Let us assume a two-class classification problem where each class is modeled by a 2D Gaussian distribution $G(\mu_1, \Sigma_1)$ and $G(\mu_2, \Sigma_2)$.

1. Generate 100,000 samples from each 2D Gaussian distribution (i.e., 200,000 samples total) using the following parameters (i.e., each sample (x,y) can be thought as a feature vector):

 $\mu_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \hspace{0.5cm} $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \hspace{0.5cm} $\mu_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ \hspace{0.5cm} $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Notation:

$$
\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} \hspace{0.5cm} \Sigma = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix}
$$

Note: this is not the same as sampling the 2D Gaussian functions; see “Generating Gaussian Random Numbers” on the course’s webpage for more information on how to generate the samples using the Box-Muller transformation. A link to C code has been provided on the webpage. Since the code generates samples for 1D distributions, you would need to call the function twice to get a 2D sample (x, y); use (μ_x, σ_x) for the x sample and (μ_y, σ_y) for the y sample.

Note: $\text{ranf}()$ is not defined in the standard library and that you would need to implement it yourself using $\text{rand}()$; for example:

```c
/* ranf - return a random double in the [0,m] range.*/

double ranf(double m) {
    return (m*rand())/(double)RAND_MAX;
}
```

(m=1 in our case)

a. Assuming $P(\omega_1) = P(\omega_2)$

 i. Design a Bayes classifier for minimum error.

 ii. Plot the Bayes decision boundary together with the generated samples to better visualize and interpret the classification results.

 iii. Report (i) the number of misclassified samples for each class separately and (ii) the total number of misclassified samples.

 iv. Plot the Chernoff bound as a function of β and find the optimum β for the minimum.

 v. Calculate the Bhattacharyya bound. Is it close to the experimental error?

b. Repeat part (a) for $P(\omega_1) = 0.2$ and $P(\omega_2) = 0.8$. For comparison purposes, use exactly the same 200,000 samples from (a) in these experiments.
2. Repeat parts (1.a) and (1.b) using the following parameters (i.e., you need to generate new sample sets):

\[\mu_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mu_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} \]

3. Repeat part (2.b) (i.e., \(P(\omega_1) \neq P(\omega_2) \)) using the **minimum-distance classifier** and compare your results (i.e., misclassified samples) with those obtained in part (2.b). For comparison purposes, use exactly the same 200,000 samples as in part 2.