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Figure 2.12  Autocovariance of the image of a uniform
pattern for a typical image acquisition system, showing
cross-lalking between adjacent pixels along /',

% The autocovariance should actually be estimated as the average of the autocovariance
computed on many images of the same pattern. To minimize the effect of radiometric
nonlinearities (see (2.13)), Crz should be computed on a patch in the central portion of
the image.

Figure 2.12 displays the graph of the average of the autocovariance computed on
o many images acquired by the same acquisition system used to generate Figure 2.11. The
autocovariance was computed by means of (2.18) onapatchof16 x 16 pixels centered in
the image center. Notice the small but visible covariance along the horizontal direction:
consistently with the physical properties of many CCD cameras, this indicates that the
grey value of each pixel is not completely independent of that of its neighbors.

» 2.4 Camera Parameters (amers
R We now come back to discuss the geometry of a vision system in greater detail. In i/
particular, we want to characterize the parameters underlying camera models. wﬁ{@a

4‘ 2.4.1 Definitions

o Computer vision algorithms reconstructing the 3-D structure of a scene or computing

" the position of objects in space need equations linking the coordinates of points in 3-D

X space with _the coordinates of their corresponding image points. These equations are {7"
written in the camera reference frame (see (2.14) and section 2.2.4), but it is often
assumed that

° the camera reference frame can be located with respect to some other, known,
reference frame (the world reference frame), and
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* the coordinates of the image points in the camera reference frame can be obtained
from pixel coordinates, the only ones directly available from the image. -

This is equivalent to assume knowledge of some camera’s characteristics, known in
vision as the camera’s extrinsic and inirinsic parameters. Our next task is to understand
the exact nature of the intrinsic and extrinsic parameters and why the equivalence holds.

Definition: Camera Parameters

The extrinsic parameters are the parameters that define the location and orientation of the camera
reference frame with respect to a known world reference frame.

The intrinsic parameters are the parameters necessary to link the pixel coordinates of an image
point with the corresponding coordinates in the camera reference frame.

In the next two sections, we write the basic equations that allow us to define the
extrinsic and intrinsic parameters in practical terms. The problem of estimating the
value of these parameters is called camera calibration. We shall solve this problem in
Chapter 6, since calibration methods need algorithms which we discuss in Chapters 4
and 5.

2.4.2 Extrinsic Parameters

The camera reference frame has been introduced for the purpose of writing the funda-
mental equations of the perspective projection (2.14) in a simple form. However, the
camera reference frame is often unknown, and a common problem is determining the
location and orientation of the camera frame with respect to some known reference
frame, using only image information. The extrinsic parameters are defined as any set
of geometric parameters that identify uniquely the transformation between the unknown
camerdjreference frame and a known reference frame, named thepworld Veference frame.

A typical choice for describing the transformation between camera and world
frame is to use

® a3-D translation vector, T, describing the relative positions of the origins of the
two reference frames, and

* a3 x 3rotation matrix, R, an orthogonal matrix (RTR = RRT = | ) that brings the
corresponding axes of the two frames onto each other.

The orthogonality relations reduce the number of degrees of freedom of R to@ (see
section A9 in the Appendix). T

In an obvious notation (see Figure 2.13), the relation between the coordinates of
a point P in world and camera frame, P,, and P, respectively, is

P.=R(P,-T), (2.19)
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Figure 2.13 The relation between camera and world coordinate
frames.

with

ri1 ri2 713
R=1r1 rp rms
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Definition: Extrinsic Parameters

The camera extrinsic parameters are the translation vector, T, and the rotation matrix, R (or,
better, its {ree parameters), which specify the transformation between the camera and the world
reference frame.

2.4.3 Intrinsic Parameters

y Tl@intrin ic parameters czgﬁ;be defined as the set of parameters needed to characterize
th optica@eometric, and-digital characteristics of the viewing camera. For a pinhole
camera, we need three sets of intrinsic parameters, specifying respectively

- e the perspective projection, for which the only parameter is the focal length, f;
e the transformation between camera frame coordinates and pixel coordinates;
! ¢ the geometric distortion introduced by the optics.

From Camera to Pixel Coordinates. To find the second set of intrinsic param-
eters, we must link the coordinates (x;,,, vi,) of an image point in pixel units with the
L S Rse e et

coordinates (x, y) of the same point in the camera reference frame. Tho coordinates
e s S
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(Xim, Yim) can be thought of as coordinates of a new reference frame, sometimes called
image reference frame.

The Transformation between Camera and Image Frame Coordinates

Neglecting any geometric distorsions possibly introduced by the optics and in the assumption that
the CCD array is made of-a réetangular grid of photosensitive elements, we have BEE |

, - -~ fixed g by
Q/:&/JQJL}/‘Q/ X = —=(Xim — 0x)Sx ~ i meitys /PI/(G@)
\ e Y= =im = 0y)8y (2.20)

with (o, 0,) the coordinates in pixel of the image center (the principal point), and (sy, s,) the
effective size of the pixel (in millimeters) in the horizontal and vertical direction respectively.

Therefore, the current set of intrinsic parameters is f, oy, 0y, 5, Sy.

% The sign change in (2.20) is due to the fact that the horizontal and vertical axes of the image
and camera reference frames have opposite orientation. r“\“"% 0,0)

Jod
In several cases, the optics introduces image distortions that become evident

at the periphery of the image, or even elsewhere using optics with large fields of
view. Fortunately, these distortions can be modelled rather accurately as simple radial
distortions, according to the relations

x=xq4(1+ k1r2 + kgr4)
y=ya(l + kyr® + kor®)

with (x4, v4) the coordinates of the distorted points, and r2 = x[% -+ y[%. As shown by
the equations above, this distortion is a radial displacement of the image points. The
displacement is null at the image center, and increases with the distance of the point
from the image center. k; and k&, are further intrinsic parameters. Since they are usually
very small, radial distortion 1s ignored whenever high accuracy is not required in all
regions of the image, or when the peripheral pixels can be discarded. If not, as ky << kq,
ky is often set equal to 0, and k; is the only intrinsic parameter to be estimated in the
radial distortion model.

®  The magnitude of geometric distortion depends on the quality of the lens used. As a rule of
thumb, with optics of average quality and CCD size around S00 x 500, expect distortions of
several pixels (say around 5) in the outer cornice of the image. Under these circumstances,
a model with k; = 0 is still accurate.

It is now time for a summary.
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Intrinsic Parameters
The camera intrinsic parameters are defined as the focal length, f, the location of the image
center in pixel coordinates, (0x, 0 y), the effective pixel size in the horizontal and vertical direction
(sx>5y), and, i required, the radial distortion coefficient, k1. -
2.4.4 Camera Models Revisited
We are now fully equipped to write relations linking directly the pixel coordinates of an
image point with the world coordinates of the corresponding 3-D point, without explicit
reference to the camera reference frame needed by (2.14).
Linear Version of the szrspective Projection Equations. Plugging (2.19) and
(2.20) into (2.14) we obtain- .
R;r (Pw - T)
—(Xjm — Ox)Sx = . [
R, ®Py,—T)
Ry (P, —T) r
—(Yim — Oy)5y = [ =t 221
Yim = Oy)Sy R3T P, —T) (2.21)

whereR;,i =1,2,3,isa3-D vector formed by the i-th row of the matrix R. Indeed, (2.21)
relates the 3-D coordinates of a point in the world frame to the image coordinates of
the corresponding image point, via the camera extrinsic and intrinsic parameters.

w  Notice that, due to the particular form of (2.21), not all the intrinsic parameters are
independent. In particular, the focal length could be absorbed into the effective sizes of
the CCD elements.

_ Neglecting radial distortion, we can rewrite (2.21) as a simple matrix product. To
| this purpose, we define two matrices, Min and My, as

~ /S« 0 Ox
Mip; = 0 —f/sy oy
. 0 0 1

i
|
|
|

and

ri r2 3 —R{T
Mo ={rn rn rs —RJT |,
ra ra rss —R3T/

so that the 3 x 3 matrix My depends only on the intrinsic parameters, while the 3 x 4
; matrix Mo, only on the extrinsic parameters. If we now add a “1” as a fourth coordinate of

| P, (thatis, express P,, inhomogeneous coordinates), and form the product MiniMext B,
we obtain a linear matrix equation describing perspective projections,
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~ The Linear Matrix Equation of Perspective Projections

What is interesting about vector [xq, x, x3]T is that the ratios (x1/x3) and (x2/x3)
are nothing but the image coordinates:

\ X1/X3 = Xim

y \

g - X2/X3 = Yim.
Moreover, we have separated nicely the two stepé of the world-image projection:

s .x¢ performs the transformation between the world and the camera reference
frame;

® M, performs the transformation between the camera reference frame and the
image reference frame.

== In more formal terms, the relation between a 3-D point and its perspective projection on
the image plane can be seen as a linear transformation from the projective space, the Space
of vectors [Xy, Vi, Zyy, 1] to the Qrolecnve plane, the space of vectors [xq, x, xg] This
transformation is defined up to an arbitrary scale factor and so that the matrix M has only

- 11 independent entries (see review questions). This fact will be discussed in Chapter 6.

The Perspective Camera Model. Various camera models, including the perspec-
tive and weak-perspective ones, can be derived by setting appropriate constraints on
the matrix M = M;,, M., Assuming, for simplicity, o, = 0y = Oand sy =5, =1, M can
then be rewritten as

—fru +fro +frs fR{T
M=| ~frn —fro —fris fR)T
r3i 3 ri3 ~RyT

When unconstrained, M descrlbes the full-perspective camera model and is called
projection matrix.

The Weak-Perspective Camera Model. To derive the form of M for the weak-
perspective camera model, we observe that the image p of a point P is given by

X FRI(T — P)\ - be
\ p=M ?“ = | /rRI@-P) (222)

R;P-T)
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But |R; ® —Dlis simply the distance of P from the projection center along the optical
axis; therefore, the basic constraint for the weak-perspective approximation can be
written as }

—_—
,Ri(lil P)& << 1, (2.23)
| Ry (P~ T |

where Py, P, are two points in 3-D space, and P the centroid of Py and P,. Using (2.23),
(2.22) can be written forP="P;,i=172as
SR (T = P))
pi~ | fRy(F-P)

R;P-T)
Therefore, the projection matrix M becomes
o ;\\ : —fru —fro —friz [ R/T
o J e \\\ Myp= | —fra —fra —fra glﬁ;T
O gor QY 0 0 0 R;®-TD
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O The Affine Camera Model. Another interesting camera model, widely used in

the literature for its simplicity, 1s the so-called affine model, a mathematical generaliza-
tion of the weak-perspective model. In the affine model, the first three entries in the Jast
row of the matrix M are equal to zero. All other entries are unconstrained. The affine
model does not appear to correspond to any physical camera, but leads to simple equa-
tions and has appealing geometric properties. The affine projection does not preserve
angles but does preserve parallelism.

The main difference with the weak-perspective model is the fact that, in the affine
model, only the ratio of distances measured along parallel directions is preserved. We
now move on to consider range Images.

2.5 Range Data and Range Sensors

In many applications, one wants to use vision to measure distances; for example, to steer
vehicles away from obstacles, estimate the shape of surfaces, or inspect manufactured
objects. A single intensity image proves of limited use, as pixel values are related to
surface geometry only indirectly; that is, through the optical and geometrical properties
of the surfaces as well as the illumination conditions. All these are usually complex to
model and often unknown. As we shall see in Chapter 9, reconstructing 3-D shape from
asingle intensity image is difficult and often inaccurate. Can we acquire images encoding
shape directly? Yes: this is exactly what range sensors do.

Range Images

Range images are a special class of digital images. Each pixel of a range image eXpresses the
distance between a known reference frame and a visible point in the scene. Therefore, a range
image reproduces the 3D structure of a scene, and is best thought of as a sampled surface.




