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Learning Gender with Support Faces

Baback Moghaddam, Member, IEEE, and
Ming-Hsuan Yang, Member, IEEE

Abstract—Nonlinear Support Vector Machines (SVMs) are investigated for
appearance-based gender classification with low-resolution “thumbnail” faces
processed from 1,755 images from the FERET face database. The performance of
SVMs (3.4 percent error) is shown to be superior to traditional pattern classifiers
(linear, quadratic, Fisher linear discriminant, nearest-neighbor) as well as more
modern techniques such as Radial Basis Function (RBF) classifiers and large
ensemble-RBF networks. Furthermore, the difference in classification
performance with low-resolution “thumbnails” (21-by-12 pixels) and the
corresponding higher resolution images (84-by-48 pixels) was found to be only

1 percent, thus demonstrating robustness and stability with respect to scale and
degree of facial detail.

Index Terms—Support vector machines, gender classification, linear, quadratic,
Fisher linear discriminant, RBF classifiers, face recognition.
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1 INTRODUCTION

ASs Human-Computer Interaction technology (HCI) evolves,
computer vision systems for people monitoring will play an
increasingly important role in our lives. Examples include human
(face) detection, face/body tracking, action (gesture) recognition,
person identification (face recognition) and estimation of age,
ethnicity and perhaps most fundamentally gender. This informa-
tion will not only enhance existing HCI systems but can also serve
as a basis for passive surveillance and control in “smart buildings”
(e.g., restricting access to certain areas based on gender) and
collecting valuable demographics (e.g., the number of women
entering a retail store on a given day). We have developed an
appearance-based gender classifier for low-resolution images
(extracted by an automatic face detection system) which uses
Support Vector Machine (SVM) learning. This system exhibits
performance far superior to existing classifiers.

In recent years, SVMs have been successfully applied to various
tasks in computational face-processing, including face detection
[22], face pose discrimination [19], and face recognition [24]. The
good empirical results can be explained by the fact that SVM is an
optimal discriminant based on large margin learning theory. For
the cases where it is difficult to estimate the density model in high-
dimensional space, e.g., images, the discriminant approach is
preferable to the generative approach. Furthermore, SVMs provide
an efficient discriminant method, not only to handle the patterns
that are not linearly separable, but to also achieve lower general-
ization error for unseen test examples. In this paper, we develop an
appearance-based method to classify gender from facial images
using nonlinear SVMs and compare their performance with
traditional classifiers (e.g., linear, quadratic, Fisher linear discri-
minant, and nearest-neighbor) as well as more modern techniques
such as RBF networks and large ensemble-RBF classifiers. We have
focused our study on very low-resolution “thumbnail” images in
which only the main frontal facial regions (inside the “oval” of the
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face) are visible and almost completely excluded hair information
(outside the “oval”). The motivation for using these particular
images is two-fold. First, hair styles can change in appearance
easily and frequently. Therefore, in a robust face recognition
system face images are usually cropped to keep only the main
facial regions. Second, we wished to investigate the minimal
amount of face information (resolution) required to learn male and
female faces by various classifiers. Previous studies on gender
classification have used high-resolution images with hair informa-
tion and relatively small data sets for their experiments. In our
study, we demonstrate that SVM classifiers are able to learn and
classify gender from a large set of hairless low-resolution images
with very high accuracy. Furthermore, SVM classifiers showed
negligible difference between their error rates with low and high-
resolution facial images. In our experimental study, little or no hair
information was used as input to the classifiers. This is in contrast
to previous results reported in the literature where almost all
methods include some hair information.

2 BACKGROUND

Although gender classification has attracted much attention in the
psychological literature [3], [6], [23], relatively few learning-based
machine vision methods have been proposed. In this section we
briefly review and summarize the prior art in visual gender
classification. The studies referred to are also summarized in Fig. 1
where the final entry [21] reports some of the preliminary results
reported in this paper.

Gollomb et al. [16] trained a fully connected two-layer neural
network, SEXNET, to identify gender from 30-by-30 face images.
Their experiments on a set of 90 photos (45 males and 45 females)
gave an average error rate of 8.1 percent compared to an average
error rate of 11.6 percent from a study of five human subjects.
Cottrell [9] also applied neural networks for emotion and gender
classification. The dimensionality of a set of 160 64-by-64 face
images (10 males and 10 females) was reduced from 4,096 to 40
with an auto-encoder. These vectors were then presented as inputs
to another one-layer network for training. They reported perfect
classification (albeit for only 20 individuals). Brunelli and Poggio
[4] developed HyperBF networks for gender classification in which
two competing RBF networks, one for male and the other for
female, were trained using 16 geometric features as inputs (e.g.,
pupil to eyebrow separation, eyebrow thickness, and nose width).
The results on a data set of 168 images (21 males and 21 females)
show an average error rate of 21 percent. Using similar techniques
as Golomb et al. [16] and Cottrell [9], Tamura et al. [29] used
multilayer neural networks to classify gender from face images at
multiple resolutions (from 32-by-32 to 8-by-8 pixels). Their
experiments on 30 test images show that their network was able
to determine gender from 8-by-8 images with an average error rate
of 7 percent. Instead of using a vector of gray levels to represent
faces, Wiskott et al. [31] used labeled graphs of two-dimensional
views to describe faces. The nodes were represented by wavelet-
based local “jets” and the edges were labeled with distance vectors.
They used a small set of controlled model graphs of males and
females to encode “general face knowledge,” in order to generate
graphs of new faces by elastic graph matching. For each new face,
a composite reconstruction was generated using the nodes in the
model graphs. The gender of the majority of nodes used in the
composite graph was used for classification. The error rate of their
experiments on a gallery of 112 face images was 9.8 percent.
Recently, Gutta et al. [17] proposed a hybrid classifier based on
neural networks (RBFs) and inductive decision trees with
Quinlan’s C4.5 algorithm with 3,000 FERET faces of size 64-by-
72 pixels. The best average error rate was found to be 4 percent.
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Study Method  Size  Format % Error
Gollomb 1991 NN 90 30-by-30 8.10
Wiskott 1995 EGM 112 Full 9.80
Tamura 1996 NN 30 8-by-6 7.00

Gutta 1998 RBF/DT 3000 64-by-72 4.00
Moghaddam 2000 SVM 1800 21-by-12 338

Fig. 1. Comparison of representative gender classification studies (see text).

3 GENDER CLASSIFIERS

A generic appearance-based gender classifier is shown in Fig. 2.
An input facial image = generates a scalar output f(x) whose
polarity—sign of f(x)—determines class membership. The magni-
tude || f(x)|| can usually be interpreted as a measure of belief or
certainty in the decision made. Nearly all binary classifiers can be
viewed in these terms; for density-based classifiers (linear,
quadratic and Fisher) the output function f(x) is a log-likelihood
ratio, whereas for kernel-based classifiers (nearest-neighbor, RBFs,
and SVMs) the output is a “potential field” related to the distance
from the separating boundary.

3.1 Support Vector Machines

A Support Vector Machine is a learning algorithm for pattern
classification, regression and density estimation [30], [8], [11]. The
basic training principle behind SVMs is finding the optimal linear
hyperplane such that the expected classification error for unseen
test samples is minimized—i.e., good generalization performance.
According to the structural risk minimization inductive principle
[30], a function that classifies the training data accurately and
which belongs to a set of functions with the lowest VC dimension
[8] will generalize best, regardless of the dimensionality of the
input space. Based on this principle, a linear SVM uses a systematic
approach to find a linear function with the lowest capacity. For
linearly nonseparable data, SVMs can (nonlinearly) map the input
to a high-dimensional feature space where a linear hyperplane can
be found. Although there is no guarantee that a linear solution will
always exist in the high-dimensional space, in practice it is feasible
to find a working solution.

Given a labeled set of M training samples (x;,y;), where x; €
RY and y; is the associated label (y; € {—1,1}), a SVM classifier
finds the optimal hyperplane that correctly separates (classifies)
the largest fraction of data points while maximizing the distance of
either class from the hyperplane (the margin). Vapnik [30] shows
that maximizing the margin is consistant with to minimizing the
VC dimension in constructing the optimal hyperplane. Computing
the optimal hyperplane is posed as a constrained optimization
problem and solved using quadratic programming techniques. The
discriminant hyperplane is defined by:

M
F) = yioi - k(x,x:) + b,
i=1

where k(-,-) is a kernel function, b is a bias term and the sign of
f(x) determines the class membership of x. Constructing an
optimal hyperplane is equivalent to finding all the nonzero «; and
is formulated as a quadratic programing (QP) problem with linear
constraints [5]. Any vector x; that corresponds to a nonzero «; is a
support vector (SV) of the optimal hyperplane. A desirable feature of
SVMs is that the number of training points which are retained as
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Fig. 2. Gender classifier.

support vectors is usually quite small, thus providing a compact
classifier. Solving the constraint optimization problem for a SVM
with a large data set is a nontrivial task, many methods have been
proposed to tackle such problems. In our study, we used a public-
domain SVM package which uses conjugate gradients for the QP
optimization [26]. For more recent advances in fast optimization
methods for SVMs, see [27].

For a linear SVM, the kernel function is just a simple dot
product in the input space while the kernel function in a nonlinear
SVM effectively projects the samples to a feature space of higher
(possibly infinite) dimension via a nonlinear mapping function:

®:RY - FM M>N

and then constructs a hyperplane in F'. The motivation behind this
mapping is that it is more likely to find a linear hyperplane in the
high-dimensional feature space. Using Mercer’s theorem [10], the
expensive calculations required in projecting samples into the
high-dimensional feature space can be replaced by a simpler kernel
function satisfying the condition

k(%) = ®(x) - &(x;),

where @ is the nonlinear projection function. Several kernel
functions, such as, polynomials and radial basis functions, have
been shown to satisfy Mercer’s theorem and have been used
successfully in nonlinear SVMs:

((x-xi) +1)°

k(x,x;) =
2
exp(—yx —x;|),

k(x,x;) =

where d is the degree of freedom in a polynomial kernel and 7 is
the spread of a Gaussian cluster. In fact, by using different kernel
functions, SVMs can implement a variety of learning machines,
some of which coincide with classical classifiers, e.g., Bayesian
classifier, radial basis function networks, maximum entropy
approaches. Nevertheless, automatic selection of the “right” kernel
function and its associated parameters remains problematic and in
practice one must resort to trial and error with validation set for
model selection. However, see [7] for a recently proposed method
for multiple parameter selection for SVMs.

3.2 Radial Basis Function Networks

A radial basis function (RBF) network is also a kernel-based
technique for improved generalization, but it is based instead on
regularization theory [25], [18]. A typical RBF network with
K Gaussian basis functions is given by

.
f) =Y wiG(x;ciy07) + b,

where the G is the ¢th Gaussian basis function with center c; and
variance o7 and b is a bias term. The weight coefficients w; combine
the basis functions into a single scalar output value, with b as a bias
term. Training a Gaussian RBF network for a given learning task



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO.5, MAY 2002

Feature
Search

Multiscale
Head Search

(@)

Fig. 3. (a) Face alignment system. (b) Some aligned faces.

involves determining the total number of Gaussian basis functions,
locating their centers, computing their corresponding variances,
and solving for the weight coefficients and bias using the
regularization theory [25]. Judicious choice of K, c;, and J?, can
yield RBF networks which are quite powerful in classification and
regression tasks. The number of radial bases in a conventional RBF
network is predetermined before training, whereas the number for
a large ensemble-RBF network is iteratively increased until the
error falls below a set threshold. The RBF centers in both cases are
usually determined by k-means clustering. In contrast, a SVM with
the same RBF kernel will automatically determine the number and
location of the centers, as well as the weights and threshold that
minimize an upper bound on the expected risk. Recently,
Evgeniou et al. [14] have shown that both SVMs and RBF networks
can be formulated under a unified framework in the context of
Vapnik’s theory of statistical learning [30]. As such, SVMs provide
a more systematic approach to classification than classical RBF and
various other neural networks.

3.3 Classical Discriminant Methods
Fisher linear discriminant (FLD) is an example of a class specific
subspace method that finds the optimal linear projection for
classification [15], [12], [2]. Rather than finding a projection that
maximizes the projected variance as in principal component
analysis, FLD determines a projection that maximizes the ratio
between the between-class scatter and the within-class scatter.
Consequently, classification is simplified in the projected space. In
our experiments, we used a single Gaussian to model the
distribution of male or female class in the resulting one
dimensional space. The class membership of a sample was then
determined using the maximum a posteriori probability, or
equivalently by a likelihood ratio test. See [1], [13], [28] for face
recognition methods using FLD.

The decision boundary of a quadratic classifier is defined by a
quadratic form in x, derived through Bayesian error minimization
[15], [2], [12]. Assuming that the distribution of each class is
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Gaussian, the classifier output is given by finding the minimum
Mahalanobis distance to a cluster center. A linear classifier is a
special case of the quadratic form, based on the assumption all the
clusters have the same covariance matrix. For both classifiers, the
sign of the discriminant function determines class membership
and is also equivalent to a likelihood ratio test.

4 EXPERIMENTS

In our study, 256-by-384 pixel FERET “mug-shots” were pre-
processed using an automatic face-processing system which
compensates for translation, scale as well as slight rotations.
Shown in Fig. 3a, this system is described in detail in [20] and
uses maximum-likelihood estimation for face detection, affine
warping for geometric shape alignment and contrast normal-
ization for ambient lighting variations. The resulting output “face-
prints” in Fig. 3a were standardized to 80-by-40 (full) resolution.
These “face-prints” were further subsampled to 21-by-12 pixel
“thumbnails” for our low-resolution experiments. Fig. 3b shows a
few examples of processed face-prints (note that these faces
contain little or no hair information). A total of 1,755 thumbnails
(1,044 males and 711 females) were used in our experiments. For
each classifier, the average error rate was estimated with five-fold
cross validation (CV)—i.e., a five-way data set split, with 4/5th
used for training and 1/5th used for testing, with four subsequent
nonoverlapping rotations. The average size of the training set was
1,496 (793 males and 713 females) and the average size of the test
set was 259 (133 males and 126 females).

The SVM classifier was first tested with various kernels in order
to explore the space of possibilities and performance. In all the
experiments, we set the soft margin C value to infinity so that no
training error is allowed [30]. Meanwhile, each training and testing
vector was scaled to be between -1 and 1, and each optimization
problem was solved by the conjugate gradient method with a
decomposition method similar to [22]. Fig. 4 shows the empirical
results with various kernels and parameters (based on one training
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Fig. 4. Empirical results with thumbnails using various kernels. (a) Polynomial kernel. (b) RBF kernel.
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TABLE 1
Experimental Results with Thumbnails

Classifier Error Rate FEMALE
Overall [ Male | Female

SVM with Gaussian RBF kernel 3.38% | 2.05% | 4.79%

SVM with cubic polynomial kernel | 4.88% | 4.21% | 5.59%

Large ensemble-RBF 5.51% | 4.59% | 6.55%

Classical RBF 7.79% | 6.89% | 8.75%

Bayesian (Quadratic) 10.63% | 9.44% | 11.88%

Fisher linear discriminant 13.03% | 12.31% | 13.78%

Nearest neighbor 27.16% | 26.53% | 28.04%

Linear classifier 58.95% | 58.47% | 59.45%

set). The mediocre results achieved by the first order polynomial
kernel indicated that the linear decision surface is not able to
effectively classify all the data points, which also indicated the
“hardness” of this data set (also, see the results of linear and Fisher
linear discriminant classifiers in Table 1). On the other hand,
nonlinear decision surfaces constructed by second, third and
fourth order polynomial kernel achieved good results. Meanwhile,
the variance of the overall error rate among these nonlinear SVMs
was not significant. For RBF kernels, we found that the variance of
the overall error rate was not significant when we chose reasonable
~ values.

A Gaussian RBF kernel was found to perform the best (in terms
of error rate), followed by a cubic polynomial kernel as second
best. In the large ensemble-RBF experiment, the number of radial
bases was incremented until the error fell below a set threshold.
The average number of radial bases in the large ensemble-RBF was
found to be 1,289 which corresponds to 86 percent of the training
set. The number of radial bases for classical RBF networks was
heuristically set to 20 prior to actual training and testing. The
quadratic, linear, and Fisher classifiers were all implemented using
single Gaussian distributions. In each case, a likelihood ratio test
was used for classification. The average error rates of all the
classifiers tested with 21-by-12 pixel thumbnails are reported in
Table 1 and summarized in Fig. 5.

The SVMs out-performed all other classifiers, although the
performance of large ensemble-RBF networks was close to
SVMs. However, nearly 90 percent of the training set was
retained as radial bases by the large ensemble-RBF. In contrast,
the number of support vectors found by both SVMs was only
about 20 percent of the training set. We also applied SVMs to
classification based on high-resolution images (84-by-48 pixels).
The Gaussian and cubic kernel SVMs performed equally well at

SVM w/ RBF kernel

SVM w/ cubic poly. kernel
Large ensemble of RBF
Classical RBF

Quadratic classifier

Fisher linear discriminant

Nearest neighbor

Linear classifier
| | |

0 10 20 30 40 50 60
Error Rate

Fig. 5. Error rates of various classifiers.

Fig. 6. Support faces at the boundary.

both low- and high-resolutions with only a slight 1 percent
error rate difference. Fig. 6 shows three pairs of opposite (male
and female) support faces from an actual SVM classifier. This
figure is, of course, a crude low-dimensional depiction of the
optimal separating hyperplane (hypersurface) and its associated
margins (shown as dashed lines). However, the support faces
shown are positioned in accordance with their basic geometry.
Each pair of support faces across the boundary was the closest
pair of images in the projected high-dimensional space. It is
interesting to note not only the visual similarity of a given pair
but also their androgynous appearance. Naturally, this is to be
expected from a face located near the boundary of the male
and female domains. We also note that as seen in Table 1, all
the classifiers had higher error rates in classifying females. This
phenomenon is most likely due to the general lack of
prominent and distinct facial features in female faces.

5 DISCUSSION

We have presented a comprehensive evaluation of various
classification methods for determination of gender from facial
images. The nontriviality of this task (made even harder by our
“hairless” low-resolution faces) is demonstrated by the fact that
a linear classifier had an error rate of 60 percent (i.e., worse
than a random coin flip). Furthermore, an acceptable error rate
(< 5 percent) for the large ensemble-RBF network required
storage of 86 percent of the training set (SVMs required about
20 percent). Storage of the entire data set in the form of the
nearest-neighbor classifier yielded too high an error rate (30
percent). Clearly, SVMs succeeded in the difficult task of
finding a near-optimal gender partition in face space with the
added economy of a small number of support faces.

Given the relative success of previous studies with low-
resolution faces it is re-assuring that 21-by-12 faces can in fact be
used for reliable gender classification. Unfortunately, most of the
previous studies used data sets of relatively few faces. The most
directly comparable study to ours is that of Gutta et al. [17], which
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also used FERET faces. With a data set of 3,000 faces at a resolution
of 64-by-72, their hybrid RBF/Decision-Tree classifier achieved a
4 percent error rate. In our study, with 1,800 faces at a resolution of
21-by-12, a Gaussian kernel SVM was able to achieve a 3.4 percent
error rate. Both studies use extensive cross validation to estimate
the error rates. Given our results with SVMs, it is clear that better
performance at even lower resolutions is made possible with this
learning technique.
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