Experiment 1: In assignment #1, you designed a Bayes classifier assuming the following 2D Gaussian densities:

\[
\mu_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mu_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}
\]

In this assignment, we will assume that you do not know the true parameters of the Gaussian densities and that we would need to estimate them from the training data using the Maximum Likelihood (ML) approach.

a. Using exactly the same 200,000 samples from assignment #1 (i.e., 60,000 samples from \(N(\mu_1, \Sigma_1)\) and 140,000 samples from \(N(\mu_2, \Sigma_2)\)), estimate the parameters of each distribution using the ML approach. Then, classify all 200,000 samples using a Bayes classifier, count the number of misclassifications (for each class and overall), and compare your results with those obtained from assignment #1.

b. Next, you will test how the number of training data affects parameter estimation and consequently, classification accuracy. For this, consider using only (i) 0.01\%, (ii) 0.1\%, (iii) 1\%, and (vi) 10\% of the samples from each density (randomly chosen) to estimate the parameters of the two densities using ML. Then, classify all 200,000 samples for each case, count the number of misclassified samples (for each class and overall), and compare your results with those obtained in (1.a).

For example, in case (iii), you need to estimate the parameters of \(N(\mu_1, \Sigma_1)\) using 600 randomly chosen samples from the original 60,000 samples of \(N(\mu_1, \Sigma_1)\) and the parameters of \(N(\mu_2, \Sigma_2)\) using 1,400 randomly chosen samples from the original 140,000 samples of \(N(\mu_2, \Sigma_2)\). Then, you need to classify the original 200,000 samples (60,000 samples from \(N(\mu_1, \Sigma_1)\) and 140,000 samples from \(N(\mu_2, \Sigma_2)\)) using the estimated parameters from this case.

Although the true covariance matrix for each class is the identity matrix for this problem, the estimated covariance matrices might not be equal or diagonal anymore. This implies that Case 1 might not strictly apply. One possibility is to choose the optimum Case based on the estimated covariance matrices since we do not really know the true covariance matrices in practice. Another possibility is to choose the optimum Case after we have explicitly set the off-diagonal elements of the covariance matrices to zero by assuming that the features are uncorrelated. Although such an assumption might not always be true in practice, it allows us to reduce the number of parameters which can be beneficial when the number of training data is small. Experiment with both possibilities and carefully analyze your results.

Hint: Tabulate your results (i.e., estimated parameters and classification errors for each case) in the same table for easier comparison.

Experiment 2: Repeat experiment 1 using the 2D Gaussian densities below; for comparison purposes, use exactly the same 200,000 samples from assignment #1.

\[
\mu_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mu_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}
\]
Experiment 3: Face detection using **skin color** is a popular approach. While color images are typically in RGB format, most techniques transform RGB to a different color space (e.g., chromatic, HSV, etc.). This is because RGB values are more sensitive to variations in brightness due to illumination changes.

a. Implement the skin-color methodology of [Yang96 “A Real-time Face Tracker”] which uses the **chromatic color space**:

\[
\begin{align*}
 r &= R / (R + G + B) \\
 g &= G / (R + G + B)
\end{align*}
\]

To build the skin color **model**, use *Training_1.ppm* (and *ref1.ppm*), shown in Figure 1, which are available from the course’s webpage. To **test** your method, use *Training_3.ppm* (and *ref3.ppm*) and *Training_6.ppm* (and *ref6.ppm*), which are also available from the course’s webpage. Note that each reference image provides the correct class (face/skin vs non-face/non-skin) for each pixel in the corresponding training image (e.g., non-black pixels in the reference images correspond to face/skin pixels in the training images). You would need to use the reference images to select the face/skin pixels for parameters estimation purposes but also to see how well your classifier works (i.e., by computing the FP/FN rates for different thresholds in order to create the ROC curves as discussed below).

By modeling the skin-color distribution using a multivariate Gaussian as we discussed in the lecture, you would be able to assign a likelihood \(g(\mathbf{x}) \) to each pixel \(\mathbf{x}=[r,g]^T \). If \(g(\mathbf{x})>t \), where \(t \) is a threshold, then \(\mathbf{x} \) is assigned to the skin-color class; otherwise, it is assigned to the non-skin color class. To quantitatively evaluate the performance of your method, generate **ROC plots** (i.e., false positives (FP) in the \(x \)-axis vs false negatives (FN) in the \(y \)-axis) by varying the threshold \(t \). To generate a reasonably smooth ROC curve, select 20 different thresholds in the interval \([0, c]\) (i.e., uniformly distributed using a step=\(c/20 \)) where \(c \) is the normalizing factor of the Gaussian function (i.e., \(c=1/(2\pi|\Sigma|^{1/2}) \)) which is also the max value achieved by \(g(\mathbf{x}) \) when \(\mu=0 \). Note that \(t \) must in the interval \([0, c]\) since it is being compared to \(g(\mathbf{x}) \). A FP would be a non-face pixel which was classified as skin-color while a FN would be a face pixel which was classified as non-skin color.

Again, to determine whether a classification is correct or not (i.e., FP or FN), you would need to use the information provided by the reference images as mentioned above. In addition to the ROC plots, show the classification results on the test images using the threshold value that corresponds to the Equal Error Rate (ERR) (i.e., when FP=FN as shown in the lecture slides).

In showing the classified images, use the same convention as in Fig 5 from Yang96 paper shown below (i.e., use white (255,255,255) for pixels classified as non-skin and the original RGB value for pixels classified as skin). For visual comparison, show the corresponding reference images too next to the classified images.
b. In this experiment, you will investigate the effect of using different features for classification. For this, you would need to repeat (3.a) using the YC\textsubscript{b}C\textsubscript{r} color space. The RGB components can be converted to the YC\textsubscript{b}C\textsubscript{r} components using the transformation below.

\[
Y = 0.299R + 0.587G + 0.114B \\
C_b = -0.169R - 0.332G + 0.500B \\
C_r = 0.500R - 0.419G - 0.081B
\]

It should be noted that in the YC\textsubscript{b}C\textsubscript{r} color space, the luminance information is captured by the Y component while the chrominance information is captured by the C\textsubscript{b} and C\textsubscript{r} components. Therefore, Y should not be used in the skin color model and it is only provided above for completeness. Therefore, you need to use a 2D Gaussian density again to model skin-color in this experiment based on the C\textsubscript{b} and C\textsubscript{r} components.

Hint: plot all ROC curves in the **same graph** for easier comparison.