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In Chapter 1, we discussed some salient aspects of the human visual
system—in particular, of the human eye. As illustrated in Figure 2.1, the
human eye forms an inverted image of the scene on its retina. The retina, in
turn, as we saw in Chapter 1, senses the image, encodes it, and then
transmits the encoded image to the brain. The role of a camera in a
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Figure 2.2 Pinhole camera. A pinhole camera is the simplest device to form an
image of a three-dimensional scene on a two-dimensional surface: Straight rays of
light pass through a “pinhole” and form an inverfed image on a surface.

computer-vision system is analogous to the role of the eye in the human
visual system. Let us now explore the relationship between the three-
dimensional world and its two-dimensional image produced by a camera.
This relationship is at the heart of every nonheuristic attempt to recover the
properties of a scene from its one or muitiple images. Hence, it is important
that we understand this refationship well.

QOur discussion here will proceed along three lines: geometry,
radiometry, and sensing. First, we shall study the ‘geometry of ‘image
formation. Then, we shall examine the relationship between the amount of
light radiatin‘g from a surface and the amount of light impinging on the
image of the surface. Finally, we shall turn our attention to the sensing of
the image—that is, to the conversion of the image into a representation that
is amenable to storage, processing, and analysis by an electronic computer.
A word of caution: All the models presented in this chapter are just first-
order approximations that will certainly be in need of refinement as
computer vision advances.

2.1 Geometry

The simplest imaging device is a pinhole camera of the type illustrated in
Figure 2.2. Ideally, a pinhole camera has an infinitesimally small aperture—a
“pinhole” —through which light enters the camera and forms an image on
the camera surface facing thé aperture. Geometrically, the image is formed
by straight rays of light that travel from the object through the aperture to
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Figure 2.3 Perspective projection. In perspective projection, each object point is
projected onto a surface along a straight line through a fixed point called the center
of projection.  (Throughout this book, we shall use the terms object and scene
interchangeably.) The projection surface here is a plane. Perspective projection
closely models the geometry of image formation in a pinhole camera (see Figure
2.2), except, in perspective projection, we are free to choose the location of the
projection surface such that the image is not inverted.

the image plane; here, as elsewhere, we use the terms object and scene
interchangeably. Such a mapping from three dimensions onto two
dimensions is called perspective projection. TLet us first examine perspective
projection, and then let us examine two linear approximations to perspective

projection. Subsequently, we shall consider the role of a lens in image
formation.

2.1.1 Perspective Projection

Perspective projection, also known as central projection, is the projection of
a three-dimensional entity onto a two-dimensional surface by straight lines
that pass through a single point, called the center of projection. Perspective

projection closely models the geometry of image formation in a pinhole
camera.

As illustrated in Figure 2.2, the image in a pinhole camera is inverted.
As far as analysis goes, this inversion of the image is mildly inconvenient.
Hence, it is customary instead to consider the geometrically equivalent
configuration of Figure 2.3 in which the image is on the same side of the
center of projection as the scene, and, as a result, the image is not inverted.
Now, if we denote the distance of the image plane from the center of
projection by f, and we denote the obiect coordinates and the image

coordinates by the subscripts 0 and i, respectively, then it is clear from similar
triangles that
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These equations are the fundamental equations for perspective projection
onto a plane.

Homogeneous Coordinates

The preceding equations for perspective projection onto a plane are
nonlinear. It is often convenient to linearize these eguations by mapping
each point (x, y, z) in three-dimensional space onto the following line that
passes through the origin in four-dimensional space: (X, Y, Z, W) =
(wx, wy, wz, w), where wis a dummy parameter that sweeps a straight line
in four-dimensional space. The new coordinates, (X, ¥, Z, W), are called
homogeneous coordinates.  (Historically, the wuse of homogeneous
coordinates in computer vision goes back to Roberts in 1965 [Roberts 1965].)
Although the homogeneous coordinates of a point in three-dimensional space
are not unique as every point in three-dimensional space is represented by a
whole family of points in four-dimensional space, the homogeneous
coordinates are unambiguous if we exclude the origin in four-dimensional
space. That is, barring the origin, every point in four-dimensional space
represents no more than a single point in three-dimensionat space.
Specifically, (X, Y, Z, W), W=, in four-dimensional space represents the
single point (x, y, z) = (X/W, Y/W, Z/W) in three-dimensional space.
Despite their redundancy, homogeneous coordinates are extremely useful as
they allow us to express several otherwise nonlinear transformations linearly;
see, for instance, [Ballard and Brown 1982] and [Wolberg 1990]. In
homogeneous coordinates, perspective projection onto a plane may be
expressed as follows:

X; f 0o 0 0] [xX,
Y, 0 f 0 0l]lY,
zii  le o f ooz,
W, 00 1 0] W

a

where, once again, the subscripts ¢ and { denote the object coordinates and
the image coordinates, respectively. You can easily verify the equivalence of
this linear expression to the preceding nonlinear equations for perspective
projection by making the following two substitutions: (X;, Y;, Z;, W;) =
{ox;, ay;, oz;, o) and (X,, Y,, Z,, W,) = (Bx,, By,, Bz,, B). Although
the exact definition of a linear transform must await Section 2.3.2, it is
sufficient to note here that a transform is linear if and only if it can be
expressed as a matrix multiplication, as in the preceding expression for
perspective projection in homogeneous coordinates.
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Figure 2.4 Photograph illustrating a vanishing point.  Parallel straight lines
converge at a single point under perspective projection.  This point is called the
vanishing point of the straight lines. (Photograph by Herber( Gehr, from the
magazine Life, Tuly 1947, @ Time Warner, Inc)

Vanishing Point and Vanishing Line

An important concept in the context of berspective projection is that of a
vanishing point. The vanishing point of a straight line under perspective
projection is that point in the image beyond which the projection of the
straight line cannot extend. That s, If the straight line were intinitely long in
space, the line would appear to “vanish” at its vanishing point in the image.
As the vanishing point of a straight line depends only on the orientation of
the line, and not on the position of the line, the notion of 4 vanishing point is
frequently explained in the context of parallel lines, Barring the degenerate
case where parallel lines are all parallel to the image plane, parailel straight
lines in space project perspectively onto straight lines that on extension
intersect at a single point in the image plane. The common intersection of
the straight lines in the image, which is the vanishing point, corresponds to
“points at infinity” in the receding direction of the paralle! straight lines in
space. The photograph in Figure 2.4 illustrates a vanishing point beautifully.
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Figure 2.5 The vanishing point. The vanishing point of a straight line under
perspective projection is that point on the projection surface at which the line would
appear to “vanish” if the line were infinitely long in space. The location of the
vanishing point of a straight line depends only on the orientation of the siraight line
in space, and not on the lineg’s position: For any given spatial orientation, the
vanishing point is located at that point on the projection surface where a straight
line passing through the center of projection with the given orientation would
intersect the projection surface.

As illustrated in Figure 2.5, the vanishing point of any given straight line in
space is located at that point in the image where a parallel line through the
center of projection intersects the image plane. It follows easily that the
vanishing point of every straight iine that is confined to some plane—
actually, for every straight line that is parallel to this plane-—lies somewhere
along a particular straight line in the image plane. This line, called the
vanishing line of the plane, is located where a parallel plane through the
center of projection intersects the image plane.

Planar Versus Spherical Perspective Projection

Although it is to the geometry of Figure 2.3 that most people refer when they
speak of perspective projection, this geometry is not always the most
convenient to analyze. In Figure 2.3, the image is formed at the intersection
of a cone of projection rays with a plane. Let us call projection along a cone
“of projection rays onto a plane planar perspective projection. The image in
planar perspective projection depends on more than just the position of the
center of projection: It also depends on the orientation and position of the




T

g

T

2.1 Geometry 37

Planar
Perspective
Projection
Spherical
Perspective
Projection

Projection
Piane

Projection
Center of Sphere
Projection

Figure 2.6 Planar and spherical perspective projection. In perspective projection,
each object point is projected along a straight line through the center of projection:
In planar perspective projection, the projection surface is a plane, and in spherical
perspective projection, the projection surface is a sphere that is centered at the center
of projection.

imaging surface, which is a plane. We can remove such a dependence by
instead projecting the scene onto a unit sphere that is centered at the center
of projection, as illustrated in Figure 2.6; the unit sphere in this context serves
as a convenient device to represent the two-dimensional manifold of
projection rays.! Let us call projection along a cone of projection rays onto a

1. It is noteworthy that the earliest extant geometrical investigation of vision, the treatise
Optics by Euclid [Buclid ¢. 300 B.C.], confined itself to the study of the relative orientations
of projection rays. Although the premise of the Optics that object points are visible when
rays emitted by the eye are incident on them is now known to be false, the geometrical

+analysis therein remains accurate, and is, in fact, remarkable. For instance, the proof of

the following proposition of the Optics contains the seeds of the notion of a vanishing
point: “Parallel lines, when seen from a distance, appear not to be equally distant from
each other” (p. 358, |Euclid c. 300 B.C.J, English translation). We shall have further
occasion to appreciate the present-day relevance of the Optics to computer vision.

Euclid, the author of the Optics, is best known for his Elements, a treatise without
equal in the history of mathematics. The Elements lay the foundations of axiomatic
geometry, and has been used as a text virtually unchanged for over 2000 years. Despite
the preeminence of the Elements, all that is known with certainty of Euclid’s life is that he
founded a school at Alexandria circa 300 B.C. and taught mathematics there. An anecdote
relates that, on being asked by a student what he would gain by learning geometry, Euclid
called his slave and said, “Give him three obols {ancient Greek coins} since he must needs
make gain by what he learns” (see [Gillispie 1971}).
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Figure 2.7 Orthographic projection. In orthographic projection, each object point is
projected onto a plane along a straight line orthogonal to the plane.

sphere, which is not necessarily of unit radius but is centered at the center of
projection, spherical perspective projection. Under spherical perspective
projection, straight lines map onto great-circle arcs—that is, they map onto
arcs of circles that are centered at the center of the sphere. Once again, the
vanishing point of a straight line is Jocated at that point in the image where a
parallel line through the center of projection intersects the imaging surface;
hence, we now get two vanishing points for every orientation of a straight
line. It is not difficult to see that an image formed under planar perspective
projection along with its center of projection defines the corresponding image
under spherical perspective projection. Of course, we can go from spherical
perspective projection to planar perspective projection tco.

2.1.2 Orthographic Projection

Orthographic projection, as tllustrated in Figure 2.7, is the projection of a
three-dimensional entity onto a plane by a set of parallel rays orthogonal to
this plane. In the figure, we have x; = x, and y; = ¥,, where, once again,
the subscripts ¢ and i denote the object coordinates and the image
coordinates, respectively. Under conditions that we shall examine in this
section, orthographic projection closely approximates perspective projection
up to a uniform scale factor. When valid, such an approximation is
extremely convenient as orthographic projection, unlike perspective
projection, is a linear transformation in three-dimensional space.

Consider the perspective-projection geometry of Figure 2.3 once again,
As the object is moved away from the center of projection along the z-axis,
the image size clearly decreases. More important, the magnification factor
(f/z,) in the perspective-projection equations becomes less sensitive to z,.
That is, f/(z,+Az,) tends to be more closely approximated by (f/z,) as

;}—Eo g’/‘ig ‘j{ j}u:—f; Se 0y M%f
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Figure 2.8 "Approximation ‘of perspective ‘pr jection by orthographic proje ]
Perspective projection onto a plane can be approximated by 'orthographic projection,
foliowed by scaling, when (1) the object dimensions are small compared to the
distance of the object from the center of projection, and (2) compared to this
distance, the object is close to the straight line that passes through the center of

projection and is orthogonal to the image plane {this line is the z-axis here).

(z,/Az,) tends to become large. This increasingly close approximation of
fllzo+ Az,) by (f/z,) might lead you to believe that, whenever the average
depth of an object is large compared to the object'’s range of depths,
perspective projection can be approximated by orthographic projection up to
the scale factor {f/z,). Such a hypothesis, however, is incorrect.

Two conditions are necessary and sufficient for perspective projection to

be approximated closely by orthographic projection up to a uniform scale
factor:

I. The object must lie close to the optical axis; in consistency with the
terminology for the imaging geometry of a lens in Section 2.1.4, the
optical axis here is defined as the line through the center of projection
that is orthogenal to the image plare.

2. The object’s dimensions must be small.

Both close and small here are with respect to the distance of the object from
the center of projection. Figure 2.8 graphically illustrates the approximation
of perspective projection as a"two-step process: orthographic projection onto
a nearby plane parallel to the image plane, and then, perspective projection
onto the image plane. The latter is equivalent to uniform scaling, It is not
difficult to see that the two projections in tandem approximate direct
perspective projection closely only when both the conditions specified here
are satisfied. To verify this assertion, you need simply to consider projections
of various wire-frame cuboids, each cuboid with one face parallel to the
image plane.
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Figure 2.9 Approximation of perspective projection by paraliel projection. Parallel
projection onto a plane is a generalization of orthographic projection in which ali the
object points are projected along a set of parallel straight lines that may or may not
be orthogonal to the projection plane. Perspective projection onte a piane can be
approximated by parallel projection, followed by scaling, whenever the obiect
dimensions are small compared to the distance of the object from the center of
projectictt. The direction of parallel projection’in ‘sich ‘an approximatio ¢
the f’avsr_ra_ge? rection” of perépé_ctive pr_d;écfiqn ‘ e ibphsl shaleved oy

2.1.3 Parallel Projection

Paralle! projection is a generalization of orthographic projection in which the
object is projected onto the image plane by a set of parallel rays that are not
necessarily orthogonal to this plane. Parallel projection, like orthographic
projection, is a linear transformation in three-dimensional space. Under
conditions that we shall examine in this section, parallel projection too
provides a convenient approximation to perspective projection up to a
uniform scale factor.

As fllustrated in Figure 2.9, perspective projection can be approximated
by parallel projection up to 2 uniform scale factor whenever the object’s
dimensions are small compared to the average distance of the object from the
center of projection. The direction of parallel projection is along the “average
direction” of perspective projection. When the object, in addition to b

‘e patallel projection” diréction car

d we get orthographic pr¢ -y

small, is close to the optical axis

o e alofig tHe optical axis, al

Fven when the dimensions of the scene are not small compared to the
average distance of the scene from the center of projection, it may be possible
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Figure 2.10 Three pinhole-camera photographs (enlarged) of an incandescent
filament, each photograph acquired with a circular aperfure of a different size,
From left to right, the diameter of the aperture is 0.06 inch, 0.015 inch, and 0.0025
inch, respectively; in each case, the distance between the aperture and the image
plane is 4 inches. Simple ray tracing would lead us to believe that, as the aperture
size is decreased, the image will become sharper. However, when the aperture is
rectuced below a certain size, rectilinear ray tracing is inadequate for purposes of
analysis, and we need to consider diffraction, a term used to describe the bending of
light rays around the edges of opague objects. Diffraction, whose extent is inversely
related to the ratio of the width of the aperture {0 the wavelength of the incident
light, increasingly blurs the image as the aperture is reduced beyond a certain point,
(From {Ruechardt 1958] with permission.)

to partition the scene into smaller subscenes, each of whose dimensions are
small compared to its average distance from the center of projection. Under
such circumstances, we could approximate perspective projection of the
whole scene by a set of paraliel projections, each parallel projection applying
to a different subscene and having its own projection direction and scale
factor. Such an approximation seems to have been proposed first by Ohta,
Maencbu, and Sakai [{Ohta, Maenobu, and Sakai 19811 this approximation
has subsequently been termed paraperspective projection by Aloimonos and
swain [Aloimonos and Swain 1988],

2.1.4 Imaging with a Lens

Thus far, in this chapter, we have considered a pinhole camera, its imaging
geometry, and approximations to this geometry. Let us now turn to imaging
with a lens., As the size of the aperture of a pinhole camera is reduced,
simple ray tracing would lead us to believe that the image will become
progressively sharper. However, as demonstrated by the photographs in
Figure 2.10, the image will become sharper only up to a point. Below a
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certain aperture size, rectilinear ray tracing is inadequate for purposes of
analysis, and we need to consider diffraction, a term used to describe the
bending of light rays around the edges of opague objects. In general, the
smaller the width of the aperture relative to the wavelength of the incident
light, the more pronounced is the diffraction; see [Ruechardt 1958] for an
elementary and readable account of diffracion and related optical
phenomena. As the aperture size is reduced, in addition to an increase in the
image blurring due to diffraction, there is a decrease in the image intensity
(i.e., in the image brightness), the image intensity being directly proportional
to the area of the aperture. These considerations lead us to use lenses, the
aim of using a lens being to duplicate the pinhole geometry without resorting
to undesirably small apertures. '

Under ideal circumstances, a lens gathers all the light radiating from an
object point toward the lens’s finite aperture, and brings this light into focus
at a single distinct image point. However, lenses have limitations of their
own. The principal limitation of lenses is that, strictly speaking, a lens can
bring into focus only those object points that lie within one particular plane
parallel to the image plane. We are assuming here, as elsewhere, that the
lens is thin and that its optical axis-—that is, its axis of rotation—is
perpendicular to the imaging surface, which is a plane. As illustrated in
Figure 2.11, a thin lens ideally obeys the thin-lens equation, which is also
known as the lens law:

LI S 4
u v"f'

where u is the distance of an object point from the plane of the lens, v is the
distance of the focused image of the object point from this plane, and f is the
focal length of the lens. It is clear from this equation that, as the object
distance u becomes increasingly large with respect to the focal length f, the
image distance v approaches f. In fact, the focal length of a lens can be
defined as the distance from the plane of the lens at which any object point
that is located at infinity is brought into focus. Axial object points located at
infinity are brought into focus at the focal point, which is located on the
optical axis at a distance f from the lens; the plane perpendicular fo the
optical axis at the focal point is called the focal plane. Even when objects are
not quite at infinity, it is often reasonable to assume that they are brought
into focus approximately on the focal plane. Unless stated otherwise, we
shall assume throughout this book that the objects are brought into focus on
the focal plane, and that the image plane is coincident with the focal plane.
As we discussed earlier, the purpose of using a lens is to duplicate the
pinhole geometry while maintaining a reasonable aperture size. The aperture
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Figure 211 Thin-lens equation: 1/u + 1/ = 1/ f, where u is the distance of an
object point from the plane of the lens, v is the distance of the image of the object
point from this plane, and f is the focal length of the lens. The thin-lens equation,
also known as the lens law, governs the relationship between the distances of an
object and its image from the lens, both distances measured along the lens’s optical
axis, which is the axis of rotation of the lens. As illustrated, we can geometrically
determine the position of the image of an off-axis object point by inveking the
following two rules: (1) all rays parallel to the optical axis of the lens are deflected
by the lens to pass through the lens’s focal point, which is at a distance f from the
lens along its optical axis; and (2) all rays through the lens’s optical center, which is a
central point in the lens along its optical axis, pass through the lens undeflected.
Thus, the optical center of the lens plays the role of a “pinhole” in a pinhele camera
(see Figure 2.2), the purpose of using a lens being to duplicate the pinhole geometry
while gathering light over a much larger aperture than is possible with a pinhele
camera.

here, as elsewhere, is assumed to be circular, and, for all practical purposes,
to be in the plane of the lens. As illustrated in Figure 2.11, the effective
center of perspective projection for a thin lens is at the lens’s optical center,
which is a central point in the lens along its optical axis through which light
rays may be assumed to pass undeflected.

The field of view of an imaging device describes the cone of viewing
directions of the device. This cone, which comprises all the directions from
which rays of light strike the image plane after passing through the effective
center of projection of the lens, is almost always chosen to be symmetrical
about the optical axis of the lens, For any given size of an image, the field of
view of an imaging device is inversely related to the magnification of the
lens, and, hence, to its focal length (see Figure 2.11). Wide-angle lenses have
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Figure 2.12 Misfocus blur. When a lens brings the image of an object point’into
focus either in front of or behind the image plane, rather than on the image plane,
what appears on the image plane is a blur, f the in-focus image is farther from the
lens than the image plane, then this blur has the same shape as the aperture
through which light crosses the lens; if the in-focus image is closer to the lens than
the image plane, then this blur has the inverted shape of the aperture. As is
geometrically evident from the figure, the size of the blur is proportional to the size
of the aperture—if we assume that the aperture lies in the plane of the lens, then
the factor of proportionality, which may be used as an index of the misfocus, is the
ratio of the distance of the in-focus image from the image plane to the distance of
the in-focus image from the plane of the lens.

small focal lengths, and, as a result, they have large fields of view.
Telephoto lenses, on the other hand, have large focal lengths, and, as a
result, they have small fields of view. As a practical matter, the perspective
imaging geometry of an imaging device is approximated closely by
orthographic projection (up to a uniform scale factor) whenever a telephoto
lens is used to view a distant scene that has a relatively small range of depth.
Clearly, such an approximation is inappropriate when a wide-angle lens is
used.

Now, as is clear from the thin-lens equation, for any given position of
the image plane, only points within one particular cbject plane are brought
into focus on the image plane by an ideal thin lens. As illustrated in Figure
2.12, points that do not lie within the particular plane brought into focus are
imaged as blur circles—also known as circles of confusion~-each blur circle
being formed by the intersection of the corresponding cone of light rays with
the image plane. As is clear from the figure, the diameter of a blur circle is
proportional to the diameter of the aperture. Hence, as the aperture size is
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decreased, the range of depths over which the world is approximately in
focus, better known as the depth of field, increases, and errors in focusing
become less important. This increase in depth of field, of course, is
accompanied by a reduction in the image intensity, to compensate for which
it might be necessary to use longer exposure times for image sensing.
Clearly, we have a fundamental tradeoff here: loss of resolution (e,
discriminability) in space, versus that in time—equivalently, image blur due
to misfocus, versus image blur due to motion during image capture. This
tradeoff, of course, is precisely what aperture-adjustment mechanisms in
cameras allow us to control.

Aberrations and Diffraction

Although lenses allow us to overcome some of the limitations of a pinhole
camera, they are not without problems. Every lens typically exhibits several
imperfections or aberrations. An aberration of a lens is any failure of the
lens to bring together at the following specific point all the light radiating
toward the lens from a single object point: the point that lies along the
straight line through the object point and the optical center of the lens, at a

distance governed by the lens law (see Figure 2.11).

There are several types of aberrations that a lens might exhibit; for an
extensive discussion of aberrations, see the Manual of Photogrammetry {Slama
1980} and [Hecht and Zajac 1974]. To begin with, not only does an ideal lens
bring into focus just one plane, but also this plane depends on the
wavelength of the incident light; this dependence is a consequence of the
dependence of the refractive index of the lens on the wavelength of the
incident light. As a result, we have chromatic aberrations that are caused by
radiation at different wavelengths from a single point being brought into
focus at different points, which has the effect of blurring the image. Even
with  monochromatic  radiation-—that is, with radiation at a single
wavelength—the image may be blurred owing to the inability of the lens to
bring into focus at a single point all the light rays radiating toward the lens
from a single object point. Spherical aberration describes the failure of a
lens to bring into focus at a single point monochromatic light rays originating
at a single point on the optical axis of the lens; coma and astigmatism
describe the failure of the lens to do the same for monochromatic rays from
an off-axis point. The three-dimensional blurring of individual image points
is not the only possible aberration. Even when a lens is capable of bringing
into focus at a single point all the radiation of every wavelength impinging
on the lens from a single object point, we are not guaranteed a perfect image.
That is, we are not guaranteed an image that is perfect in the sense of its
being a planar perspective projection of the scene when this scene is planar
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Figure 2,13 Image distortion. Fven when a lens brings the image of each object
point into focus at a single point on the image plane, we are not guaranteed a
perfect image: The geometry of the image may not conform to a planar perspective
projection of the scene. Guch an aberration, termed image disfortion, causes straight
lines in the scene to appear bowed in the image, as in the ceiling of the room in the '

photogmph shown,

and orthogonal to the optical axis of the lens. The image of such a scene
may be brought into focus not on a plane, but instead on a curved surface—
such an aberration is termed curvature of field. Further, even when a planar
scene that is orthogonal to the optical axis of the lens is brought into focus on
a single plane that is orthogonal to the optical axis of the lens, the image may
be distorted—such an aberration is simply called distortion. Image
distortion, which is illustrated for a general scene in Figure 2.13, is of
particular concern when a wide-angle lens is used. Manufacturers of optical
equipment seek to minimize the net effect of the various aberrations on the
overall image quality by designing complex lens systems that are composed
of several carefully selected and aligned individual lens elements. A
reduction in the aperture size is also helpful in reducing the effect of




2.1 Geometry 47

aberrations on the image, but such a reduction could lead to an unacceptable
reduction in the intensity of the image.

Even if a lens were perfectly free of aberrations, the physical nature of
light would preclude a perfect image. We would still need to take into
account the effects of diffraction, which, as we saw earlier, describes the
deviation of light from a rectilinear path at the edges of opaque objects. A
lens whose image quality is limited by diffraction—rather than by
aberrations—is said to be diffraction limited. As a result of diffraction, the
image of a point object formed by an aberration-free lens obeying the lens
law is not a point on the image plane even when this plane is at the distance
v dictated by the lens law. In particular, if the aperture of the lens is circular,
then the image of a point object is a circular disc surrounded by
progressively fainter rings; such a diffraction pattern is called the Airy
pattern, after the astronomer who first derived its equation in the early
nineteenth century. The radius of the central disc of the Airy pattern is
1.22 Av/d, where A4 is the wavelength of the incident light, v is the distance of
the image plane from the lens, and d is the diameter of the circular aperture
of the lens; see, for instance, [FHecht and Zajac 1974] and [Goodman 1968).
Thus, in a diffraction-limited imaging system, we can improve the image
quality in two ways: (1) by increasing the size of the aperture, and (2) when
feasible, by reducing the wavelength of the light forming the image. The
former strategy, which also increases the brightness of the image, is adopted
in the design of telescopes, and the latter strategy is adopted in the design of
microscopes.

Camera Calibration

Despite all the approximations and problems with lenses, it must be
emphasized that perspective projection is an extremely usefu} and convenient
model for the geometry of image formation by a lens. We must, however,
always bear in mind that that’s just what perspective projection is: Tt is a
model. e

To derive three-dimensional geometric information from an image, it is
necessary to determine the parameters that relate the position of a scene
point to the position of its image. This determination is known as camera
calibration, or, more accurately, as geometric camera calibration. Let us
assume that the perspective-projection model is valid. Let us further assume
a global coordinate frame for the scene, and an independent two-dimensional
frame for the image. We need to relate the spatial positions and orientations
of these two frames, and to determine the position of the center of projection.
In addition, to account for the transformation undergone by an image
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between its capture on the image plane and its display, we need to determine
two independent scale factors, one for each image coordinate axis.

As perspective projection and image scaling along any direction in the
image are both linear transformations in homogeneous coordinates, each of
these operations, and, therefore, the complete mapping from a scene position
to its image position, can be expressed as a multiplicative matrix in
homogeneous coordinates. Given the image positions and scene coordinates
of six points, it is straightforward to derive a closed-form solution to this
matrix (see [Ballard and Brown 1982]); more points offer greater robustness.
Ganapathy [Ganapathy 1984] has shown that this matrix, in turn, provides
closed-form solutions to the six extrinsic camera parameters and to the four
intrinsic camera parameters. Of the six extrinsic camera parameters, three
are for the position of the center of projection, and three are for the
orientation of the image-plane coordinate frame. Of the four intrinsic camera
parameters, two are for the position of the origin of the image coordinate
frame, and two are for the scale factors of the axes of this frame. Although
the distance of the image plane from the center of projection cannot be
modeled independently of the scale factors of the axes of the image,
as indicated in our discussion of lenses, this distance is often well
approximated by the focal length of the fens. On the other hand, if the scale
factors of the image axes are known a priori, this distance too may be
calibrated.

Typically, camera calibration is pursued using a known calibration object
whose images exhibit a large number of distinct points that can be identified
easily and located accurately in the image. Clearly, it is desirable that the
calibration object be easy to generate and to measure accurately, and that the
shape of the object be conducive to simplifying the calibration computations.
One object that meets these criteria comprises either one or multiple planar
rectilinear grids [Tsai 1986].

Tsai [Tsai 1986} argues that, in practice, it is necessary to model and
calibrate image distortion in addition to the ideal-case parameters we have
discussed. He reviews previous calibration techniques, and then describes a
now widely used calibration procedure designed for accuracy, robustness,
and efficiency. Also of interest here is the work by Fischier and Bolles
[Fischler and Bolles 1981], who investigate the determination of the extrinsic
camera parameters under knowledge of the intrinsic camera parameters; this
problem is called the exterior camera-orientation problem. In particular,
Fischler and Bolles show that, given the image positions and scene locations
of three points, the exirinsic camera parameters have at most four solutions,
each solution expressible in closed form.




