integers and 
another integer x, determines whether or not there exist two elements in S whose sum 
is exactly x.  
 

(a) First, solve this problem in a brute-force manner by checking all possible pairs of 
elements. Show the pseudo-code and provide an analysis for the running time of 
this approach. 

(b) Second, find a more efficient algorithm that does nor require checking all 
possible pairs of elements. Show the pseudo-code and provide an analysis for 
the running time of this approach. 

 
 
Deliverables 
 

• A HARDCOPY REPORT. It should address the points mentioned above. Your 
write-up must include a coherent discussion of the running time analysis of each 
approach, 

 
• AN ELECTRONIC COPY OF YOUR CODE. If you have several files to turn in, 

then please submit them in a rar file by email. Provide instructions of how to run 
your codes. Please note that I do not want a hardcopy of your code, your raw 
output, or a log of your program's execution. 

 
 

Contribution Statement 
 

Provide a detailed statement about the contribution of each group member in 
completing this assignment. In particular, comment on positive and negative aspects of 
working together with your partner on this assignment. Please, note that in the event 
that you cannot work together with your partner on this assignment, you should inform 
me as soon as possible. Individual solutions will not be accepted unless there is a good 
reason. 
 


