CS485/685 Computer Vision
Spring 2010 — Dr. George Bebis
Homework 3 - Solutions

1 Find a decomposition (i.e.. write 4 as PAP™") for the following matrix:




2
2. Consider the 3D point | 1 | What would be coordinates of the point after applying the follow-
2
ing composite transformation: (i) rotation of 90 degrees about the x-axis, (ii) translation by
d,=-2.d,=1,d.=1 and, (ii1) scaling by s, =1, 5, =2 and 5, =0.5. Show your calculations
clearly.

2
3. Prove that the following matrix represents a rigid transformation (a = ?)



1 0 0 1
4 Tt is easy to show that the unit vectors | 0 .| 1 | and| 0 | form a basis in R*. Prove that | 0 |.
0 0 1 0

1 |.and| 1 |form also a basis of R*. What is the representation of vector| 3 |in this basis?
0 1 3
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Graduate Students Only

5 Suppose A is a real mxn matrix. Prove that the squares of the singular values of 4 are the
eigenvalues of AT 4. (hint: if 4 is a symetric matrix, it can be written as A4 = PAPT where the
columns of P are the eigenvectors of 4 and A is a diagonal matrix with diagonal elements equal
to the eigenvalues of 4).
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