
CS 479/679 Pattern Recognition 
Spring 2025 – Prof. Bebis 

Programming Assignment 3 – Due on 4/30/2025 at 11:59 pm 
 
In this project, you will implement the eigenface approach [2] and perform experiments to 
evaluate its performance and the effect of several factors on recognition performance. 
 

1. Eigenface implementation 
 
Read carefully and understand the steps of the eigenface approach. Use jacobi.c from 
“Numerical Recipes in C” to compute the eigenvalues/eigenvectors of the covariance 
matrix. jacobi.c is an efficient iterative numerical algorithm that works with symmetric 
matrices. The eigenvalues (and corresponding eigenvectors) are returned in descending 
order.  
 
Warning: the [0] location of 1D arrays is NOT used in “Numerical Recipes”; so, if you need 
to use an array of size N, then you would need to use an array of size N+1 and simply 
ignore the [0] location of the array. The same holds true for 2D arrays etc. 
 
Eigenvalue/Eigenvector verification test: verify that you are using jacobi.c correctly by 
computing the eigenvalues/eigenvectors of a matrix with known eigenvalues/eigenvectors 
(e.g., use the example posted on the course’s webpage or any other example of your 
choice). When comparing your results, keep in mind that if u is an eigenvector, then cu is 
also an eigenvector where c is a constant. (e.g., c =- 1; in this case, the eigenvector 
direction can change but it is still a valid eigenvector). Also, make sure that the 
eigenvectors are unit length.   
 
Your program should run in two modes: training and testing.  
 
Training: In training mode, your program will read in the training face images and compute 
the average face Iavg and the eigenfaces (make sure that you use the ATA “trick” as 
discussed in the lecture). It will then project each training face image i onto all M 
eigenfaces and compute the eigen-coefficients Ωi, i=1,2,..,M, where M is the number of 
training face images. Finally, your program will store in a file the all M eigen-coefficient 
vectors Ωi, Iavg, and all M eigenfaces. Typically, this step is performed once unless the 
training data set has changed.  
 
Covariance matrix verification test: make sure that the covariance matrix C is 
symmetric. Also, ensure that its eigenvectors u are orthogonal and satisfy the property 
Cu=λu where λ are the corresponding eigenvalues. 
 
Reconstruction verification test: one way to test that your program computes the 
projection coefficients Ω correctly is as follows: given an image I, (i) compute Ω by 
projecting (I - Iavg) onto the eigenfaces, (ii) reconstruct it using all M eigenfaces and add 
back the average face; let’s call the reconstructed image Î , (iii) compute ed=||I - Î || (i.e., 
distance from face space (dffs) using Euclidean distance) and divide it by the total number 
of pixels in I to compute the average reconstruction error. If the average reconstruction 
error is NOT very small (i.e., typically less than 1 or 2), then your program has some errors 
which you would need to fix before performing any of the experiments described below. 



Testing: In the testing mode, your program will read in all eigen-coefficient vectors Ωi, 
i=1,2,..,M, Iavg, and all eigenfaces. Then, it will decide how many eigenfaces to keep for 
recognition purposes (i.e., determine the number of principal components K<M; this could 
be done in an interactive mode where the user specifies the amount of the information to 
be preserved as discussed in the lecture). Use the images in a test set (see below) to 
evaluate face recognition performance. Given a test image I, your program will need to 
project it onto the K principal components to compute the eigen-coefficients Ω. To 
recognize the face in the test image I, you will need to find the closest match Ωp to Ω (i.e., 
distance in face space (difs)). Let’s refer to the distance of Ω from Ωp  as er =mini ||Ωi − Ω||, 
i=1,2,…,M; the distance should be computed using the Mahalanobis distance (see face 
recognition slides) as it seems to work better in practice than the Euclidean distance. 
Given the closet match Ωp, you will recognize I as the person associated with the ID of Ωp 
  
Recognition verification test: one way to test that recognition works correctly is by 
simply using a training image for testing. In this case, you should be able to get an exact 
match with zero matching error. If NOT, your program is not working correctly.  
 

2. Datasets 
 
To test eigenface recognition, you will use images from the FERET face database [1]. 
FERET contains a large number of images acquired during different photo sessions and 
has a good variety of gender, ethnicity, and age groups. The lighting conditions, face 
orientation, and time of capture vary. In this project, you will concentrate on frontal face 
poses named fa (frontal image) or fb (alternative frontal image, taken during a different 
photo session).  All faces have been normalized with regard to orientation, position, and 
size. Also, they have been masked to include only the face region (i.e., the upper body and 
background were cropped out).  
 
The first subset (fa) contains 1204 images from 867 subjects while the second subset (fb) 
contains 1196 images from the 866 subjects (i.e., there is one subject in fa who is not in 
fb). You have been provided with two different sizes for each image:  low resolution (16 x 
20) and high resolution (48 x 60). All datasets can be downloaded from the course’s 
webpage: 
 

FA_L (fa, low resolution), FA_H (fa, high resolution) 
FB_L (fb, low resolution), FB_H (fb, high resolution) 

 
The file naming convention for the FERET database is as follows:  
 

nnnnn_yymmdd_xx_q.pgm 
 

where nnnnn is a five digit integer that uniquely identifies the subject, yymmdd indicates 
the year, month, and date when the photo was taken, xx is a lowercase character string 
(i.e., either fa or fb), and q is a flag (e.g., indicating whether the subject wears glasses - not 
always present).  
 

3.  Experiments  
 
(a) Use fa_H for training (i.e., to compute the eigenfaces and build the gallery set) and 
fb_H for testing (query). So, there will be 1204 images for training and 1196 images for 
testing.  



 
(a.I) Show (as an image) the following: 

o The average face 
o The eigenfaces corresponding to the 10 largest eigenvalues. 
o The eigenfaces corresponding to the 10 smallest eigenvalues. 

  
(a.II) In this experiment, consider the top eigenvectors (eigenfaces) preserving 
80% of the information in the data. Project the query images onto this set of 
eigenvectors after subtracting the average face (from the training set). Then, 
compute the Mahalanobis distance between the eigen-coefficient vectors for each 
pair of training and query images as the matching distance.  
 
Please note that for each query image, there will be 1204 matching distances (i.e., 
obtained by matching the query with each image in the gallery dataset). Choose 
the top r face gallery images (i.e., r is a parameter, see below) having the highest 
similarity score with the query face. (i.e., r smallest matching distances). If the 
query image is among the r most similar faces retrieved, then it is considered as a 
correct match, otherwise; it is considered as an incorrect match.  
 
Count the number of correct matches and divide it by the total number of images in 
the test set (e.g., 1196) to report the identification accuracy. Draw the Cumulative 
Match Characteristic (CMC) curve [1] by varying r from 1 to 50. CMC shows the 
probability of the query being among the top r faces retrieved from the gallery. The 
faster the CMC curve approaches the value one, the better the matching algorithm 
is (see graph below).  
 

 
      
(a.III) Assuming r=1, show 3 query images that are correctly matched, along with 
the corresponding best matched training samples.  
 
(a.IV) Assuming r=1, show 3 query images that are incorrectly matched, along 
with the corresponding mismatched training samples.  
 
(a.V) Repeat (a.II – a.IV) by keeping the top eigenvectors corresponding to 90% 
and 95% of the information in the data. Plot the CMC curves on the same graph for 
comparison purposes. If there are significant differences in terms of identification 
accuracy in (a.II) and (a.V), try to explain why. If there are no significant differences, 
explain why too. 
 



(b) In this experiment, you will test the performance of the eigenface approach on faces 
not in the gallery set (i.e., intruders). For this, remove all the images corresponding to the 
first 50 subjects in fa_H (please note that a given subject might have more than one image 
in fa_H); let’s call the reduced set fa2_H. Perform recognition using fa2_H for training 
(gallery) and fb_H for testing (query). Since the training set has changed, you would need 
to compute a new eigenspace for this experiment (i.e., compute the new covariance matrix 
and its eigenvalues/eigenvectors). Use the eigenvectors corresponding to 95% of the 
information in the data (i.e., do not experiment with different percentages as in (a)).  
 
Note: The last ID to be removed for the 50 subjects should be 140; the first ID after that 
should be 146. A total of 85 images should be removed.  
 
To reject intruders, you would need to threshold er (i.e., accept a match only if er < Tr). 
Therefore, the choice of the threshold Tr would be very important. A high threshold value 
would increase False Positives (FP) while a low threshold value would decrease the 
number of True Positives (TP). Vary the value of Tr and compute (FP, TP) for each value. 
Then, plot the (FP, TP) values in a graph (i.e., ROC graph; see below).  
 
Please note that the FPs should be computed using the images corresponding to the 
intruders (i.e., you know their IDs) while the TPs should be computed using the images 
corresponding to the non-intruders. The maximum possible Tr value can be found by 
computing the maximum distance between the test and training images (the threshold 
values have been normalized in [0, 1] in the graph below).  
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(Extra Credit 30%)  

(c) Repeat experiment (a) using fa_L for training (gallery) and fb_L for testing. 

(d) Remove all the images of the first 50 subjects from fa_L; let’s call the reduced set as 
fa2_L. Repeat experiment (b) using fa2_L for training (gallery) and fb_L for testing. 
 
(e) What is the effect of using low-resolution images? Are there any significant differences 
in identification performance? Explain. 
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