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Step 4: Classifying Local Shape. Finally, the shape classification given in Chap-
ter 4 is achieved by defining two further quantities, the mean curvature, H, and the
Gaussian curvature, K

i+ ko

H=-
2

K = kik).

One can show that the Gaussian curvature measures how fast the surface moves away
from the tangent plane around P, and in this sense is an extension of the 1-D curvature
k. The formulae giving H and X for a range surface in rij form, (x, y, h(x, y)) are given
in Chapter 4.
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A6 Singular Value Decomposition

i\

The aim of this section is to collect the basic information needed to understand the
Singular Value Decomposition (SVD) as used throughout this book. We start giving
the definition of SVD for a generic, rectangular matrix A and discussing some related

- concepts. We then illustrate three important applications of the SVD:

solving rank-deficient systems of homogeneous linear equations;

t 5»,-4*)
%\\5}9\’\ * solving systems of nonhomogeneous linear equations;
®
@

guaranteeing that the entries of a matrix estimated numerically satisfy some given
constraints (e.g., orthogonality).

Definition

Singular Value Decomposition
Any m x n matrix A can be written as the product of three matrices:
A=UDVT, (A.6)

The columns of the m x m matrix U are mutually orthogonal unit vectors, as are the columns
of the n x n matrix V. The m x n matrix D is diagonal; its diagonal elements, o;, called singular
values, are such that oy > 07 > ... g, > 0.

% While both U and V are not unique, the singular values o; are fully determined by A.
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Some important properties now follow.

Properties of the SVD

Property 1. The singular values give you valuable information on the singularity
of a square matrix, A square matrix, A, is nonsingular if and only if all its singular
values are different from zero. Most importantly, the o; also tell you how close A is
to be singular: the ratio

a
c=-1
On
called condition number, measures the degree of singularity of A. When 1/C is compa-
rable with the arithmetic precision of your machine, the matrix A is ill-conditioned and,
for all practical purposes, can be considered singular.

Froperty 2. If A is a rectangular matrix, the number of nonzero o; equals the
rank of A. Thus, given a fixed tolerance, ¢ (typically of the order of 10~%), the number
of singular values greater than e equals the effective rank of A.

Property 3. If A is a square, nonsingular matrix, its inverse can be written as

Al =vp YT,
\k.,
Be A singular or not, the‘j/pseudoinvers?pf A, AT, can be written as
. o

A*=VvDytUT, -

with Dy ! equal to D! for all nonzero singular values and zero otherwise. If A is
nonsingular, then Dy' = D' and At = A1,

Property4. The columnsof U corresponding to the nonzero singular values span
the range of A, the columns of V corresponding to the zero singular value the null space
of A.

Property 5. The squares of the nonzero singular values are the nonzero eigen-
values of both the n x n matrix ATA and m x m matrix AAT. The columns of I are
eigenvectors of AA", the columns of V eigenvectors of ATA. Morevesr: Aty = 5,v;

g T e - N e — .
and ATy, = Gy, where u, and v afe The €olumns of U and V corresponding to oy.

Property 6. One possible distance measure between matrices can use the
Frobenius norm. The Frobenius norm of a matrix A is simply the sum of the squares of
the entries g; ;of A, or

IAlp =" d? (A7)
i,

i
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By plugging (A.6) in (A.7), it follows that
lAlF =) o?.

We are now ready to summarize the applications of the SVD used throughout this
book.

Least Squares
Assume you have to solve a system of m linear equations,
Ax=h,

for the unknown n-dimensional vector X. The m x n matrix A contains the coefficients
of the equations, the m-dimensional vector b the data. If not all the components of b
are null, the solution can be found by multiplying both sides of the above equation for
AT to obtain

ATAx=ATp.
It follows that the solution is given by
x=(ATA)TAT.

This solution is known to be optimal in the least square sense.

It is usually a good idea to compute the pseudoinverse of AT A through SVD. In
the case of more equations than unknowns the pseudoinverse is more likely to coincide
with the inverse of AT A, but keeping an eye on the condition number of ATA (Property
1) won’t hurt.

I Notice that linear fitting amounts to solve exactly the same equation. Consequently, you
can use the same strategy!

Homogeneous Systems

Assume you are given the problem of solving a homogeneous system of m linear
equations in n unknowns e i/ rT
- U LV

(;{‘\ withm > n — 1 and rank(A) =n — 1. Disregarding the trivial solution x — 0, a solution

A A o T
]

%/ [unique up tg §g§g}§§f§f}can easily be found through SVD. This solution is simply

proportional to the eigenvector corresponding to the only zero eigenvalue of ATA (all

/ other eigenvalues being strictly positive because rank(A) =n — 1). This can be proven

as follows.

/ Since the norm of the solution of a homogeneous system of equations is arbitrary,

/ we look for a solution of unit norm in the least square sense. Therefore we want to
minimize

Ax =0,

I Ax)? = (Ax)T Ax = x AT Ax,
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subject to the constraint

x'x =1.

Introducing the Lagrange multiplier % this is equivalent to minimize the Lagrangian
L) =x"ATAx —ax'x - 1).
Equating to zero the derivative of the Lagrangian with respect to x gives
ATAX ~ Ax = 0.

This equation tells you that A is an eigenvalue of ATA, and the solution, x = e;, the
corresponding eigenvector. Replacing x with e,, and AT Ae; with Je; in the Lagrangian
yields

L(ek) = A

Therefore, the minimum is reached at % = 0, the least eigenvalue of AT A. But from
Properties 4 and 5, it follows that this solution could have been equivalently established
as the column of 'V corresponding to the only null singular value of A (the kernel of A).
This is the reason why, throughout this book, we have not distinguished between these
two seemingly ditferent solutions of the same problem.

Enforcing Constraints

One often generates numerical estimates of a matrix, A, whose entries are not all
independent, but satisfy some algebraic constraints. This is the case, for example, of
orthogonal matrices, or the fundamental matrix we met in Chapter 7. What is bound
to happen is that the errors introduced by noise and numerical computatlons alter the
estimated matrix, call it A, so that its entries no longer satisfy the given constraints. This
may cause serious problems if subsequent algorithms assume that A satisfies exactly the
constraints.

Once again, SVD comes to the rescue, and allows us to find the closest matrix
10 A, in the sense of the Frobenius norm (Property 6), which satisfies the constraints
exactly. Thisis achieved by computing the SVD of the estimated matrix, A = UDV T, and
estimating A as UD'V T, with D’ obtained by changing the singular values of D to those
expected when the constraints are satisfied exactly.? Then, the entries of A=UD'V T
satisfy the desired constraints by construction.

T 7\\\ ~
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*1f A is a good numerical estimate, its singular values should not be too far from the expected ones.




