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Abstract

This paper proposes a machine vision approach for plant
classification without segmentation and its application in
agriculture. Our system can discriminate crop and weed
plants growing in commercial fields where crop and weed
grow close together and handles overlap between plants.
Automated crop / weed discrimination enables weed control
strategies with specific treatment of weeds to save cost and
mitigate environmental impact.

Instead of segmenting the image into individual leaves
or plants, we use a Random Forest classifier to estimate
crop / weed certainty at sparse pixel positions based on
features extracted from a large overlapping neighborhood.
These individual sparse results are spatially smoothed using
a Markov Random Field and continuous crop / weed regions
are inferred in full image resolution through interpolation.

We evaluate our approach using a dataset of images cap-
tured in an organic carrot farm with an autonomous field
robot under field conditions. Applying the plant classifi-
cation system to images from our dataset and performing
cross-validation in a leave one out scheme yields an aver-
age classification accuracy of 93.8%.

1. Introduction

The incentive for automating weed control in agriculture
with machine vision and autonomous field robots is mani-
fold: In conventional farming, the amount of chemical her-
bicides necessary can be reduced to minimize cost and re-
duce pollution. In organic farming, weed control is cur-
rently done manually which is both hard and tedious work
and very costly. Using automated systems that are able to
work 24 / 7, weed control is expected to be achieved more
efficiently, environmentally friendly and cost-effectively.

Precise crop / weed discrimination is a major require-
ment to realize such systems for precision weed control.
Weed plants growing close-to-crop or intra-row need to be
regulated to avoid substantial yield loss [19]. However,

these types of weed require sophisticated detection and clas-
sification methods as crop and weed are in close proximity,
possibly overlap and loss of crop must be minimized.

We focus on the perception part of such robotic weed
control systems and propose a new approach for plant clas-
sification that does not require segmentation into individual
plants or leaves. Instead we show that crop and weed can
be discriminated based on features extracted from patches
representing the neighborhood of sparse keypoints arranged
in a grid in image space. The image patches overlap be-
cause the patch size is significantly larger than the spac-
ing of the grid. The system applies machine learning to
train a classifier that discriminates between crop and weed.
Based on the classification results for each of the sparse key-
points, continuous crop / weed regions in the image are in-
ferred through interpolation. Figure 1 shows an input image

Figure 1: Input image (left) and output (right) of the plant
classification system where the predicted plant class is color
coded (crop in green, weeds in blue and red). See Figure 5
#1 for ground truth and more details.

next to the output image in which the predicted crop / weed
classes are color coded. The evaluation indicates that our
method achieves good performance on field images even in
situations with overlap.

The plant classification system is integrated into a new
version of the autonomous field robot Bonirob [16] built for
the use case of weed control in commercial organic carrot
farms (project RemoteFarming.1). The robot will also carry
a mechanical weed regulation unit [12] which acts based on
the output of the plant classification system and treats weed.
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The main contributions of this paper are:

• A new method for plant classification without segmen-
tation: Feature extraction and classification are per-
formed on overlapping image patches. They repre-
sent the neighborhood of sparse keypoints which are
arranged in a grid.

• This approach enables our system to handle overlap of
plants and irregular shaped leaves. No prior segmenta-
tion into plants or leaves is required.

• The sparse results are spatially smoothed and interpo-
lated. The system outputs per pixel crop / weed esti-
mates in full image resolution. The precision loss of
cell based methods that classify large non-overlapping
cells (see related work) is avoided.

• Applying the plant classification system to an image
dataset captured on a commercial carrot farm results
in an average classification accuracy of 93.8%.

2. Related Work
Computer vision techniques have been applied to solve

plant classification tasks at different levels:
When considering only leaves, methods based on shape,

color and texture have proven effective to discriminate be-
tween different types of leaves. Beghin et al. [3] classify
leaves from 10 species based on shape and texture with
an average accuracy of 85%. Kumar et al. [11] developed
a smartphone application for classification of leaves from
trees in the Northeastern United States. These approaches
share with other work [6, 10] that the input is an image of a
flat leaf captured on a mostly homogeneous background.

In agriculture machine vision can be applied with the
goal of intelligent weed control, but in general the require-
ment of single leaf images is not applicable to commercial
field situations. Remote-sensing has been successfully ap-
plied to estimate weed densities and distributions on field
level [22] with the goal to regulate herbicide usage. But
for precision agricultural activities that are considered here,
plant classification must be done on a much finer scale [5].

On ground level, camera based sensing can been applied
to identify single plants or groups of a few plants and to
classify them. Hemming et al. [9] present a robot and com-
puter vision system which correctly classifies 51 to 95 %
of plants based on color and shape features of segmented
plants in top down images. They conclude that segmen-
tation into individual plants is difficult and needs more re-
search. Astrand & Baerveldt [2] use similar features on seg-
mented plants for classification. They evaluate their system
in greenhouse experiments with large plants (about 5 cm di-
ameter) but do not present quantitative results on classifi-
cation performance. Leaf segmentation has also been re-

searched in field settings to enable crop / weed discrimina-
tion [8, 14]. Neto et al. [13] present a leaf segmentation
technique that performs well on convex leaves but not for
other leaf shapes (like carrots considered here). They con-
clude that more research is needed in these situations.

Cell based methods [1, 21] require no plant / leaf seg-
mentation and have also been applied to crop / weed dis-
crimination tasks. New images are processed by splitting
them into grid cells (without overlap) and deciding for each
cell individually whether it should be treated or not. Aitken-
head et al. [1] present a system that uses very coarse cells
(16 per image) and analyzes them using a self-organizing
neural network. They achieve a classification accuracy of
approximately 75 % in experiments with plants specifically
sown in a greenhouse. Tellaeche et al. [21] capture images
with a frontal downward looking camera and partition them
into non overlapping grid cells aligned to crop rows. They
apply a Bayesian theoretic approach to decide whether or
not to treat a grid cell. The cell based methods lack the
precision of plant or per-pixel based methods and are not
applicable if high precision treatment is desired.

Our approach closes this gap and avoids segmentation
into plants or leaves which was determined a major problem
in the literature. Although working without segmentation,
the system still returns per pixel crop / weed classification
results in full input image resolution.

3. Plant Classification Pipeline
The plant classification system is designed as a 6 stage

pipeline performing the actual task of crop / weed discrim-
ination and several offline steps during training. Figure 2
gives an overview of both the on- and offline processing
steps and the data involved. In the following we address
and explain each step in depth.

3.1. Image Acquisition

Input data consists of images captured by a multi-
spectral down-looking monocular camera. The camera is
a JAI AD-130 GE with 1.3 Mpx which outputs images at a
resolution of 1296 px by 966 px. It is mounted on the au-
tonomous field robot Bonirob and acquires images in the
visible red (R) and near-infrared (NIR) spectrum. To avoid
interference by changing environment conditions and to en-
able the robot to work around the clock, the space under the
robot is shaded and artificial lighting is installed. The cam-
era system is positioned approximately 45 cm above ground
and the resulting ground resolution is 10 px/mm. All im-
ages used for training and evaluation of our system were
collected while the robot system was driving with 5 cm/s.

3.2. Background Removal

The goal of the background removal step is to seg-
ment the vegetation from soil. The different reflectance of
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Figure 2: Overview of classification pipeline: The plant
classification system itself is an online process (solid
blocks), labeling of data and classifier training is done off-
line (dotted blocks).

biomass and soil in the visible red and near-infrared light
is used to mask soil pixels [18]. We apply the Normalized
Difference Vegetation Index (NDVI) to each pixel pair in
the input images INIR and IR to define an INDVI image:

INDVI =
INIR − IR
INIR + IR

(1)

A threshold is selected in NDVI space using Otsu’s
method [15] and all pixels with NDVI values smaller than
the threshold are masked. The output of the background
removal step is a masked image in NDVI image space, in
which only pixels belonging to plants are present. Figure 3
displays the four images (R, NIR, NDVI and masked NDVI
image) for one position in the field.

3.3. Image Tiling

Keypoints are generated by applying a sparse grid (15 px
by 15 px) to the image. For each keypoint located at a
biomass pixel (i.e. pixel has not been masked in previous
step) an image tile representing the neighborhood (80 px by
80 px) of this keypoint is extracted. In the following, com-
putations will be done on these tiles called image patches
{p} and all results (e.g. their feature vectors) will be asso-
ciated to the keypoints in the input image.

3.4. Feature Extraction

Features are extracted from all patches of the masked
NDVI image generated in the previous step. A set of shape
and contour features (based on typical features used in ear-
lier work [6, 9], f6 and f7 are new additions of our own) and
statistical features are calculated for each image patch, see
Table 1 for a summary. The first seven features are extracted

(a) NIR channel (b) R channel

(c) NDVI image (d) Masked NDVI image

Figure 3: Background removal step: (a) and (b) are the in-
put image channels, (c) the intermediate image and (d) the
masked NDVI output image.

from a binarized version of the image patch (biomass vs.
soil), the statistical features are calculated from the inten-
sity values of biomass pixels in the image patch.

Table 1: Description of used features. Features f1 to f7 are
contour / shape features, f8 to f15 statistical features.

fi Description

f1 perimeter (length of contour)
f2 area (number of pixels covered by biomass)
f3 compactness (area / perimeter2)
f4 solidity (area / area of convex hull)
f5 convexity (perimeter / perimeter of convex hull)
f6 length of skeleton
f7 length of skeleton / perimeter
f8 minimum of biomass pixel intensities
f9 maximum of biomass pixel intensities
f10 range of biomass pixel intensities
f11 mean of biomass pixel intensities
f12 median of biomass pixel intensities
f13 standard deviation of biomass pixel intensities
f14 kurtosis of biomass pixel intensities
f15 skewness of biomass pixel intensities
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3.5. Classification

To be able to represent more than one weed class we use
a multi-class classifier. We chose the Random Forest clas-
sifier [4] because it is multi-class, fast to train and able to
estimate class certainty scores (s) in addition to the most
certain label (l̂) during prediction of new samples. See Sec-
tion 4 for details on classifier training.

3.6. Spatial Smoothing and Interpolation

During post-processing the classification results on the
sparse grid are smoothed spatially and interpolated to full
image resolution.

For smoothing a Markov Random Field approach is used
to calculate a smoothed labeling l∗ given the prediction
from the classification (expressed by the score vector s for
each keypoint, sum of elements in s is 1). The key assump-
tion is that the final labeling should be mostly smooth as
neighboring keypoints most likely belong to the same class
and should have the same label. We model this with the
energy function

E(l) =
∑
p∈P

Dp(lp) +
∑

p,q∈N
V (lp, lq). (2)

The data term is based on the predicted class certainty
sp(lp) (score for predicted class l at keypoint p)

Dp(lp) = 1− sp(lp) (3)

and the discontinuity cost

V (lp, lq) = min [|lp − lq|, 1] (4)

is given by the difference in labels of two keypoints p and q
in the four-connected neighborhood. The discontinuity cost
is truncated at 1 (assuming integer labels) to only penal-
ize different labels, but not to prefer any class over another.
This cost function is minimized using efficient belief prop-
agation [7] and the smoothed labeling l∗ is returned.

The final step is the interpolation of the sparse results
to get per biomass pixel predictions in the same resolution
as the input image. We use nearest neighbor interpolation
to assign to each biomass pixel the smoothed label of the
nearest keypoint. This label image ILABEL is the output of
the plant classification system. From this image connected
crop / weed regions can be determined and a weeding tool
can use this information to selectively treat weeds.

4. Training of the System
The acquisition of labeled training data and the training

of the classifier are done offline.
During labeling an expert user is shown the masked

NDVI images and asked to provide ground truth labels.
Users provide labels by drawing polygons and assigning

a single class label to each polygon using a web based
tool [17]. The label of the polygon is then assigned to
all biomass pixels that are enclosed by the polygon. The
number of classes is defined in this step and more than two
classes are supported to e.g. define multiple weed classes.

The classifier is trained in supervised mode with a pool
of labeled images. For each image I with ground truth la-
bels L our system also stores the extracted feature vectors
{f} in a database. During training the database is queried
to output feature vectors with corresponding ground truth
labels. The query can be restricted to run only on a sub-
set of all images in the database (e.g. for cross-validation).
Using these feature vector and label pairs a Random Forest
classifier [4] is trained. The trained classifier is stored and
can be loaded into the pipeline to run the plant classification
system online on new images.

5. Evaluation of Results
The plant classification system is evaluated using im-

age data captured with the field robot in June 2013 on a
commercial organic carrot farm. The dataset comprises 70
non-overlapping images of plants growing under field con-
ditions. All images contain multiple plants, all plants are ap-
proximately of the same size and both inter and intra class
overlap is present. All weeds grow close to crop (weeds
further away from crop were removed with non precision
weed control methods before image acquisition) and need
to be treated to avoid loss of yield.

These images were labeled by an expert user using the
labeling tool. For this dataset three classes were defined:
One crop class for the carrot plants and two weed classes.
Chamomile is a very common weed that looks similar to
carrots (both true leaves are pinnate) and was labeled sep-
arately. The third class was used to label all other weeds.
Table 2 summarizes the number of plants (including partial

Table 2: Summary of key figures of dataset used for evalu-
ation (Cham. is short for Chamomile).

Carrot Weed Cham. Total

Number of Plants 168 143 60 371
Number of Patches 5668 6055 3802 15525

plants when overlap is present) and the resulting number of
patches for the different classes in the dataset.

For the evaluation all parameters of the pipeline are set
to the described values. Each Random Forest is set to grow
100 trees and the number of features sampled for splitting at
each node is set to the default value (square root of number
of features:

√
15).

The plant classification pipeline is evaluated by passing
images from the dataset through the pipeline. We employ
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a leave one out cross-validation scheme: Each image is se-
lected as test image once. For each test image a classifier
is trained using all other images from the dataset as training
data. The test image is then run through the pipeline and
the ground truth of the test image is used to evaluate the
performance of the system.

Figure 4 shows the resulting ROC curves after leave one
out cross-validation over all 70 images. The ROC curves
are generated using the score vector output of the classifier
prior to smoothing.
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Figure 4: Plant classification ROC curves after leave one out
cross-validation on the complete dataset. The crosses mark
the chosen operating points. The multi-class ROC curves
are generated in one-vs.-all mode.

Table 3 gives the associated true positive rates and false
positive rates for the three classes at the respective operating
points.

Table 3: True positive rates and false positive rates at se-
lected operating points on ROC curves in Figure 4.

Class True Positive Rate False Positive Rate

Carrot 91.0 % 8.3 %
Chamomile 77.6 % 4.2 %
Other Weed 87.1 % 5.3 %

To quantitatively evaluate the performance of the com-
plete system with smoothing the average accuracy, preci-
sion, recall and f-score are determined before and after
smoothing (see Table 4). After smoothing only labels but
no scores are available and thus an ROC curve evaluation is
not applicable. Smoothing improves the classification result
in all performance measures.

The results of the classification pipeline can also be as-
sessed visually. Figure 5 shows the input NIR image (col-
umn a), the color coded expert labeled ground (column b)

Table 4: Performance of plant classification system on
dataset before and after smoothing. The measures are de-
termined using leave one out cross-validation and are macro
averaged [20] over all classes.

Precision Recall F-score Accuracy

No smoothing 86.8 % 86.4 % 86.6 % 91.5 %
After smoothing 90.4 % 89.9 % 90.2 % 93.8 %

Improvement +3.6 % +3.5 % +3.6 % +2.3 %

and the color coded prediction by our pipeline (column c)
side by side for four test images.

Smoothing is an important step to improve performance
and to receive a more consistent labeling. Figure 6 shows
the internal sparse classification results at the keypoints
prior to interpolation (for test images #1 and #2 from Fig-
ure 5). The predictions are overlaid on top of the image
before smoothing (left image) and after smoothing (right
image). The classifier certainty (score) at each keypoint
is visualized by plotting the dot in different sizes (larger
for higher certainty) in the image before smoothing. After
smoothing only labels (either carrot, chamomile or weed)
are available and all dots are plotted in the same size. The
class label is color coded as before.

6. Discussion
Our contribution is a new plant classification system with

the application of crop / weed discrimination in commercial
crop fields. The evaluation in Section 5 shows that the sys-
tem achieves an average accuracy of 93.8% when it is ap-
plied to field images where weeds grow close to crop, are of
the same size and plants overlap.

Both of the two main approaches in related work do not
handle this situation well. First, the plant / leaf segmenta-
tion approach fails when plants overlap. Reliable segmen-
tation is an unsolved challenge and classification accuracy
significantly decreases when overlap is present. Second, the
approach of classifying large non-overlapping cells can par-
tially cope with overlap, but there is a large loss in output
accuracy. The output estimates are only available per cell
and not in pixel space. This is not desired for precise me-
chanical treatment.

Our approach solves these issues as it neither requires
plant / leaf segmented input data nor does it output only
coarse per cell predictions. Another advantage is that in our
method overlap is not a special case. There are no special
parameters to tune to cope with overlap, the system generi-
cally handles field situations with and without overlap.

The feature extraction process at sparse keypoints com-
bined with the smoothing and interpolation steps are the key
contributions. The evaluation proves that crop / weed classi-
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(a) Input Image (NIR) (b) Ground Truth (c) Prediction

#1

#2

#3

#4

Carrot General weed Chamomile Soil Border

Figure 5: Results of the plant classification system generated using leave one out cross-validation. Column (a) shows the
input image, column (b) the expert labeled ground truth and column c) the prediction by the plant classification system. Best
viewed in color.

fication on real image data from a commercial farm is possi-
ble with our method and that high accuracies are achieved.

The output of our system is a labeled image that can be

used for selective weed treatment. Additionally, the pixel
labels can be used to calculate metrics like weed coverage or
the crop / weed area ratio, that help farmers when applying
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(a) Sparse classification results before smoothing (b) Sparse classification results after smoothing

#1

#2

Carrot General weed Chamomile

Figure 6: Result of spatial smoothing for the center part of test images #1 and #2. The dot is plotted at the keypoint location,
the predicted class is color coded and in (a) the dot size represents the certainty of the prediction. See Figure 5 for ground
truth data. Best viewed in color.

precision agriculture farm management techniques.

One limitation of our method is that multiple plants of
the same class that overlap (intra class overlap) are not split
into different plant regions in the output label image. They
get represented by one connected component. However,
this is no drawback for the goal of precision weed control.
Here the overlap between different classes (inter class over-
lap) is most important.

In the future, the spatial arrangement of crop and weed
in the field could be used as a priori information. Row crops
are cultivated in one or multiple parallel straight rows. The
lower probability of crops outside rows can be fused into
the output to further improve the results.

7. Conclusions

A plant classification system for crop / weed discrimi-
nation that does not require segmentation into individual
plants is presented. Features are instead extracted on large
overlapping image patches representing the neighborhood
of sparse keypoints arranged in a grid in image space. The
per patch classification results are spatially smoothed using
a Markov Random Field. Per pixel crop / weed predictions
in full image resolution are derived from the smoothed key-
point results using nearest neighbor interpolation. The pro-
posed method is designed to deal with real world field situ-
ations where crops and weed grow close together and plants
overlap. The output label image of the plant classification
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system can be used to control a precision weeding tool to
treat the weeds selectively.

To analyze the system a dataset of images was captured
in an organic carrot farm under commercial field conditions.
The performance is analyzed by testing our system with all
images in leave one out cross-validation mode and compar-
ing the output with expert labeled ground truth. Visual anal-
ysis indicates good results, empirically our system achieves
an average accuracy of 91.5% before smoothing that in-
creases when applying smoothing by +2.3% to 93.8%.

In the future, the arrangement of the crops growing in
rows can be leveraged to further improve the classification
results. Additionally, the complete robotic system compris-
ing this classification system and a treatment unit will be
deployed and compared with manual weed control.
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