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Abstract

We propose a new technique for direct visual matching of images for the purposes of face recognition and image
retrieval, using a probabilistic measure of similarity, based primarily on a Bayesian (MAP) analysis of image di!erences.
The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface
matching was demonstrated using results from DARPA's 1996 `FERETa face recognition competition, in which this
Bayesian matching alogrithm was found to be the top performer. In addition, we derive a simple method of replacing
costly computation of nonlinear (on-line) Bayesian similarity measures by inexpensive linear (o!-line) subspace projec-
tions and simple Euclidean norms, thus resulting in a signi"cant computational speed-up for implementation with very
large databases. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In computer vision, face recognition has a distin-
guished lineage going as far back as the 1960s with the
work of Bledsoe [1]. This system (and many others like
it) relied on the geometry of (manually extracted) "ducial
points such as eye/nose/mouth corners and their spatial
relationships (angles, length ratios, etc.). Kanade [2] was
"rst to develop a fully automatic version of such a
system. This `feature-baseda paradigm persisted (or laid
dormant) for nearly 30 years, with researchers often dis-
appointed by the low recognition rates achieved even on
small data sets. It was not until the 1980s that researchers
began experimenting with visual representations, making
use of the appearance or texture of facial images, often
as raw 2D inputs to their systems. This new paradigm in
face recognition gained further momentum due, in part,
to the rapid advances in connectionist models in the
1980s which made possible face recognition systems such

as the layered neural network systems of O'Toole et al.
[3], Flemming and Cottrell [4] as well as the associative
memory models used by Kohonen and Lehtio [5]. The
debate on features vs. templates in face recognition was
mostly settled by a comparative study by Brunelli and
Poggio [6], in which template-based techniques proved
signi"cantly superior. In the 1990s, further developments
in template or appearance-based techniques were
prompted by the ground-breaking work of Kirby and
Sirovich [7] with Karhunen}Loève Transform [8] of
faces, which led to the principal component analysis
(PCA) [9] `eigenfacea technique of Turk and Pentland
[10]. For a more comprehensive survey of face recogni-
tion techniques the reader is referred to Chellappa et al.
[11].

The current state-of-the-art in face recognition is char-
acterized (and to some extent dominated) by a family of
subspace methods originated by Turk and Pentland's
`eigenfacesa [10], which by now has become a de facto
standard and a common performance benchmark in the
"eld. Extensions of this technique include view-based and
modular eigenspaces in Pentland et al. [12] and prob-
abilistic subspace learning in Moghaddam and Pentland
[13,14]. Examples of other subspace techniques include
subspace mixtures by Frey and Huang [15], linear
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discriminant analysis (LDA) as used by Etemad and
Chellappa [16], the `Fisherfacea technique of Belhumeur
et al. [17], hierarchical discriminants used by Swets and
Weng [18] and `evolutionary pursuita of optimal sub-
spaces by Liu and Wechsler [19] * all of which have
proved equally (if not more) powerful than standard
`eigenfacesa.

Eigenspace techniques have also been applied to
modeling the shape (as opposed to texture) of the face.
Eigenspace coding of shape-normalized or `shape-freea
faces, as suggested by Craw and Cameron [20], is now
a standard pre-processing technique which can enhance
performance when used in conjunction with shape in-
formation [21]. Lanitis et al. [22] have developed an
automatic face-processing system with subspace models
of both the shape and texture components, which can be
used for recognition as well as expression, gender and
pose classi"cation. Additionally, subspace analysis has
also been used for robust face detection [12,14,23], non-
linear facial interpolation [24], as well as visual learning
for general object recognition [13,25,26].

2. A Bayesian approach

All of the face recognition systems cited above (indeed
the majority of face recognition systems published in the
open literature) rely on similarity metrics which are inva-
riably based on Euclidean distance or normalized cor-
relation, thus corresponding to standard `template-
matchinga * i.e., nearest-neighbor-based recognition.
For example, in its simplest form, the similarity measure
S(I

1
, I

2
) between two facial images I

1
and I

2
can be set

to be inversely proportional to the norm DDI
1
!I

2
DD. Such

a simple metric su!ers from a major drawback: it does
not exploit knowledge of which types of variation are
critical (as opposed to incidental) in expressing similarity.

In this paper, we present a probabilistic similarity
measure based on the Bayesian belief that the image
intensity di!erences, denoted by *"I

1
!I

2
, are charac-

teristic of typical variations in appearance of an indi-
vidual. In particular, we de"ne two classes of facial image
variations: intrapersonal variations )

I
(corresponding,

for example, to di!erent facial expressions of the same
individual) and extrapersonal variations )

E
(correspond-

ing to variations between diwerent individuals). Our sim-
ilarity measure is then expressed in terms of the probability

S(I
1
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2
)"P(*3)

I
)"P()

I
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where P()
I
D*) is the a posteriori probability given by

Bayes rule, using estimates of the likelihoods P(*D)
I
) and

P(*D)
E
). These likelihoods are derived from training data

using an e$cient subspace method for density estimation
of high-dimensional data [14], brie#y reviewed in
Section 3.1.

We believe that our Bayesian approach to face recog-
nition is possibly the "rst instance of a non-Euclidean
similarity measure used in face recognition [27}30].
Furthermore, our method can be viewed as a generalized
nonlinear extension of linear discriminant analysis
(LDA) [16,18] or `FisherFacea techniques [17] for
face recognition. Moreover, the mechanics of Baye-
sian matching has computational and storage advant-
ages over most linear methods for large databases.
For example, as shown in Section 3.2, one need only
store a single image of an individual in the data-
base.

3. Probabilistic similarity measures

In previous work [27,31,32], we used Bayesian analy-
sis of various types of facial appearance models to char-
acterize the observed variations. Three di!erent inter-
image representations were analyzed using the binary
formulation ()

I
- and )

E
-type variation): XYI-warp mo-

dal deformation spectra [27,31,32], XY-warp optical
#ow "elds [27,31] and a simpli"ed I-(intensity)-only
image-based di!erences [27,29]. In this paper we focus
on the latter representation only* the normalized inten-
sity di!erence between two facial images which we refer
to as the * vector.

We de"ne two distinct and mutually exclusive classes:
)

I
representing intrapersonal variations between

multiple images of the same individual (e.g., with di!erent
expressions and lighting conditions), and )

E
representing

extrapersonal variations in matching two di!erent indi-
viduals. We will assume that both classes are Gaussian-
distributed and seek to obtain estimates of the likelihood
functions P(*D)

I
) and P(*D)

E
) for a given intensity di!er-

ence *"I
1
!I

2
.

Given these likelihoods we can evaluate a similarity
score S(I

1
, I

2
) between a pair of images directly in terms

of the intrapersonal a posteriori probability as given by
Bayes rule:

S(I
1
, I

2
)"

P(*D)
I
)P()

I
)

P(*D)
I
)P()

I
)#P(*D)

E
)P()

E
)
, (2)

where the priors P()) can be set to re#ect speci"c operat-
ing conditions (e.g., number of test images vs. the size of
the database) or other sources of a priori knowledge
regarding the two images being matched. Note that this
particular Bayesian formulation casts the standard face
recognition task (essentially an M-ary classi"cation
problem for M individuals) into a binary pattern classi-
"cation problem with )

I
and )

E
. This simpler problem

is then solved using the maximum a posteriori (MAP)
rule * i.e., two images are determined to belong to
the same individual if P()

I
D*)'P()

E
D*), or equivalently,

if S(I
1
, I

2
)'1

2
.
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1Tipping and Bishop [33] have since derived the same es-
timator for o by showing that it's a saddle point of the likelihood
for a latent variable model.

Fig. 1. (a) Decomposition of RN into the principal subspace F and its orthogonal complement FM for a Gaussian density, (b) a typical
eigenvalue spectrum and its division into the two orthogonal subspaces.

An alternative probabilistic similarity measure can be
de"ned in simpler form using the intrapersonal likeli-
hood alone,

S@"P(*D)
I
), (3)

thus leading to maximum likelihood (ML) recognition as
opposed to the MAP recognition in Eq. (2). Our experi-
mental results in Section 4 indicate that this simpli"ed
ML measure can be almost as e!ective as its MAP
counterpart in most cases.

3.1. Subspace density estimation

One di$culty with this approach is that the intensity
di!erence vector is very high-dimensional, with *3RN

with N typically of O(104). Therefore we almost always
lack su$cient independent training samples to compute
reliable second-order statistics for the likelihood densit-
ies (i.e., singular covariance matrices will result). Even
if we were able to estimate these statistics, the computa-
tional cost of evaluating the likelihoods is formidable.
Furthermore, this computation would be highly ine$c-
ient since the intrinsic dimensionality or major degrees-
of-freedom of * is likely to be signi"cantly smaller
than N.

To deal with the high dimensionality of *, we make use
of the e$cient density estimation method proposed by
Moghaddam and Pentland [13,14] which divides the
vector space RN into two complementary subspaces us-
ing an eigenspace decomposition. This method relies on a
principal components analysis (PCA) [9] to form a low-
dimensional estimate of the complete likelihood which
can be evaluated using only the "rst M principal compo-
nents, where M@N.

This decomposition is illustrated in Fig. 1 which shows
an orthogonal decomposition of the vector spaceRN into
two mutually exclusive subspaces: the principal subspace
F containing the "rst M principal components and its
orthogonal complement F, which contains the residual of
the expansion. The component in the orthogonal sub-
space F is the so-called `distance-from-feature-spacea
(DFFS), a Euclidean distance equivalent to the PCA
residual error. The component of * which lies in the
feature space F is referred to as the `distance-in-feature-
spacea (DIFS) and is a Mahalanobis distance for Gaus-
sian densities.

As shown in Refs. [13,14], the complete likelihood
estimate can be written as the product of two indepen-
dent marginal Gaussian densities
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where P
F
(*D)) is the true marginal density in F, PK

FM
(*D))

is the estimated marginal density in the orthogonal
complement FM , y

i
are the principal components and e2(*)

is the residual (DFFS). The optimal value for the weight-
ing parameter o * found by minimizing cross-entropy
* is simply the average of the F eigenvalues1

o"
1

N!M

N
+

i/M`1

j
i
. (5)
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We note that in actual practice, the majority of
the FM eigenvalues are unknown but can be estimated,
for example, by "tting a nonlinear function to the avail-
able portion of the eigenvalue spectrum and estimating
the average of the eigenvalues beyond the principal
subspace.

3.2. Ezcient similarity computation

Consider a feature space of * vectors, the di!erences
between two images (I

j
and I

k
). The two classes of inter-

est in this space correspond to intrapersonal and ex-
trapersonal variations and each is modeled as a high-
dimensional Gaussian density

P(*D)
E
)"
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1
2
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E *

(2p)D@2D+
E
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P(*DX
I
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The densities are zero-mean since for each *"I
j
!I

k
there exists a *"I

k
!I

j
. Since these distributions

are known to occupy a principal subspace of image space
(face-space), only the principal eigenvectors of the
Gaussian densities are relevant for modeling. These
densities are used to evaluate the similarity score in
Eq. (2) in accordance with the density estimate in
Eq. (4).

Computing the similarity score involves "rst subtract-
ing a candidate image I

j
from a database entry I

k
. The

resulting * is then projected onto the principal eigenvec-
tors of both extrapersonal and intrapersonal Gaussians.
The exponentials are then evaluated, normalized and
combined as likelihoods in Eq. (2). This operation is
iterated over all members of the database (many I

k
images) until the maximum score is found (i.e., the
match). Thus, for large databases, this evaluation is
rather expensive.

However, these compuations can be greatly simpli-
"ed by o%ine transformations. To compute the
likelihoods P(*D)

I
) and P(*D)

E
) we pre-process the

I
k

images with whitening transformations and conse-
quently every image is stored as two vectors of whitened
subspace coe$cients; i for intrapersonal and e for ex-
trapersonal

i
j
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I
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j
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where, " and < are matrices of the largest eigen-
values and eigenvectors of +

E
or +

I
, with subspace

dimensionalities of M
I

and M
E
, respectively. After this

pre-processing and with the normalizing denominators
pre-computed, evaluating the likelihoods is reduced to

computing simple Euclidean distances for the exponents
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These likelihoods are then used to compute the MAP
similarity S in Eq. (2). Since the Euclidean distances in the
exponents of Eq. (8) are of dimensions M

I
and M

E
for

the i and e vectors, respectively, only 2](M
I
#M

E
)

arithmetic operations are required for each similarity
computation. In this manner, one avoids unnecessary
and repeated image di!erencing and online projections.
The ML similarity matching based on Eq. (3) is even
simpler to implement in this framework, since only the
intra-personal class is evaluated, leading to the simpli"ed
similarity measure, computed using just the i vectors
alone

S@"P(*D)
I
)"

e~1@2Ei
j
!i

k
E2

(2p)D@2D+
I
D1@2

. (9)

4. Experiments

To test our recognition strategy we used a collection of
images from the ARPA FERET face database. This col-
lection of images consists of hard recognition cases that
have proven di$cult for most face recognition algo-
rithms previously tested on the FERET database. The
di$culty posed by this data set appears to stem from the
fact that the images were taken at di!erent times, at
di!erent locations, and under di!erent imaging condi-
tions. The set of images consists of pairs of frontal-views
(FA/FB) which are divided into two subsets: the `gallerya
(training set) and the `probesa (testing set). The gallery
images consisted of 74 pairs of images (2 per individual)
and the probe set consisted of 38 pairs of images, corre-
sponding to a subset of the gallery members. The probe
and gallery datasets were captured a week apart and
exhibit di!erences in clothing, hair and lighting (see
Fig. 2).

The front end to our system consists of an automatic
face-processing module which extracts faces from the
input image and normalizes for translation, scale as
well as slight rotations (both in-plane and out-of-plane).
This system is described in detail in Refs. [13,14] and
uses maximum-likelihood estimation of object location
(in this case the position and scale of a face and the
location of individual facial features) to geometrically
align faces into standard normalized form as shown in
Fig. 3. All the faces in our experiments were geometrically
aligned and normalized in this manner prior to further
analysis.
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Fig. 2. Examples of FERET frontal-view image pairs used for (a) the Gallery set (training) and (b) the Probe set (testing).

Fig. 3. Face alignment system.

4.1. Eigenface matching

As a baseline comparison, we "rst used an eigenface
matching technique for recognition [10]. The normalized
images from the gallery and the probe set were projected
onto eigenfaces similar to those shown in Fig. 4. A near-
est-neighbor rule based on a Euclidean distance was then
used to match each probe image to a gallery image. We
note that this corresponds to a generalized template-
matching method which uses a Euclidean norm restricted
to the principal subspace of the data. We should also add
that these eigenfaces represent the principal components
of an entirely di!erent set of images * i.e., none of the
individuals in the gallery or probe sets were used in
obtaining these eigenvectors. In other words, neither the
gallery nor the probe sets were part of the `training seta.
The rank-1 recognition rate obtained with this method
was found to be 84% (64 correct matches out of 76),

and the correct match was always in the top 10 nearest
neighbors.

4.2. Bayesian matching

For our probabilistic algorithm, we "rst gathered
training data by computing the intensity di!erences for
a training subset of 74 intrapersonal di!erences (by
matching the two views of every individual in the gallery)
and a random subset of 296 extrapersonal di!erences (by
matching images of diwerent individuals in the gallery),
corresponding to the classes )

I
and )

E
, respectively, and

performed a separate PCA analysis on each.
It is interesting to consider how these two classes are

distributed, for example, are they linearly separable or
embedded distributions? One simple method of visualiz-
ing this is to plot their mutual principal components
* i.e., perform PCA on the combined dataset and project
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Fig. 4. Standard eigenfaces.

Fig. 5. (a) Distribution of the two classes in the "rst three principal components (circles for )
I
, dots for )

E
) and (b) schematic

representation of the two distributions showing orientation di!erence between the corresponding principal eigenvectors.

each vector onto the principal eigenvectors. Such a vis-
ualization is shown in Fig. 5(a) which is a 3D scatter plot
of the "rst three principal components. This plot shows
what appears to be two completely enmeshed distribu-
tions, both having near-zero means and di!ering prim-
arily in the amount of scatter, with )

I
displaying smaller

intensity di!erences as expected. It therefore appears that
one cannot reliably distinguish low-amplitude extra-
personal di!erences (of which there are many) from
intrapersonal ones.

However, direct visual interpretation of Fig. 5(a) is
misleading since we are essentially dealing with low-
dimensional (or `#atteneda) hyper-ellipsoids which are
intersecting near the origin of a very high-dimensional
space. The key distinguishing factor between the two
distributions is their relative orientation. We can easily
determine this relative orientation by performing a separ-
ate PCA on each class and computing the dot product of
their respective "rst eigenvectors. This analysis yields the
cosine of the angle between the major axes of the two
hyper-ellipsoids, which was found to be 1243, thus in-
dicating that the relative orientations of the two hyper-
ellipsoids are quite di!erent. Fig. 5(b) is a schematic

illustration of the geometry of this con"guration, where
the hyper-ellipsoids have been drawn to approximate
scale using the corresponding eigenvalues.

4.3. Dual eigenfaces

We note that the two mutually exclusive classes )
I
and

)
E

correspond to a `duala set of eigenfaces as shown in
Fig. 6. Note that the intrapersonal variations shown in
Fig. 6(a) represent subtle variations due mostly to expres-
sion changes (and lighting) whereas the extrapersonal
variations in Fig. 6(b) are more representative of stan-
dard variations such as hair color, facial hair and glasses.
In fact, these extrapersonal eigenfaces are qualitatively
similar to the standard eigenfaces shown in Fig. 4. This
supports the basic intuition that intensity di!erences of
the extrapersonal type span a larger vector space similar
to the volume of facespace spanned by standard eigen-
faces, whereas the intrapersonal eigenspace corresponds
to a more tightly constrained subspace. It is the repres-
entation of this intrapersonal subspace that is the critical
component of a probabilistic measure of facial similarity.
In fact our experiments with a larger set of FERET
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Fig. 6. `Duala Eigenfaces: (a) Intrapersonal, (b) Extrapersonal.

Fig. 7. Cumulative recognition rates for frontal FA/FB views
for the competing algorithms in the FERET 1996 test. The top
curve (labeled `MIT Sep 96a) corresponds to our Bayesian
matching technique. Note that second placed is standard eigen-
face matching (labeled `MIT Mar 95a).

images have shown that this intrapersonal eigenspace
alone is su$cient for a simpli"ed maximum-likelihood
measure of similarity (see Section 4.4).

Note that since these classes are not linearly separable
(they are both zero-mean), simple linear discriminant
techniques (e.g., using hyperplanes) cannot be used with
any degree of reliability. The proper decision surface is
inherently nonlinear (hyperquadratic under the Gaussian
assumption) and is best de"ned in terms of the a poste-
riori probabilities * i.e., by the equality P()

I
D*)"

P()
E
D*). Fortunately, the optimal discriminant surface is

automatically implemented when invoking a MAP clas-
si"cation rule.

Having computed the two sets of training *'s, we
computed their likelihood estimates P(*D)

I
) and P(*D)

E
)

using the susbspace method [13,14] described in Section
3.1. We used principal subspace dimensions of M

I
"10

and M
E
"30 for )

I
and )

E
, respectively. These density

estimates were then used with a default setting of equal
priors, P()

I
)"P()

E
), to evaluate the a posteriori in-

trapersonal probability P()
I
D*). This similarity was com-

puted for each probe}gallery pair and used to rank the
best matches accordingly. This probabilistic ranking
yielded an improved rank-1 recognition rate of 89.5%.
Furthermore, out of the 608 extrapersonal warps per-
formed in this recognition experiment, only 2% (11) were
misclassi"ed as being intrapersonal * i.e., with
P()

I
D*)'P()

E
D*).

4.4. The 1996 FERET competition

This Bayesian approach to recognition has produced
a signi"cant improvement over the accuracy obtained

with a standard eigenface nearest-neighbor matching
rule. The probabilistic similarity measure was used in the
September 1996 FERET competition (with subspace
dimensionalities of M

I
"M

E
"125) and was found to

be the top-performing system by a typical margin of
10}20% over the other competing algorithms [34].
Fig. 7 shows the results of this test on a gallery of +1200
individuals. Note that rank-1 recognition rate is +95%
and signi"cantly higher than the other competitors. In
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Fig. 8. Cumulative recognition rates with standard eigenface
matching (bottom) and the newer Bayesian similarity metric
(top).

2Note that Fig. 9(b) shows the conceptual architecture of
Bayesian matching and not the actual implementation used as
detailed in Section 3.2.

fact, the next best system is our own implementation of
standard eigenfaces. Fig. 8 highlights the performance
di!erence between standard eigenfaces and the Bayesian
method from a smaller test set of 800# individuals.
Note the 10% gain in performance a!orded by the new
Bayesian similarity measure which has e!ectively halved
the error rate of eigenface matching.

As suggested in Section 3, a simpli"ed similarity
measure using only the intrapersonal eigenfaces can be
used to obtain the maximum-likelihood (ML) similarity
measure as de"ned in Eq. (3) and used instead of the
maximum a posteriori (MAP) measure in Eq. (2). Al-
though this simpli"ed ML measure was not o$cially
FERET tested, our experiments with a database of ap-
proximately 2000 faces have shown that using S@ instead
of S results in only a minor (2}3%) de"cit in the recogni-
tion rate while cutting the computational cost by a factor
of 2.

4.5. Eigenface vs. Bayesian matching

It is interesting to compare the computational proto-
col of standard Euclidean eigenfaces with the new prob-
abilistic similarity. This is shown in Fig. 9 which illus-
trates the signal #ow graphs for the two methods. With
eigenface matching, both the probe and gallery images
are pre-projected onto a single `universala set of eigen-
faces, after which their respective principal components
are di!erenced and normed to compute a Euclidean
distance metric as the basis of a similarity score. With
probabilistic matching on the other hand, the probe and
gallery images are 5rst di!erenced and then projected
onto two sets of eigenfaces which are used to compute the
likelihoods P(*D)

I
) and P(*D)

E
), from which the a poste-

riori probability P()
I
D*) is computed by application of

Bayes rule as in Eq. (2). Alternatively, the likelihood
P(*D)

I
) alone can be computed to form the simpli"ed

similarity in Eq. (3). As noted in the previous section, use
of S@ instead of S reduces the computational requirements
by a factor of two, while only compromising the overall
recognition rate by a few percentage points.2

Finally, we note that the computation of either
MAP/ML similarity measures can be greatly simpli"ed
using the derivations shown in Section 3.2. This refor-
mulation yields an exact remapping of the probabilistic
similarity score without requiring repeated image-di!er-
encing and eigenspace projections. The most desirable
aspect of this simpli"cation is that the nonlinear match-
ing of two images can be carried out in terms of simple
Euclidean norms of their whitened feature vectors which
are pre-computed o!-line. As pointed out in Section 3.2,
this is particularly appealing when working with large
galleries of images and results in a signi"cant online
computational speedup.

5. Discussion

It remains an open research question as to whether the
proposed Bayesian approach can be used to model larger
variations in facial appearance other than expression or
lighting. In particular, pose and facial `decorationsa (e.g.,
glasses and beards) are complicating factors which are
commonly encountered in realistic settings. With regards
to the latter, we have been able to correctly recognize
variations with/without regular glasses (not dark sun-
glasses) * in fact a sizeable percentage of the intraper-
sonal training set used in our experiments consisted of
just such variations. Moderate recognition performance
can also be achieved with simpler techniques like eigen-
faces in the case of transparent eye-ware. Naturally, most
face recognition systems can be fooled by sunglasses and
signi"cant variations in facial hair (beards).

This is not to say that one cannot * in principle
* incorporate such gross variations as pose and extreme
decorations into one comprehensive intrapersonal train-
ing set and hope to become invariant to them. But in our
experience, this signi"cantly increases the dimensionality
of the subspaces and in essence dilutes the density models,
rendering them ine!ective. One preferred approach for
dealing with large pose variations is the view-based mul-
tiple model method described in Ref. [14] whereby vari-
able-pose recognition is delegated to multiple `expertsa
each of which is `tuneda to its own limited domain. For
example, in earlier work [35], metric eigenface matching
of a small set of variable-pose FERET images, consisting
of Mfrontal, $half, $pro"leN views yielded recognition

1778 B. Moghaddam et al. / Pattern Recognition 33 (2000) 1771}1782



Fig. 9. Operational signal #ow diagrams for (a) Eigenface similarity and (b) Probabilistic similarity.

rates of M99, 85, 69%N, respectively. However, it was
found that cross-pose performance (train on one view,
test on another) declined to +30% with a mere +22%
change in pose. Therefore, the inability of a single view to
generalize to other views indicates that multiple-model
techniques [14] are a better way to tackle this problem.

6. Conclusions

The performance advantage of our probabilistic
matching technique was demonstrated using both a small
database (internally tested) as well as a large (1100#)
database with an independent double-blind test as part
of ARPA's September 1996 `FERETa competition, in
which Bayesian similarity out-performed all competing
algorithms (at least one of which was using an
LDA/Fisher type method). We believe that these results
clearly demonstrate the superior performance of prob-
abilistic matching over eigenface, LDA/Fisher and other
existing Euclidean techniques.

This probabilistic framework is particularly advant-
ageous in that the intra/extra density estimates explicitly
characterize the type of appearance variations which are
critical in formulating a meaningful measure of similarity.
For example, the appearance variations corresponding
to facial expression changes or lighting (which may have
large image-di!erence norms) are, in fact, irrelevant when
the measure of similarity is to be based on identity. The
subspace density estimation method used for represent-
ing these classes thus corresponds to a learning method
for discovering the principal modes of variation impor-
tant to the recognition task. Consequently, only a single
image of an individual can be used for recognition, thus
reducing the storage cost with large databases.

Furthermore, by equating similarity with the a poste-
riori probability we obtain an optimal nonlinear decision
rule for matching and recognition. This aspect of our
approach di!ers signi"cantly from methods which use
linear discriminant analysis for recognition (e.g. [16,18]).
This Bayesian method can be viewed as a generalized
nonlinear (quadratic) version of linear discriminant
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analysis (LDA) [16] or `FisherFacea techniques [17].
The computational advantage of our approach is that
there is no need to compute and store an eigenspace for
each individual in the gallery (as required with pure
LDA). One (or at most two) global eigenspaces are su$-
cient for probabilistic matching and therefore storage
and computational costs are "xed and do not increase
with the size of the training set (as is possible with
LDA/Fisher methods).

The results obtained with the simpli"ed ML similarity
measure (S@ in Eq. (3)) suggest a computationally equiva-
lent yet superior alternative to standard eigenface match-
ing. In other words, a likelihood similarity based on the
intrapersonal density P(*D)

I
) alone is far superior to

nearest-neighbor matching in eigenspace, while essential-
ly requiring the same number of projections. However,
for completeness (and slightly better performance) one
should use the a posteriori similarity (S in Eq. (2)) at twice
the computational cost of standard eigenfaces. Finally, in
Section 3.2 we derived an e$cient technique for comput-
ing (nonlinear) MAP/ML similarity scores using simple
(linear) projections and Euclidean norms, making this
method appealing in terms of computational simplicity
and ease of implementation.

7. Summary

We have proposed a novel technique for direct visual
matching of images for the purposes of recognition and
search in a large face database. Speci"cally, we have
argued in favor of a probabilistic measure of similarity, in
contrast to simpler methods which are based on standard
¸
2

norms. The proposed similarity measure is based
on a Bayesian analysis of image intensity di!erences:
we model two mutually exclusive classes of variation
between two face images: intra-personal (variations in
appearance of the same individual, due to di!erent ex-
pressions or lighting, for example) and extra-personal
(variations in appearance due to di!erent identity). The
high-dimensional probability density functions for each
respective class are then obtained from available training
data using an e$cient and optimal eigenspace density
estimation technique and subsequently used to compute
a similarity measure based on the a posteriori probability
of membership in the intra-personal class. This posterior
probability is then used to rank and "nd the best matches
in the database. The performance advantage of our prob-
abilistic matching technique has been demostrated using
both a small database (internally tested) as well as large
(1200 individual) database with an independent double-
blind test as part of ARPA's September 1996 `FERETa
competition, in which our Bayesian similarity matching
technique out-performed all competing algorithms by at
least 10% margin in recognition rate. This probabilistic
framework is particularly advantageous in that the

intra/extra density estimates explicity characterize the
type of appearance variations which are critical in formu-
lating a meaningful measure of similarity. For example,
the intensity di!erences corresponding to facial expres-
sion changes (which may have high image-di!erence
norms) are, in fact, irrelevant when the measure of sim-
ilarity is to be based on identity. The subspace density
estimation method used for representing these classes
thus corresponds to a learning method for discovering
the principal modes of variation important to the classi-
"cation task.
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