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Decision trees trace their origins to the era of the early development of
written records. This history illustrates a major strength of trees: exceptionally
interpretable results which have an intuitive tree-like display which, in turn,
enhances understanding and the dissemination of results. The computational
origins of decision trees—sometimes called classification trees or regression
trees—are models of biological and cognitive processes. This common heritage
drives complementary developments of both statistical decision trees and trees
designed for machine learning. The unfolding and progressive elucidation of the
various features of trees throughout their early history in the late 20th century is
discussed along with the important associated reference points and responsible
authors. Statistical approaches, such as a hypothesis testing and various resampling
approaches, have coevolved along with machine learning implementations. This
had resulted in exceptionally adaptable decision tree tools, appropriate for various
statistical and machine learning tasks, across various levels of measurement, with
varying levels of data quality. Trees are robust in the presence of missing data
and offer multiple ways of incorporating missing data in the resulting models.
Although trees are powerful, they are also flexible and easy to use methods. This
assures the production of high quality results that require few assumptions to
deploy. The treatment ends with a discussion of the most current developments
which continue to rely on the synergies and cross-fertilization between statistical
and machine learning communities. Current developments with the emergence
of multiple trees and the various resampling approaches that are employed are
discussed. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Decision trees are general purpose prediction
and classification mechanisms that were among

the first statistical algorithms to be implemented in
electronic form during the adoption of digital circuitry
to electronic computations in the later decades of the
20th century. They have evolved to become highly
cross-disciplinary, general purpose computationally
intensive methods for prediction and classification,
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artificial intelligence, machine learning, knowledge
discovery, and inductive rule-builders that are used in
a range of data mining, knowledge discovery, machine
learning, and artificial intelligence tasks.

The main characteristic of decision trees is
a recursive subsetting of a target field of data
according to the values of associated input fields
or predictors to create partitions, and associated
descendent data subsets (called leaves or nodes), that
contain progressively similar intra-leaf (or intra-node)
target values and progressively dissimilar inter-leaf (or
inter-node values) at any given level of the tree.

The ‘Porphyrian tree’, a form of decision
tree, is the oldest known type of classification tree
diagram and was conceived by the Greek philosopher
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FIGURE 1 | A decision tree illustrating analysis of survival in Titanic sinking

Porphyry in the 3rd century C.E.1 These early
precomputational origins of decision trees confirm
a persistently useful, innate capability of decision
trees to project and encapsulate contextually revealing
visual displays that are both intuitive and powerful
visual metaphors. If we fast forward to the 20th
century, we see that computational decision trees
emerged at the same time as the nascent fields of
artificial intelligence2,a and statistical computation.
As a result their development has benefitted from a
rich cross-disciplinary cross-fertilization that has led
to a range of new methods—from resampling methods
like boosting and bagging—to more recent generalized
multiple tree methods such as Random Forests.

OPERATION, FEATURES, AND
INTERPRETATION

The characteristic form of decision trees is shown in
Figure 1. Here we see a recursive subsetting of a target
field of data according to the values of associated
fields to create partitions, and associated descendent
data subsets (nodes), that contain progressively similar
intra-node target values and progressively dissimilar
inter-node values at any given level of the tree.

Figure 1 shows a decision tree analysis perfomed
on data that are drawn from research conducted on
passengers on the ill-fated Titanic.2 The top-most node
of the tree—termed the ‘root node’—contains 1309

observations. This top-most root node contains the
global distribution of the ‘target’ field for the analysis:
in this case, survival versus nonsurvival. In general,
targets may be any level of measurement; e.g. nominal,
ordinal, or interval. When nominal targets are used,
as in the case shown in Figure 1, the tree is sometimes
referred to as a ‘classification tree’.

In Figure 1, the overall survival rate—repesented
by ‘1’ in the data—is 38%. Marginal counts are
sometimes presented alongside the percentages so as
to display the actual number of observations that fall
into the two respective categories. In Figure 1, only
the total number of observations are displayed at the
bottom of the node display (labeled as Node ID: 1).

The decision tree unfolds in a stepwise fashion:
the tree is formed by first partitioning the root
node to form branches that define the descendent
leaves (or nodes) that form clusters of observations
that are alike within a node yet dissimilar when
compared to other nodes at any given level of the
tree. The branch partitions are based on a selection
that is taken from a search through the data set
to discover fields of data that can be input as
partitioning fields to best describe the variablility
among the target values that are displayed in the root
node. Potential partitioning fields are thereby termed
‘inputs’. Once an input is selected, the descendent
leaves, or nodes, are produced. (terminal nodes are
usually called ‘‘leaves’’). In Figure 1, the first level

Volume 5, November/December 2013 © 2013 Wiley Per iodica ls, Inc. 449



Overview wires.wiley.com/compstats

of the decision tree is produced by selecting the
‘Gender’ field as the best input field from the set of
inputs that are available (other inputs in this data set
include passenger age, cabin class (first, second, and
so on), fare paid, cabin location, boarding location,
and destination).

The selection of the ‘best’ input field is an
open subject of active research. Decision trees
allow for a variety of computational approaches to
input selection. The top-down graphical display also
supports the exploration of various effects visually, so
that strong branches—or compelling branches—may
be selected based on theoretical notions about the
interaction of the various model components. In
this example, the ‘best’ field selection is based
on partition strength diagnostics produced by the
software, coupled with the domain knowledge of
the analyst. In the Titanic data, gender, age, and
cabin class are all important and predictive inputs
with multiple, interweaving interactions. A complete
exposition of the various interactions is not possible
in the limited space here. Consequently, gender alone
is used in the description here so as to present a
simple, hopefully compelling, result. This result, and
the domain knowledge framework that describes it, is
presented below.

The descendent nodes produced by the selection
of gender as the first partitioning field in Figure 1
are commonly referred to as the first level of the
tree. The leaves in this first level correspond to the
male and female passengers. The ‘leaf’ terminology
is often used when the decision ‘tree’ metaphor for
this method is used. The more general term ‘node’
is used in recognition of the fact that decision trees
are a particular form of connected graph. In graph
terminology, the partitions are ‘edges’ and the leaves
are ‘nodes’.

Using the ‘node’ terminology, the first level of the
tree has two descendent nodes: the ‘female’ descendent
has a survival rate of about 72%, whereas the ‘male’
descendent node has a survival rate of only 19%.
It is normal, as in this case, to select the the input
that produces the most dramatic separation in the
variability among the descendent nodes. In practice,
the analyst may often guide the sequence of the
unfolding of branch partitions in order to support
a better explanation of a sequence of effects or to
support and confirm the conditional relations that
are assumed to exist among the various inputs and the
component nodes that they produce. In the case of high
performance predictive modeling applications there is
less emphasis on analyst interaction in the formation
of the tree and more emphasis on the selection of
high quality partitions that can collectively produce

the best overall model. Regardless of the method, once
the initial level of the tree is determined the process
continues in a recursive fashion until one of more
possible stop conditions are met, thus terminating the
process. Generally, stopping rules consist of thresholds
on diminishing returns (in terms of test statistics) or
in a diminishing supply of training cases (minimum
acceptable number of observations in a node).

As shown in Figure 1, gender is selected as the
first partitioning field below the root node. In this
case, we see that the use of gender as the partitioning
field forms two descendent nodes for female and male
passengers, respectively. One interpretation might be
to note that the effect of gender is strong and appears
to follow a protocol that calls for ‘women and children
first’ in the lifeboats. Here we see that, while the over-
all survival rate is 38%, this increases to about 73%
among females whereas the overall male survival rate
drops to about 19%. The descendent nodes formed
by recursively partitioning the female and male nodes,
respectively, illustrate one of the most striking and
useful features of decision trees: here we see the con-
textual effect of age on survival rate. In this case, we see
that among females, older ages are more likely to sur-
vive (83% survival rate among older females vs 68%
survival rate among younger females). In the male
population, the effect is completely reversed: older
males have a substantially lower survival rate (17%
vs 58% is older males compared with younger males).

We can interpret these findings as normative
behavior in the social dynamics that evolved in
this impromptu community that consists of the self-
selected passengers of this inaugural voyage across the
Atlantic. Our initial sense of the ‘women and children
first’ protocol—displayed in the first partition—is
reinforced by normative behavior that demonstrates
preferential treatment based on age status. Because the
second tier partitions are unique to female and male
groups, respectively, we see a contrasting preferential
age treatment among females compared with males.
This contrast favors older females and younger males.
This asymmetry in the descendent nodes on the second
level of the tree provides a dramatic illustration of
the outstanding ability of decision trees to expose
relationships in context.

The enduring legacy of decision trees is that
they demonstrate that multiple contributors need
to be recruited to effectively explain a relationship.
Further, the form of the resulting relationships will
reveal multiple contextual effects that will influence
the understanding and effective presentation of the
results. The utility of decision trees in detecting and
presenting contextual effects was a significant driver
to the development of one of the earliest and most
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influencial computer implementations of decision
trees: the Automatic Interaction Detection (AID)
program developed at the University of Michigan.3

The bottom level of the tree presented in Figure
1 shows some other useful and important features of
decision trees: we see that the partitions that form the
branches of the respective female and male descendent
nodes employ different cut-points: among females the
cut-point for the age partition lies at 30.75, whereas
among males the cut-point lies at 9.5. Here we see
that the decision tree methodology employs similarity
search algorithms to find the most discriminating cut-
points among the branches of potential partitions.
This means that members of a given partition are
as much alike as possible. This determination is
often made on the basis of a statistical test of
differences between values. Although binary partitions
are shown here for differences in the age dimension,
the technique allows for the use of multiway (k-way)
partitions. The multiway partitions were developed
as an enhancement to the method of AID.4 Whether
binary or k-way partitions are used depends much
upon analyst preference; in any case, methods are
usually applied to define cut-points which attempt to
identify differences among nodes that are statistically
significant and which generalize well to novel data.

We can also see that the labels for the age
partitions in Figure 1 indicate that missing values
are being used in the determination of partition cut-
points. Decision trees can explicitly include missing
values as valid values in the determination of branch
partitions. When included in the analysis, missing
values for a given input are often allowed to group
with other values that they most closely resemble in
terms of relation to the target. Missing values may
also be included as a separate value and so may form
a distinct partition on their own. Of course, missing
values can also be excluded from the analysis.

This brief illustration displays some of the
distinctive features of the decision tree method:

• The form of the tree results from a stepwise and
recursive partitioning of a target field according
to significant discriminating features of one or
more associated input fields.

• All levels of measurement—nominal, ordinal,
and interval—are automatically accommodated
in either target or input position in the tree
formation.

• Successive partitioning results in the presentation
of a tree-like visual display with a top node and
descendent branches.

• The automatic treatment of various levels of
measurement and the associated visual display
contribute to model flexibility, ease of use and
ease of presentation and interpretation. While
not shown in the figure, the approach can be
calibrated to either automatically include or
exclude missing values. This represents a further
contribution to flexibility and ease of use.

• There is a potential unfolding of asymmetric trees
with different subpartitions in descendent nodes.

• Descendent nodes result in the identification
of local effects that are conditional on the
fields that form the partition sequence that are
used to identify the effect. These local effects
are conditional on the interactions among the
partitioning fields and are sometimes referred to
as ‘interaction effects’.

• Partitioning fields may be at nominal, ordinal, or
interval measurement levels. In the case of ordinal
or interval measures, the partitioned values are
grouped together so as to maximally discriminate
among high and low percentages in the resulting
target field proportions in the descendent nodes.

• While not shown in the illustration, we note that
branch partitions may be two-way or multiway
branches.

OTHER FEATURES

As with all quantitative models, the form of the tree
has to be limited by considerations of reproducibility
and generalization. This has led to the development
of various stopping criteria to limit the growth of the
tree on one hand and various test and validation
approaches that increase the likely accuracy and
reliability of tree models in post-training applications.
A concise summary is presented in an early paper
by Kass.4 The flexibility of the single decision tree
approach described here has proven to be well
adapted to multitree models, based on a variety of
resampling and multisample methods, a development
that has radically improved the practicality and overall
observed performance of decision trees in a wide
variety of model settings.

ORIGINS

All modern versions of decision trees trace their
origins to work carried out by Belson in the 1950s,
especially his work in the analysis of nation-wide
audience surveys on behalf of the British Broadcasting
Corporation.5 This work was originally undertaken
prior to the introduction of digital computers and

Volume 5, November/December 2013 © 2013 Wiley Per iodica ls, Inc. 451



Overview wires.wiley.com/compstats

exploited the then most current technology of
mechanical calculators.

Decision trees turn out to be well adapted to
mechanical calculators using Hollerith punch cards
because of the sorting and selection characteristics
of the algorithm and the avoidance of, e.g., any
matrix-based computations. For each predictive field
that could be considered as an input for use in
the characterization of a target field it was possible
to sort subclasses formed for each target-predictor
combination and then to identify imbalances between
the expected frequency of the subclass and the
observed frequency of the subclass. This step-by-step
recursive process is simple enough for both mechanical
calculators and unassisted humans. Unbalanced
distributions—which we would now identify as
distributions with high chi-squared values—could be
easily identified with the tabulating machines available
at this time. This method—so useful in the era prior to
digital computers—survives to the current day as the
underpinning for all decision tree implementations.

A further refinement introduced by Belson
involved the differential assessment of nested subclass
predictors.6 Belson recognized that descendent nodes
of a tree could be examined recursively, just as
the top node had been. Belson further recognized
that descendent nodes could be subset by either the
same predictor or another predictor such that the
descendent nodes of the tree could be balanced and
symmetrical—employing a matching set of predictors
with each level of the subtree—or could be unbalanced
in that subnode partitions could be based on the most
powerful predictor at a given level of the subtree.
This innovation exploits the power of decision trees
to explore and discover a host of subregion effects
in data and, like the use of predictors identified on
the basis of deviation from expected values, forms the
basis of modern decision trees.

Morgan and Sonquist7 built on Belson’s early
work and saw decision trees as a complement and
alternative to regression to analyze survey data.
Initially, Morgan and Sonquist began with the notion
of employing trees in order to identify interaction
terms that would be useful in forming the most
effective regression solution for their data modeling
tasks. In tests run by Morgan and Sonquist, they
observed a decision tree which partitioned data into 21
groups that accounted for two-thirds of variance of the
response variable. A similar regression with 30 terms,
including interaction terms, was only able to account
for 36% of the variance in the response. The authors
reached three conclusions: (1) that interactions among
inputs are inevitable; (2) that regression requires the
analyst to specify interactions in advance; and (3) that

decision trees were better tools because they find the
interactions as they grow the tree.

Many observers at the time were resistant
to employ the relatively new and lightly tested
approach advocated by Morgan and Sonquist.
Regression practitioners then—and now—develop
results on the basis of well-informed theory and widely
tested results in a broad, active, and well-informed
community. The theoretical underpinnings—coupled
with a rich history of fielded results—enable regression
practitioners to develop time-tested, effective metrics
and diagnostics in a wide range of circumstances.

Decision trees were demonstrated to have
shortcomings of their own: how to go about selecting
appropriate variables to form the tree partitions (input
vetting and selection) and how many partitions, of
what complexity, to build. These latter two problems
served as the ‘grist for the mill’ of the next steps in the
development of statistical decision trees carried out by
Kass and Hawkins8 and Breiman et al.,9 respectively.
Over time, this body of work has provided substantial
credibility and a rich legacy of fielded applications
that help establish trees as a useful, viable, and
trustworthy technique.

RULE INDUCTION, MACHINE
LEARNING, AND DECISION TREES

During the 1950s, as Belson was developing
his approach, a kind of computation which
he described as based ‘ . . . on the principal
of biological classification’, other researchers in
experimental psychology were attempting to encode
human approaches to concept formation tasks. Both
approaches naturally fed into the nascent field of
artificial intelligence and machine learning. In this
way Belson’s work serves as a precursor to a new line
of decision tree development that employs machine
algorithms to produce executable rules.

The work in experimental psychology led to the
development of a computer implementation, entitled
‘CLS’ (for Concept Learning System) developed by
Hunt et al.10 As in the earlier approaches of Belson
and Morgan and Sonquist, CLS works through
the successive application of partitions in the data
based on highly discriminating variables or inputs.
J. Ross Quinlan entered this field from a machine
learning perspective. He formalized the development
of this approach to concept formation as a method
of knowledge acquisition. This resulted in the
development of ‘Interactive Dichotomizer 3’ (ID3).11

Follow-ons to Quinlan’s initial work have led
to the development of a number of rule generation

452 © 2013 Wiley Per iodica ls, Inc. Volume 5, November/December 2013



WIREs Computational Statistics Decision trees

approaches for knowledge acquisition, commonly
referred to as ‘rule induction’.

BOX 1

Donald Michie served as the editor of a set
of findings that featured Quinlan’s initial work
on ID3. Michie was a colleague of Alan Turing
during the World War II Enigma Project and
is a founding father of the field of artificial
intelligence. He later employed inductive rules
to the adaptive control of robotic devices
and spacecraft.12 This rule method serves as a
template for self-learning robotic systems up to
the present day.

Subsequent work by Quinlan led to the
development of C4.5.13

Rule induction is an active area of development
and has led to a range of rule induction approaches,
for example, W Cohen’s ‘RIPPER’.14 RIPPER
incorporates a multitree approach often described
as ‘sequential covering’. In these approaches the
tree is first grown so that a pure node is found.
A pure node is a node that results from the
identification of a rule that predicts 100% of the
target values. The preconditions of the rule ‘covers’
the training observations that correspond to this rule.
The observations that are covered by the rule are
then removed from the training data (i.e. are ‘ripped’
out). Successive trees are run, at each step looking
for a rule that produces a ‘pure node’. Multiple trees
may be grown until no more pure nodes are found.
Overall, the predictive space is ‘covered’ through
the layering of these successively grown predictive
rules. The RIPPER algorithm is a greedy algorithm;
i.e. it produces excessively overoptimistic results
that do not generalize well. Alternative multitree
approaches, discussed below, are less greedy and
offer superior generalization performance. Another
innovation suggested by Cohen was to form rules
based on both the presence and absence of attributes
(allow Boolean NOTs to form part of the selection
expression). This approach has more recently been
implemented as part of a text mining solution to
generate automatic text classification rules based on
inductive rule learning.15

CURRENT DEVELOPMENTS
(MULTIPLE TREES)

The bootstrap method, described by Efron,16 is a
prominent example of the utility of resampling in sta-
tistical computation. The single tree approach—one

of selecting the best single predictor at any one stage
in the growth of the decision tree—can be extended by
resampling the available training data. This random
element has many benefits: the most obvious benefit
is the smoothing properties. While a single decision
tree bisects the space of training data into a number
of hard-edge rectangles, multitrees form many over-
lapping bisections so that the fitted space more closely
approximates such methods as neural networks
and multiple regression. With multiple trees we can
derive multiple, overlapping viewpoints that are
different but complementary. When taken together,
the overlapping views reduce both variance and bias.

The resampling approach has led to a number
of methods to ‘boost’ the predictive power of the
host training set. Multiple trees are always grown,
regardless of the specific method that is employed. In
addition to the introduction of random components
in multiple trees, these approaches also offer the
opportunity to reweight computations in successive
iterations of tree growth. Unlike the ‘sequential
covering’ approach, described above, where successive
samples are drawn from the training corpus in
unaltered form, boosting approaches reweight cases
in successive iterations. The coverage offered by these
approaches is less structured and deterministic than
sequential covering. In this approach, the reweighting
goal is to alter successive training samples with
the view to improving the predictive performance
of successive rule sets. These approaches have been
explored and advocated by Schapire;17 notably in
Adaboost developed by Freund and Schapire;18 Arcing
by Breiman;19 and Gradient Boosting by Friedman.20

The Adaboost method (from ‘adaptive boosting’)
employs an approach that reweights individual
observations in subsequent samples. In Gradient
Boosting, the target value is adjusted by a function of
the residual of the training value minus the predicted
value.

Various group-voting or aggregation methods
are possible in the production of a final group-
voting metric: including numeric averaging with
continuous outcomes and majority votes or polling
with categorical outcomes.

The interaction between the fields of statistical
decision trees and machine learning continued
throughout these adaptations of bootstrapping
applications to multiple trees. One innovation
included sampling and randomization across both
rows and columns of the training data. This technique
entered the machine learning field in the application of
multiple decision trees to digit recognition as described
in Amit and Geman.21 Much of this cross-fertilization
is due to substantial cross-disciplinary work carried
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out by Breiman. He described this general row
and column sampling approach as ‘Random
Forests’;22 these are currently the leading benchmark
implementation of decision trees across a variety of
statistical and machine learning applications.

CONCLUSIONS

There are many variations of multitree themes:
autonomous vs serial samples; row vs column
reweighting schemes; replacement samples vs no
replacement; and so on. Improvements over best-

guess, single decision trees are shown in most multitree
methods. As training data continues to increase in
size there are now obvious benefits in the approach
of multiple autonomous trees as these trees can
be calculated independently, in parallel, prior to
the production of an aggregate effect. As the size
of initial training data has increased, so too has

the corresponding emphasis on sampling without
replacement. With larger training data, sampling
without replacement tends to reinforce the adoption of
differences in the model results. This is now recognized
as a potential strength of multitree methods.

To date, most multitree methods demonstrate
strengths in various circumstances. As this field evolves
it may become clear which method is best in which
set of circumstances. Given the pace of innovation in
this area it is likely that improved methods and new
paradigms will continue to emerge.

NOTE
a This data table is based on the Titanic Passenger List
edited by Michael A. Findlay, originally published in
Ref23, and expanded with the help of the internet
community. The original HTML files were obtained
by Philip Hind (1999).
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