
CS 479/679 Pattern Recognition 
Spring 2025 – Prof. Bebis 

Programming Assignment 1 – Due on 3/17/2025 at 11:59pm 
 
Consider a two-class classification problem where the data of each class is modeled by a 
2D Gaussian density N(μ1,Σ1) and N(μ2,Σ2). 

 
Data Generation: using the parameters shown below, generate 60,000 random samples 
from N(μ1,Σ1) and 140,000 samples from N(μ2,Σ2) (i.e., 200,000 samples total). We will be 
referring to this data set as “data set A”. 
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Note: you need to use the Box-Muller transformation to generate the samples from 
each distribution; please review the document “Generating Gaussian Random Numbers“, 
which is posted on the course’s webpage, for more information. A link to the C code is 
also provided on the webpage. Since the code generates samples from a 1D Gaussian 
distribution, you should call the Box-Muller function twice to generate each 2D sample 
(x, y); use (μx, σx) to generate the x value and (μy, σy) to generate the y value.  
 

Note: ranf() is not defined in the standard library, you could use the simple 
implementation: 

 
/* ranf - return a random double in the [0,m] range.*/ 
 
double ranf(double m) { 
    return (m*rand()/(double)RAND_MAX); 
} 

 
1. In this experiment, use data set A.  

a. Design a Bayes classifier for minimum error to classify the samples from set A. 
Which discriminant (i.e., case I, II, or III) would be optimum in this case and why? 
How would you set the prior probabilities P(ω1) and P(ω2)? 

b. Plot both the Bayes decision boundary and the samples from data set A on the 
same plot to better visualize how the Bayes rule would classify the data in this 
case. 

c. Next, classify all 200,000 samples and report (i) the misclassification rate for 
each class separately (i.e., the percentage of misclassified samples for each 
class) and (ii) the total misclassification rate (i.e., the percentage of misclassified 
samples overall).  

d. Calculate the theoretical probability error (e.g., Bhattacharyya bound) and 
compare it with the misclassification rate from part (c). What do you observe? 
 



Data Generation: using the parameters shown below, generate 60,000 random samples 
from N(μ1,Σ1) and 140,000 samples from N(μ2,Σ2) (i.e., 200,000 samples total). We will be 
referring to this data set as “data set B”. 
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2. Repeat experiment 1 using data set B. How do your results from this experiment 

compare with your results from experiment 1 and why? 
 

3. Extra Credit [10%] Quite often, the Euclidean distance classifier (shown below but 
also discussed in the lecture) is used for classification without “fully” understanding that it 
is an optimum classifier only when certain assumptions hold true as we have discussed 
in the lecture. Classify the samples from data set A using the Euclidean distance 
classifier and compare your results (i.e., misclassification rates) with those obtained from 
experiment 1. Explain your findings. 
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4. Extra Credit [10%] Repeat experiment 3 using the samples from data set B.  Compare 

and discuss your results with those obtained from experiments 2 and 3. Explain your 
findings. 
  
 
 

 


