Camera Calibration

For the ancient Egyptians, exactitude was symbolized by a feather
that served as a weight on scales used for the weighing of souls.

Italo Calvino, Six Memos for the Next Millennium

This chapter tackles the problem of camera calibration; that is, determining the value of the
extrinsic and intrinsic parameters of the camera.

Chapter Overview

Section 6.1 defines and motivates the problem of camera calibration and its main issues.

Section 6.2 discusses a method based on simple geometric properties for estimating the camera
parameters, given a number of correspondences between scene and image points.

Section 6.3 describes an alternative, simpler method, which recovers the projection matrix first,
then computes the camera parameters as functions of the entries of the matrix.

What You Need to Know to Understand this Chapter

» Working knowledge of geometric camera models (Chapter 2).
e SVD and constrained least-squares (Appendix, section A.0).
» Familiarity with line extraction methods (Chapter 5).

6.1 Introduction

We learned in Chapters 4 and 5 how to identify and locate image features, and we are
therefore fully equipped to deal with the important problem of camera calibration; that
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is, estimating the values of the intrinsic and extrinsic parameters of the camera model,
which was introduced in Chapter 2.

The key idea behind calibration is to write the projection equations linking the
known coordinates of a set of 3-D points and their projections, and solve for the camera
parameters. In order to get to know the coordinates of some 3-D points, camera calibra-
tion methods rely on one or more images of a calibration pattern: that is, a 3-D object of
known geometry, possibly located in a known position in space and generating image
features which can be located accurately. Figure 6.1 shows a typical calibration pattern,
consisting of two planar grids of black squares on a white background. It is easy to know
the 3-D position of the vertices of each square once the position of the two planes has
been measured, and locate the vertices on the images, for instance as intersection of
image lines, thanks to the high contrast and simple geometry of the pattern.

Problem Statement

Given one or more images of a calibration pattern, estimate

1. the intrinsic parameters,
2. the extrinsic parameters, or
3. both.

w . The accuracy of calibration depends on the accuracy of the measurements of the calibration
pattern; that is, its construction tolerances. To be on the safe side, the calibration pattern
should be built with tolerances one or two order of magnitudes smaller than the desired
accuracy of calibration. For example, if the desired accuracy of calibration is 0.1mm, the
calibration pattern should be built with tolerances smaller than 0.01mm.

Although there are techniques inferring 3-D information about the scene from
uncalibrated cameras, some of which will be described in the next two chapters, effective
camera calibration procedures open up the possibility of using a wide range of existing
algorithms for 3-D reconstruction and recognition, all relying on the knowledge of the
camera parameters. 7

This chapter discusses two algorithms for camera calibration. The first method
recovers directly the intrinsic and extrinsic camera parameteré;i%-ne second method esti-
mates the projection matrix first, without solving explicitly for the various parameters,’
which are then computed as closed-form functions of the entries of the projection ma-
trix. The choice of which method to adopt depends largely on which algorithms are to
be applied next (Section 6.4).

! Recall that the projection matrix links world and image coordinates, and its entries are functions of the
intrinsic and extrinsic parameters,
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Figure 6.1 The typical calibration pattern used in this
chapter.

il M\s
6.2 LDirect Parameter Calibration>

We start by identifying the parameters to be estimated, and cast the problem in geo-
metric terms.

6.2.1 Basic Equations

Consider a 3-D point, P, defined by its coordinates [X™, Y, Z*]" in the world reference
frame. As usual in calibration, the world reference frame is known.

¥ This means to pick an accessible object defining three mutually orthogonal directions
intersecting in a common point. In this chapter, this object is the calibration pattern; in
vision systems for indoor robot navigation, for instance, it can be a corner of a room.

Let [X¢,Y¢, Z¢]T be the coordinates of P in the camera reference frame (with

Z°¢ > 0if P is visible). As usual, the origin of the camera frame is the center of projection,

and the Z axis is the optical axis. The position and orientation of the camera frame

o isuunknown, since, unlike the image and world reference frames, the camera frame is
inaccessible directly. This is equivalent to saying that the we do not know the extrinsic
parameters; that is, the 3 x 3 rotation matrix R and 3-D translation vector T such that
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i XC Xw
| Yo |=R/| YY" | 4T (6.1)
z° zv

X¢= r X" 4 r Y% + r3Z2Y% + T,
Yosrg X" +rn¥ +r3Z% + T,
C=rn XY Y +rnZ” + T, (6.2)

Note the slight but important change of notation with respect to Chapter 2. In that chap-
. ter, the transformation between the world and camera reference frames was defined by

translation followed by rotation. Here, the order is reversed and rotation precedes transla-
tion. While the rotation matrix is the same in both cases, the translation vectors differ (see
Question 6.2).

\\/{\ o' ) Assuming that radial distortions (section 2.4.3) can be neglected,? we can write
S the image of [X, Y, Z¢]T in the image reference frame as (see (2.14) and (2.20))
\\u' i _ f XC
Xim = @’;? + 0y (63)
4 YL'
Yim = _';;'Z_C + Oy (64)

For simplicity, and since there is no risk of confusion, we drop the subscript ;,,, indicating
image (pixel) coordinates, and write (x, ¥) for (Xim, Vim). As we know from Chapter 2,
: (6.3) and (6.4) depend on the five intrinsic parameters f (focal length), s, and s,
' (horizontal and vertical effective pixel size), and o, and oy (coordinates of the image
{ center), and, owing to the particular form of (6.3) and (6.4), the five parameters are
not independent. However, if we let Jo=f/sx and o = Sy/Sx, we may consider a new
set of four intrinsic parameters, o,, 0y, fx, and «, all independent of one another. The
arameter f is simply the focal length expressed in the effective horizontal pixel size
(the focal length in horizontal pixels), while o, usually called aspect ratio, specifies
the pixel deformation induced by the acquisition process defined in Chapter 2. Let us
now summarize all the parameters to be calibrated in a box (see also the discussion in
sections 2.4.2 and 2.4.3).

Extrinsic Parameters

® R, the 3 x 3 rotation matrix
e T, the 3-D translation vector

2 We shall reconsider this assumption in Exercise 6.1, which suggests how to calibrate the parameters of the
radial distortion model of Chapter 2.
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Intrinsic Parameters

® fr= f/sx, length in effective horizontal pixel size units
® o =y5,/sy, aspect ratio
® (04, 0y), image center coordinates

® kq, radial distortion coefficient

Plugging (6.2) into (6.3) and (6.4) gives

ww XY AV 2V 4 T,

X =0y =$f
13 XY A r3¥ Y 32 + T,
XY ¥ +raZ" + 7,
r3n XY + ¥ +r33Zv + T,
Notice that (6.5) and (6.6) bypass the inaccessible camera reference frame and link
directly the world coordinates [X™, Y, Z¥]" with the coordinates (x, y) of the corre-
sponding image point. If we use a known calibration pattern, both vectors are measur-
able. This suggests that, given a sufficient number of points on the calibration pattern,

we can try to solve (6.5) and (6.6) for the unknown parameters. This is the idea behind
the first calibration method, which is articulated in two parts:

(6.5)

y=oy=—Ff, (6.6)

1. assuming the coordinates of the image center are known, estimate all the remain-
ing parameters

2. find the coordinates of the image center

6.2.2 Focal Length, Aspect Ratio, and Extrinsic Parameters

We assume that the coordinates of the image center are known. Thus, with no loss of
generality, we can consider the translated coordinates (x, y) = (x — 0y, y — o0y). In other
words, we assume that the image center is the origin of the image reference frame. As we
said in the introduction, the key idea is to exploit the known coordinates of a sufficient
number of corresponding image and world points.

Assumptions and Problem Statement

Assuming that the location of the image center (o, 0y) is known, and that radial distortion can
be neglected, estimate fy, @, R, and T from image points (x;, v;), i =1... N, projections of N
known world points [X}*, ¥, Z*]" in the world reference frame.

The key observation is that (6.5) and (6.6) have the same denominator; therefore,
from each corresponding pair of points (X, Y}, Z!"),(x;, y;)) we can write an equation
of the form

Xi [y (o XY 4+ oY +r3Zl + T) = yi fe rn XY+ rpV + ri3Z0 + T, (6.7)
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Since « = fy/fy, (6.7) can be thought of as a linear equation for the & unknowns
v =(v1,V2,...,08)"

XX 4 x Y+ 200+ xivg — yiX[vs = v vg — yiZ[ v — yivg =0

where
v =121 Us = ory]
V2 =1 Ve = ar12
U3 =123 U7 =013
vy =T, vg = Ty

Writing the last equation for the N corresponding pairs leads to the homogeneous
system of N linear equations

Av=1_ (6.8)
where the N x 8 matrix A is given by

T XY oY mZP oxm -nX{ -nYY -nZy -n
XY xVy xZY xp —»XY  —nY) -»nZy -w

_XNX% xnYy XNZX; XN —“yNX}}\} *yNY;\]U —yNZ}G —YN |

If N > 7 and the N points are not coplanar, A hasrank 7, and system (6.8) has a nontrivial
solution (unique up to an unknown scale factor), which can be determined from the
SVD of A, A=UDV", as the column of V corresponding to the only null singular
value along the diagonal of D (Appendix, section A.6).

g The effects of the noise and the inaccurate localization of image and world points make
the rank of A likely to be maximum (eight). In this case, the solution is the eigenvector
corresponding to the smallest eigenvalue.

A rigorous proof of the fact that, in the ideal case (noise-free, perfectly known
coordinates) the rank of A is 7 seems too involved to be presented here, and we refer you
to the Further Readings section for details. Here, we just observe that, if the effective
rank is larger than 7, system (6.8) would only have the trivial solution.

Our next task is to determine the unknown scale factor (and hence the various
camera parameters) from the solution vector v = V. If we call y the scale factor, we have

¥ =y (ra1, roo, 123, Ty, ary, aryp, arys, o Ty). (6.9)

Since r%l + ’"%2 -+ r;_% =1, from the first three components of ¥ we obtain

\/512 4 D% + D% = \/)/2(1‘221 -+ 1’%2 + r223) = |y|. (6.10)
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Similarly, since rlz1 + szz + r123 =1 and ¢ > 0, from the fifth, sixth, and seventh component
of ¥ we have

\/ag + 02+ 0= \/yZaz(r%l +rd 4 ) =alyl. (6.11)

We can solve (6.10) and (6.11) for |y | as well as the aspect ratio «v. We observe that the
first two rows of the rotation matrix, R, and the first two components of the translation
vector, T, can now be determined, up to an unknown common sign, from (6.9). Further-
more, the third row of the matrix R can be obtained as the vector product of the first
two estimated rows thought of as 3-D vectors. Interestingly, this implies that the sign of
the third row is already fixed, as the entries of the third row remain unchanged if the
signs of all the entries of the first two rows are reversed.

¥ Since the computation of the estimated rotation matrix, R, does not take into account ex-
plicitly the orthogonality constraints, R cannot be expected to be orthogonal (RRT = I). In
order to enforce orthogonality on R, one can resort to the ubiquitous SVD decomposition.
Assume the SVD of R is R = UDVT. Since the three singular values of a 3 x 3 orthogo-
nal matrix are all 1, we can simply replace D with the 3 x 3 identity matrix, /, so that the
resulting matrix, U1V T, is exactly orthogonal (see Appendix, section A.6 for details).

Finally, we determine the unknown sign of the scale factor y, and finalize the
estimates of the parameters. To this purpose, we go back to (6.5), for example, with x
instead of x — oy, and recall that for every point Z¢ > 0 and, therefore, x and ri1 X" +
rioY¥ + ri3Z% + T, must have opposite sign. Consequently, it is sufficient to check the
sign of x(ri1 X¥ + rip¥™ + r3Z"% + Ty) for one of the points. If

x(r XV A rpY? 4 rsZ + Ty > 0, (6.12)

the signs of the first two rows of R and of the first two components of the estimated
translation vector must be reversed. Otherwise, no further action is required. A similar
argument can be applied to y and r;1 X" + rn¥V¥ +rnnZ” + T, in (6.6).

——"""""AT this point, we have determined the rotation matrix, R, the first two components
of the translation vector, T, and the aspect ratio, «. We are left with two, still undeter-
mined parameters: T, the third component of the translation vector, and f, the focal
length in horizontal pixel units. Both 7, and f, can be obtained by least squares from
a system of equations like (6.5) or (6.6), written for N points. To do this, for each point
(x;, y;) we can write

xi(r31X}” - rg,zYl-w + ng}” +T)= ——f:t(rnX;U + r]QYiw + rBZi“’ + Ty, (6.13)

then solve the overconstrained system of N linear equations

A ( J'? ) —b (6.14)




130

Chapter 6  Camera Calibration

in the two unknowns 7, and fx, where
Cx1 XY Y ez + T

X (XY + ¥y il + 1)
A= - r v 1

Lxy Xy +rply +reZy + T
and
—x1(ran X} + )i’ +riZy)

b =

—xn(r Xy + Yy +r3Zy)

The least squares solution (Tz, j’x) of system (6.14) is

( ]Z} ) =(ATA)1ATb. (6.15)

It remains to be discussed how can we actually acquire an image of N points of
known world coordinates, and locate the N corresponding image points accurately. One
possible solution of this problem can be obtained with the pattern shown in Figure 6.1.
The pattern consists of two orthogonal grids of equally spaced black squares drawn on
white, perpendicular planes. We let the world reference frame be the 3-D reference
frame centered in the lower left corner of the left grid and with the axes parallel to the
three directions identified by the calibration pattern. If the horizontal and vertical size
of the surfaces and the angle between the surfaces are known with high accuracy (from
construction), then the 3-D coordinates of the vertices of each of the square in the world
reference frame can be easily and accurately determined through simple trigonometry.
Finally, the location of the vertices on the image plane can be found by intersecting the
edge lines of the corresponding square sides. We now summarize the method:

valice fovomues  Glidrape .
Algorithm EXPL_PARS CAL

The input is an image of the calibration pattern described in the text (Figure 6.1) and the location
of the image center.

1. Measure the 3-D coordinates of each vertex of the n squares on the calibration pattern in
the world reference frame. Let N = 4n.

2. In order to find the coordinates in the image reference frame of each of the N vertices:

= locate the image lines defined by the sides of the squares (e.g., using procedures EDGE._
COMP and HOUGH_LINES of Chapters 3 and 4).

« estimate the image coordinates of all the vertices of the imaged squares by intersecting
the lines found.
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3. Having established the N correspondences between image and world points, compute the
SVD of A in (6.8). The solution is the column of V corresponding to the smallest singular
value of A.

4. Determine |y | and o from (6.10) and (6.11).
5. Recover the first two rows of R and the first two components of T from (6.9).

6. Compute the third row of R as the vector product of the first two rows estimated in the
previous step, and enforce the orthogonality constraint on the estimate of R through SVD
decomposition.

7. Pick a point for which (x — o) is noticeably different from 0. If inequality (6.12) is satisfied,
reverse the sign of the first two rows of R and of the first two components of T.

8. Setup A and b of system (6.14), and use (6.15) to estimate 7, and f,.

The output is formed by «, f;, and the extrinsic parameters of the viewing camera.

% When using a calibration pattern like the one in Figure 6.1, the 3-D squares lie on two dif-
ferent planes. The intersections of lines defined by squares from different world planes do
not correspond to any image vertices. You must therefore ensure that your implementa-
tion considers only the intersections of pairs of lines associated to the same plane of the
calibration pattern.

w  The line equations in image coordinates are computed by least squares, using as many
collinear edge points as possible. This process improves the accuracy of the estimates of
line parameters and vertex location on the image plane.

6.2.3 Estimating the image Center

In what follows we describe a simple procedure for the computation of the image
center. As a preliminary step, we recall the definition of vanishing points from projective
geometry, and state a simple theorem suggesting how to determine the image center
through the orthocenter? of a triangle in the image.

Definition: Yanishing Points

LetL;,i=1,..., N beparallellines in 3-D space, and /; the corresponding image lines. Due to the
perspective projection, the lines L; appear to meet in a point p, called vanishing point, defined
as the common-intersection of all the image lines /;.

Orthocenter Theorem: Image Center from Vanishing Points

Let T be the triangle on the image plane defined by the three vanishing points of three mutually
orthogonal sets of parallel lines in space. The image center is the orthocenter of 7.

The proof of the theorem is left as an exercise (Exercise 6.2). The important fact
is, the theorem reduces the problem of locating the image center to one of intersecting

3The orthocenter of a triangle is the common intersection of the three altitudes.
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image lines, and can be created easily on a suitable calibration pattern. In fact, we can
use the same calibration pattern (actually, the same image!) of Figure 6.1, already used
for EXPL_PARS _CAL, so that EXPL_PARS_CAL and the new algorithm, IMAGE_
CENTER_CAL, fit nicely together. ’

Algorithm IMAGE_CENTER_CAL

The input is an image of the calibration pattern in Figure 6.1, and the output of the first two steps
of algorithm EXPL_PARS_CAL.

1. Compute the three vanishing points p1, ps, and p3, determined by the three bundies of
lines obtained in step 2 of EXPL._PARS_CAL.

2. Compute the orthocenter, O, of the triangle p1ps ps.

The output are the image coordinates of the image center, O.

i It is essential that the calibration pattern is imaged from a viewpoint guaranteeing that
no vanishing point lies much farther than the others from the image center;, otherwise,
E ,- theimage lines become nearly parallel, and small inaccuracies in the location of the lines
MM' result in large errors in the coordinates of the vanishing point. This can happen if one of
(\Z(D the three mutually orthogonal directions is nearly parallel to the image plane, a situation
to be definitely avoided. Even with a good viewpoint, it is best to determine the vanishing

points using several lines and least squares.

¥ Toimprove the accuracy of the image center estimate, you should run IMAGE_CENTER
CAL with several views of the calibration patterns, and average the results.

Experience shows that an accurate location of the image center is not crucial for
obtaining precise estimates of the other camera parameters (see Further Readings). Be
careful, however, as accurate knowledge of the image center is required to determine
the ray in space identified by an image point (as we shall see, for example, in Chapter 8).

I

We now move on to the description of a second method for camera calibration. The
new method consists in two sequential stages:

1. estimate the projection matrix linking world and image coordinates;

2. compute the camera parameters as closed-form functions of the entries of the
projection matrix.

6.3.1 Estimation of the Projection Matrix

As we have seen in Chapter 2, the relation between the 3-D coordinates (X", ¥}, Z}")
of a point in space and the 2-D coordinates (x, y) of its projection on the image plane




Section 6.3

can be written by means of a 3 x 4 prz)j ection matrix, M, according to the equation

U
vy ==
Wi

with

X =

M

v
zy |

1

i mn X +mpY” +mi3Z +myg

wi  m3 X+ mxplY +mZl 4+ may

vi  mu X +mpnY” +mpZl’ +my

y=

wi  mu X +mpY” +muZ +mag

Camera Parameters from the Projection Matrix

133

(6.16)

The matrix M is defined up to an arbitrary scale factor and has therefore only 11
independent entries, which can be determined through a homogeneous linear system
formed by writing (6.16) for at least 6 world-image point matches. However, through the
use of calibration patterns like the one in Figure 6.1, many more correspondences and
equations can be obtained and M can be estimated through least squares techniques. If
we assume we are given N matches for the homogeneous linear system we have

Am = (),

with
XY S0 0 0 0 0 emd
0 0 0 0 X3 1N Z1 1 —yXi -yn
v Z, 1 0 0 0 0 —x»Xs -ubh
0 0 0 0 Xo Yo Zy 1 —y»mXs -mbh

A=

qil'(/ Xy Yv Zy 1 0 0 0 0 —xyXy —xyYy
L 0 0 0 0 Xy Yy Zy 1 —ywXw —ynYy

and

m = [myy, mig, . .., maz, maq] .

(6.17)
Nad
—x1Z17  —x1 7]
=<y -»n
—xpZ7  —Xxp
-nZy =y
—XN ZN —XN
—ywZy —yn

Since A has rank 11, the vector m can be recovered from SVD related techniques as the
column of V corresponding to the zero (in practice the smallest) singular value of A,
with A= UDVT (see Appendix, section A.6). In agreement with the above definition
of M, this means that the entries of M are obtained up to an unknown scale factor. The

following is the detailed implementation of a method for estimating the matrix M:
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Algorithm PROJ _MAT _CALIB

The input is an image of the calibration pattern described in the text (see Figure 6.1, for example).

1. Run the first two steps of EXPL_PARS_CAL.

5. Given N world-image matches, compute the SVD of A, system matrix of (617),A=UD vT.
The solution m is the column of V corresponding to the smallest singular value of A.

The output is formed by the entries of the projection matrix, determined up to an unknown
scale factor.

6.3.2 Computing Camera Parameters

We now want to express the intrinsic and extrinsic camera parameters as functions of

the estimated projection matrix. To avoid confusion, we call M the projection matrix

estimated through PROJ_MAT_CALIB (and hence 7;; the generic element of M).
We first rewrite the full expression for the entries of M, or*

— fxr11 + 0x731 ".fxr12+0xr32 — fxr13 + 0x733 —foTx + 0, T,
M= —[fyra1 + 0yrs — [y + 0yr3n — fyraz -+ 0433 —fyTy + oyT; | (6.18)
ra1 32 r3 T;

w  Notice that we are now using ox, 0y, fx, fy as the four independent parameters, as opposed
t0 0x, 0y, fx, O = $y/5x used in method 1.

s Notice also thatnotall 3 x 4 matrices canbe written as functions of the extrinsicand intrinsic
parameters as per 6.18. For details, see the Further Readings.

In what follows we also need the 3-D vectors
qi = [, g, as) |
@ = [Mar. iz, o]
s = [an, iz, ]
qu = [14, hoa, mag] T
Since M is defined up to a scale factor we can write
M=yM.

The absolute value of the scale factor, |y|, can be obtained by observing that g3 is the
last row of the rotation matrix, R. Hence,

|y i g =Ly rh k=l

4 These expressions were already written in Chapter 2 in order to link the perspective and weak-perspective
camera models, but scaled by 1)f, and under the simplifying assumptions sy = §y = 1,05 =0y =0,
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We now divide each entry of M by |y|, and observe that the resulting, normalized
projection matrix differs from M by, at most, a si gn change. From now on, therefore, we
indicate with M the normalized matrix. From the last row of (6.18) we have

T, =03y
and

ry =oms;,  i=1,2,3,

with o = £1. Taking the dot products of q; with q; and g we find

oy =q] g3
and

0y = qs.

Then we can recover £, and Ty

fe=y/a/ q — 02

(6.19)
fy=1 q2rq2 - 039
We can now compute the remaining extrinsic parameters as
ri =o(oumy —my)/fr,  i=1,2,3
’”2230(0 I’;\’L3i‘“l;/\12i)/f, 12172’3
' ' (6.20)

T = 0 (05T, — t14)/ fs
Ty =0(oyT, ~ maa)/ fy.

As usual, the estimated rotation matrix, R, is not really orthogonal, and we can find the
closest orthogonal matrix as done in section 6.2.2.

= Youmay have noticed that M has 11 independent parameters, but there are only 6 extrinsic
and 4 intrinsic parameters. The missing parameter is the angle, 8, formed by the axes of the
image reference frame. Here we have exploited the fact that this angle is 90° within great
accuracy in all commercial cameras, and is therefore not considered explicitly in the intrinsic
parameters set. For details of both linear and nonlinear calibration methods estimating ¢
as well, see the Further Readings.

We are left to discuss how to determine the sign o. The sign ¢ can be obtained
from 7, = o34, because we know whether the origin of the world reference frame is
in front of (7; > 0) or behind (7, < 0) the camera. We do not give the usual algorithm,
which would merely restate the equations derived in this section.

;
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6.4 Concluding Remarks

Is there any difference between the two calibration methods presented? Obviously, you
should expect the same (in practice, very similar) parameter values from both! Method
§ 2 is probably simpler, but the algorithm on which we based EXPL_PARS_CAL (see
Further Readings) is a well-known technique in the computer vision community, and has
been implemented and used by many groups. PROJ MAT_CALIB is useful whenever
the projection matrix is sufficient to solve a vision problem, and there is no need to make
the individual parameters explicit; an example is referenced in the Further Readings.
We said that the precision of calibration depends on how accurately the world
and image reference points are located. But which accuracy should one pursue? As the
errors on the parameter estimates propagate to the results of the application, the answer
depends ultimately on the accuracy requirements of the target application. For instance,
inspection systems in manufacturing often require submillimeter accuracies, whereas
errors of centimeters can be acceptable in vision systems for outdoors navigation.
Locating image reference points or lines at pixel precision is generally unsatisfactory
in the former case, but acceptable in the latter. A practical guideline is: the effort going
into improving calibration accuracy should be commensurate (o the requirements of the
application.

6.5 Summary

After working through this chapter you should be able to:

Q explain what calibration is and why it is necessary
O calibrate the intrinsic and extrinsic parameters of an intensity camera
O estimate the entries of the projection matrix

O design a calibration pattern, motivating your design choices

6.6 Further Readings

EXPL_PARS_CAL has been adapted from a well-known (but rather involved) paper
by Tsai [10], which contains a proof that the rank of the matrix A of EXPL_PARS_
CAL is 7 in the ideal case. The orthocenter property and the calibration of the image
center through vanishing points is due to Caprile and Torre [2], who also suggest a neat
method for calibrating the rotation matrix. Direct calibration of the projection matrix
is described, for example, by Faugeras and Toscani [5]. The explicit computation of the
calibration parameters from the projection matrix is taken from Faugeras’s book [4],
which also discusses the conditions under which this is possible (Chapter 3, Section 4).
Ayache and Lustman [1] describe a stereo system which requires calibration of the
projection matrix, but not explicit knowledge of the camera parameters. The influence
on vision algorithms of erroneous estimates of the image center and other camera
parameters is discussed by [3, 7, 6]. Thacker and Mayhew [9] describe a method for
calibrating a stereo system from arbitrary stereo images. :




Section 6.7 Review 137

Recent developments on calibration are presented, for instance, by Faugeras and
Maybank [8] who introduce an elegant method based solely on point matches and able
to obtain camera calibration without the use of calibration patterns.

6.7 Review
Questions

8O 6.1 Describe the purpose of calibration and name applications in which calibra-
tion is necessary.

O 6.2 What is the relation between the translation vectors between two reference
frames if the transformation between the frames is (a) first rotation and then
translation and (b) vice versa? Verify your answer in the trivial case in which
rotation is described by the identity matrix.

O 6.3 Why does algorithm EXPL_PARS_CAL determine only f, and not 5H?
6.4 Discuss the construction requirements of a calibration pattern.
3 /6.5 How would you estimate the accuracy of a calibration program?

Exercises

O 6.1 In the case of large fields of view, or if pixels very far from the center of
the image are considered, the radial distortion cannot be neglected. A possible
procedure for calibrating the distortion parameter ky is to rewrite (6.13) with
xi(1+ Kk rl.z) in place of x; with rl.2 = xl.z +o?yZ or

(L + ks XP 4 VP + raZl + T,) = =X 4 Y + i3zl + Ty).

The corresponding nonlinear system of equations for the unknowns f,, T,, and

ki can be solved through gradient descent techniques using the output of EXPL,_

PARS_CAL as initial guess for f, and 7, and 0 as initial guess for k. Write out
i the complete equations suggested, and devise a calibration algorithm including ky
in the intrinsic parameters.

O 0.2 Prove the orthocenter theorem by geometrical arguments. (Hint®: Let h be
the altitude from the vertex (and vanishing point) v to the side s, and O the
projection center. Since both the segments 4 and v O are orthogonal to s, the plane
through 4 and vO is orthogonal to s and hence to the image plane . . .)

O 6.3 Prove that the vanishing points associated to three coplanar bundles of par-
allel lines are collinear,

O 6.4 Estimate the theoretical error of the coordinates of the principal point as a
function of the error (uncertainty) of the coordinates of the vanishing points. Can
you guess the viewpoint that minimizes error propagation?

’Hint by Francesco Robbiano.
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