Stereopsis

Two are better than one;
because they have a good reward for their labor.

Ecclesiastes 4.9

This chapter is an introduction to stereopsis, or simply stereo, in computer vision.

Chapter Overview
Section 7.1 is an informal introduction; it subdivides stereo in two subproblems, correspondence
and reconstruction, and analyzes a simple stereo system.

Section 7.2 deals with the problem of establishing correspondences between image elements of
a stereo pair.

Section 7.3 is dedicated to the geometry of stereo, the epipolar geometry, and how it can be
recovered and used.

Section 7.4 discusses three methods for the reconstruction of the 3-D structure of a scene, each

assuming a different amount of knowledge on the intrinsic and extrinsic parameters of the
camieras,

What You Need to Know to Understand this Chapter

® Working knowledge of Chapters 2,4, 5, 6.
® Singular value decomposition and constrained optimization (Appendix, section A.6).
* Basic notions of projective geometry (Appendix, section A.4).
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Introduction

Stereo vision refers to the ability to infer information on the 3-D structure and distance of
a scene from two or more images taken from different viewpoints. You can learn a great
deal of the basic principles (and problems) of a stereo system through a simple exper-
iment. Hold one thumb at arm’s length and close the right and left eye alternatively.
What do you expect to see? With presumably little surprise you find that the relative
position of thumb and background appears to change, depending on which eye is open
(or closed).! It is precisely this difference in retinal location that is used by the brain to
reconstruct a 3-D representation of what we see.

7.1.1 The Two Problems of Stereo

From a computational standpoint, a stereo system must solve two problems. The first,
known as correspondence, consists in determining which item in the left eye corresponds
to which item in the right eye (Figure 7.1). A rather subtle difficulty here is that some
parts of the scene are visible by one eye only. In the thumb experiment, for example,
which part of the background is occluded by your thumb depends on which eye is open.
Therefore, a stereo system must also be able to determine the image parts that should
not be matched.

The second problem that a stereo system must solve is reconstruction. Our vivid
3-D perception of the world is due to the interpretation that the brain gives of the com-
puted difference in retinal position, named disparity, between corresponding items.?
The disparities of all the image points form the so-called disparity map, which can be
displayed as an image. If the geometry of the stereo system is known, the disparity map
can be converted to a 3-D map of the viewed scene (the reconstruction). Figure 7.2
shows an example of stereo reconstruction with a human face. Figure 7.3 illustrates an
application of computational stereopsis in space research: reconstructing the relief of
the surface of Venus from two satellite (SAR) images. The images were recorded by
the Magellan spacecraft, and cover an area of approximately 120 x 40 km; each pixel
corresponds to 75 m.

Definitions: Stereo Correspondence and Reconstruction

The correspondence problem: Which parts of the left and right images are projections of the same
scene element?

The reconstruction problem: Given a number of corresponding parts of the left and right image,
and possibly information on the geometry of the stereo system, what can we say about the 3-D
location and structure of the observed objects?

L1f you think this is obvious, try to explain why, with both eyes open, you almost invariably see only one
thumb, well separated in depth from the background.

2This is best demonstrated by the now popular autostereograms, in which the perception of depth is induced
by no cue other than disparity. See the Further Readings for more on autostereograms.
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Figure 7.1 Anillustration of the correspondence problem. A matching between corresponding
points of an image pair is éstablished (only some correspondences are shown).

i
i

E’ (a) (b)

Figure 7.2 (a) One image from a stereo pair of Emanuele Trucco’s face. (b) 3-D rendering of
stereo reconstruction. Courtesy of the Turing Institute, Glasgow (UK).
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Figure 7.3 Stereo reconstruction of the surface of Venus from a pair of SAR images.
(a) Ilustration of the application, showing the satellite orbiting around the planet. (b) The
stereo pair of the surface of Venus acquired by the Magellan satellite. (¢) 3-D rendering of the
' reconstructed surface. Courtesy of Alois Goller, Institute for Computer Graphics and Vision,
Technical University of Graz.
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Figure 7.4 A simple stereo system. 3-D reconstruction depends on the
solution of the correspondence problem (a); depth is estimated from the
disparity of corresponding points (b). )

7.1.2 A Simple Stereo System

Before starting our investigation of the correspondence and reconstruction problems
with the necessary mathematical machinery, it is useful to learn as much as we can from
the very simple model illustrated in Figure 7.4(a). The diagram shows the top view of
a stereo system composed of two pinhole cameras. The left and right image planes are
coplanar, and represented by the segments [; and /7, respectively. O; and O, are the
centers of projection. The optical axes are parallel; for this reason, the fixation point,
defined as the point of intersection of the optical axes, lies infinitely far from the cameras.

The way in which stereo determines the position in space of P and Q (Fig-
ure 7.4(a)) is triangulation, that is, by intersecting the rays defined by the centers of
projection and the images of P and Q, py, pr, i, ¢-. Triangulation depends crucially on
the solution of the correspondence problem: If (p;, p,) and (g1, ¢,) are chosen as pairs
of corresponding image points, intersecting the rays O;p; — O, p, and O,q; — O,q, leads
to interpreting the image points as projections of P and Q; but, if (p;, ¢,) and (g;, p,)
are the selected pairs of corresponding points, triangulation returns P’ and Q’. Note
that both interpretations, although dramatically different, stand on an equal footing
once we accept the respective correspondences. We will have more to say about the
correspondence problem and its solutions in Section 7.2.

Let us now assume that the correspondence problem has been solved, and turn
to reconstruction. It is instructive to write the equation underlying the triangulation of
Figure 7.4. We concentrate on the recovery of the position of a single point, P, from its
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projections, p; and p, (Figure 7.4(b)). The distance, T, between the centers of projection
O; and O, is called the baseline of the stereo system. Let x; and x, be the coordinates
of p; and p, with respect to the principal points ¢; and ¢,, f the common focal length,
and Z the distance between P and the baseline. From the similar triangles (p;, P, p;)

and (O, P, O0,) we have T«d/
T+x—x T

Tru-x 1 (7.1)

Z—f Z '

Solving (7.1) for Z we obtain .

‘ T 1
Z=f=, 7.2
| f= (72)

where d = x, — x;, the disparity, measures the difference in retinal position between

the corresponding points in the two images. From (7.2) we see that depth is inversely |
proportional to disparity. You can verify this by looking at moving objects outside: ’
distant objects seem to move more slowly than close ones.

7.1.3 The Parameters of a Stereo System

As shown by (7.2), in our simple example depth depends on the focal length, f, and
the stereo baseline, T; the coordinates x; and x, are referred to the principal points, ¢
and c¢,. The quantities f, T, ¢, ¢, are the parameters of the stereo system, and finding
their values is the stereo calibration problem. There are two kinds of parameters to be
calibrated in a general stereo system.

The Parameters of a Stereo System ;

The intrinsic parameters characterize the transformation mapping an image point from camera
to pixel coordinates, in each camera.
The extrinsic parameters describe the relative position and orientation of the two cameras.

The intrinsic parameters are the ones introduced in Chapter 2; a minimal set for
each camera includes the coordinates of the principal point and the focal lengths in
pixel. The extrinsic parameters, instead, are slightly different: they describe the rigid
transformation (rotation and translation) that brings the reference frames of the two
cameras onto each other.’

Since in many cases the intrinsic parameters, or the extrinsic parameters, or both,
are unknown, reconstruction is often a calibration problem. Rather surprisingly, you will
learn in Section 7.4 that a stereo system can compute a great deal of 3-D information
without any prior knowledge of the stereo parameters (uncalibrated stereo). In order

31In Chapter 2, the same extrinsic parameters were used to define the 3-D rigid motion that brings the camera
and the world reference frame onto each other; here, the reference frame of one camera is taken as the world

reference frame.
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to deal properly with reconstruction, we need to spend some time on the geometry
of stereo, the so-called epipolar geometry (Section 7.3). As a byproduct, the epipolar
geometry will prove useful to get a better understanding of the computational problems
of stereo, and to devise more efficient (and effective) correspondence algorithms.

¥5  Before starting our investigation of stereo, a word of warning about the validity of the
conclusions that can be drawn from the simple stereo model (7.2) referring to Figure 7.4.
They illustrate well the main issues of stereo, but are 00 simple to tell the entire story.
In particular, (7.2) may lead you to conclude that the disparity can only decrease as the
distance of the object from the cameras increases; instead, in a typical stereo system with
converging cameras,” disparity actually increases with the distance of the objects from the
fixation point. Clearly, the reason why you cannot infer this property from our example is
that the fixation point is at infinity.

7.2 The Correspondence Problem
Let us first discuss the correspondence problem ignoring quantitative knowledge of the
cameras’ parameters.
7.2.1 Basics

We will start off with the common assumptions underlying most methods for finding
correspondences in image pairs.

Assumptions

1. Most scene points are visible from both viewpoints.
2. Corresponding image regions are similar.

These assumptions hold for stereo systems in which the distance of the fixation
point from the cameras is much larger than the baseline. In general, however, both
assumptions may be false and the correspondence problem becomes considerably more
difficult. For the time being, we take the validity of these assumptions for granted and
view the correspondence problem as a search problem: given an element in the le ft image,
we search for the corresponding element in the right image. This involves two decisions:

® which image element to match, and
¢ which similarity measure to adopt.

' We postpone the discussion of the problem arising from the fact that not all the elements
of one image have necessarily a corresponding element in the other image.

4That is, the optical axes intersect in a fixation point at a finite distance from the cameras.
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Figure 7.5 An illustration of correlation-based correspondence. We look for the right-image
point corresponding to the central pixel of the left-image window. This window is correlated to
several windows of the same size in the right image (only a few are shown here). The center of
the right-image window producing the highest correlation is the corresponding point sought.

For the sake of convenience, we classify correspondence algorithms in two classes,
correlation-based and_feature-based methods, and discuss them separately. Although
almost maistinguishable from a conceptual point of view, the two classes lead to quite
different implementations: for instance, correlation-based methods apply to the totality
of image points; feature-based methods attempt to establish a correspondence between

sparse sets of image features.

7.2.2 Correlation-Based Methods

In correlation-based methods, the elements to match are image windows of fixed size,
and the similarity criterion is a measure of the correlation between windows in the
two images. The corresponding element is given by the window that maximizes the
similarity criterion within a search region (Figure 7.5). As usual, we give a summary of
the algorithm.

Algorithm CORR_MATCHING

The input is a stereo pair of images, [; (left) and /, (right).

Let p; and p, be pixels in the left and right image, 2W + 1 the width (in pixels) of the correlation
window, R(p;) the search region in the right image associated with p;, and ¥ (u, v) a function of
two pixel values, u, v.

For each pixel p; = {1, 717 of the left image:

1. for each displacement d = [dy, dz]T € R(p;) compute
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2. the disparity of p; is the vector d = [dy, [iz]T that maximizes c(d) over R(p;):

=2 @}
d = arg max {c(d)}

The output is an array of disparities (the disparity map), one per each pixel of J;.

Two widely adopted choices for the function ¥ = (i, v) in (7.3) are

Yu, v) = uv, (7.4)

which yields the cross-correlation between the window in the left image and the search
region in the right image, and

Vi, v) = —(u — v)?, (1.5)
which performs the 'so called SSD (sum of squared differences) or block matéhing.

5 The relation between cross-correlation and block matching becomes apparent expanding
(7.5) (Exercise 7.3).

Notice that the two choices of ¢ in (7.4) and (7.5) lead to the same set of corre-
spondences if the energy of the right image inside each window, defined as the sum of
the squares of the intensity values in the window, is constant across the search region.
In many practical situations, this is unlikely to happen, and (7.5) is usually preferable to
(7.4). The reason is that SSD, unlike cross-correlation, is not biased by the presence of
regions with very small or very large intensity values (see Exercise 7.3 for a quantitative
estimation of this effect and the definition of normalized cross-correlation).

% In an implementation of CORR_MATCHING it is certainly worthwhile to precompute
and store the values of the function ¥ in a lookup table. For most choices of v, this is likely
to speed up the algorithm substantially.

We must still discuss how to choose W and R in the implementation of the
algorithm. The window width, 2W + 1, is actually a free parameter, and its choice is
left to your ability to grasp the most important spatial scale of the problem from the
images you are dealing with.?

Fortunately, something more can be said on the initial location and size of the
search region, R(p;). If the cameras are fixating a common point at a distance much
larger than the baseline, the initial location can be chosen to be p, = [i, j]"; that is,
choosing the pixel in the right image at exactly the same location of the pixel p; = [i, j]'
in the left image. The size of R(p;) can be estimated from the maximum range of

3See the Further Readings for stereo systems determining the size of the window automatically.
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distances that you expect to find in the scene (remember that disparity increases with
the inverse of the distance from the fixation point). If nothing can be assumed on the
geometry of the two cameras, the initialization of the search region in the right image
is more difficult. At first sight, it might even appear that for each point in the left image
you have to search over the entire right image. Fortunately, as shown in Section 7.3,
the search region can always be reduced (o a 1-D segment, independent of the relative

position of the two cameras.

7.2.3 Feature-based Methods

Feature-based methods restrict the search for correspondences to a sparse set of fea-
tures. Instead of image windows, they use numerical and symbolic properties of features,
available from feature descriptors (Chapters 4 and 5); instead of correlationlike mea-
sures, they use a measure of the distance between feature descriptors. Corresponding
elements are given by the most similar feature pair, the one associated to the minimum

distance.
Most methods narrow down the number of possible matches for each feature by

enforcing suitable constraints on feasible matches. These constraints can be

o geometric, like the epipolar constraint discussed in the next section, or

o analytical, for instance the uniqueness constraint (each feature can at most have
one match) or the continuity constraint (disparity varies continuously almost ev-
erywhere across the image).

Here, we restrict our attention to unconstrained methods; pointers to feature-
based methods relying on geometric and analytical constraints are given in the Further
Readings, and Section 7.3 gives you the basic elements necessary to add the epipolar

constraint to our correspondence algorithms.

Typical examples of image features used in stereo are edge points, lines, and
corners (either points where edge lines meet, or corners formed by intensity patterns
as described in Chapter 4). For example, a feature descriptor for a line could contain

values for

e the length, !

¢ the orientation, ¢

e the coordinates of the midpoint, [x, y
e the average contrast along the edge line, ¢

]T

For virtually every possible feature, there is a long list of correspondence algorithms. As
you might expect, no single feature type will work at best in all situations. The choice
of the feature type (and correspondence method) depends on numerous factors, like
the kind of objects you are looking at, the overall conditions of illumination, and the




Section7.2  The Correspondence Problem 149

average image contrast. As an example, we suggest a simplified scheme for matching
edge lines, assuming the line descriptor above.®

An example of similarity criterion between feature descriptors is the inverse of the
weighted average, S, of the distances between each of the properties in the descriptors:

1
~woll — )2+ w6 — 6,02 + walmy — my)? + wale; — )2

(7.6)

where wy, . . ., w3 are weights, and the subscripts / and r refer to the left and right image,
respectively. Tlns leaves us with the nontrivial task of determining the weights that yield
the best matches. A possible strategy is to determine a working point for the various
weights from a subset of easy matches that you believe to be correct. In general, there
is not much to say about this problem, except perhaps that if you build a complex and
heterogeneous feature descriptor, determining the weights becomes a difficult problem
of parameter estimation.
A very simple, feature-based correspondence algorithm is sketched below.

Algorithm FEATURE _MATCHING

The input is a stereo pair of images, /; and /,, and two corresponding sets of feature descriptors.
Let R{/}) be the search region in the right image associated with a feature descriptor f;, and
d( /1, /) the disparity between two corresponding features, f; and f,.
For each f; in the left image set:

1. Compute the similarity measure between f; and each image feature in R(J)).
2. Select the right-image feature, f, that maximizes the similarity measure.

3. Save the correspondence and the disparity of f; (the displacement between the points
defining the feature’s position).

The output is formed by a list of feature correspondences and a disparity map.

= The initial location and size of the search reglon R, can be determined as in the case of
correlation-based methods.

7.2.4 Concduding Remarks

Unfortunately, there is no cut-and-dried correspondence method giving optimal results
under all possible circumstances. You have to live with the fact that choosing a method
depends on factors like the application, the available hardware, or the software require-
ments. Having said that, it is useful to keep in mind a few general considerations.
Correlation-based methods are certainly easier to implement (and debug) and
provide dense disparity maps. As you may guess, the latter property can be very helpful

%In reality, feature-based methods can be a great deal more complicated than our solution, especially when
enforcing constraints on the search.
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for the purpose of reconstructing surfaces. They need textured images to work well.
However, due to foreshortening effects and change in illumination direction, they are
inadequate for matching image pairs taken from very different viewpoints. Also, the
interpolation necessary to refine correspondences from pixel to subpixel precision can
make correlation-based matching quite expensive.’

Feature-based methods are suitable when a priori information is available about
the scene, so that optimal features can be used. A typical example is the case of
indoor scenes, which usually contain many straight lines but rather untextured surfaces.
Feature-based algorithms can also prove faster than correlation-based ones, but any
comparison of specific algorithms must take into account the cost of producing the
feature descriptors. The sparse disparity maps generated by these methods may look
inferior to the dense maps of correlation-based matching, but in some applications (e.g.,
visual navigation) they may well be all you need in order to perform the required tasks
successfully. Another advantage of feature-based techniques is that they are relatively
insensitive to illumination changes and highlights. )

The performance of any correspondence methods is jeopardised by occlusions
(points with no counterpart in the other image) and spurious matches (false corre-
sponding pairs created by noise). Appropriate constraints reduce the effects of both
phenomena: two important ones are the left-right consistency consiraint (only corre-
sponding pairs found matching left-to-right and right-to-left are accepted), and the
epipolar constraint, explained in the next section.

7.3 Epipolar Geometry

We now move on to study the geometry of stereo in its full generality. This will enable us
to clarify what information is needed in order to perform the search for corresponding
elements only along image lines. First of all, we need to establish some basic notations.

7.3.1 Notation

The geometry of stereo, known as epipolar geometry, is shown in Figure 7.6. The figure
shows two pinhole cameras, their projection centers, O; and O, and image planes, m
and 7. The focal lengths are denoted by f; and f,.. As usual, each camera identifies a 3-D
reference frame, the origin of which coincides with the projection center, and the Z-axis
with the optical axis. The vectors P; = [X), 1, Z;]T and P, = [X,, Y,, Z,]' refer to the
same 3-D point, P, thought of as a vector in the left and right camera reference frames
respectively (Figure 7.6). The vectors p; = [x;, Y1, z;}T and pr =[x, yr. zr}T refer to the
projections of P onto the left and right image plane respectively, and are expressed in
the corresponding reference frame (Figure 7.6). Clearly, for all the image points we have
7= fiorz, = f,, according to the image. Since each image plane can be thought of as a
subset of the projective space P2, image points can be equivalently thought of as points
of the projective space P? (see Appendix, section A.4).

"One of the projects suggested at the end of this chapter deals with a parsimonious implementation of
correlation-based matching.
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Figure 7.6 The epipolar geometry.

¥ Note that point vectors denoted by the same bold capital letter but by different subscripts,
like P; and P, identify the same point in space. The subscript / or r tells you the reference
Jrame in which the vectors are expressed (left or right). Instead, point vectors denoted by
the same bold small letter but by a different subscript, like p; and p,, identify different poinis
in space (i.e., belonging to different image planes). In this case, the subscript tells you also

the image plane on which the vectors lie. This is a slightly unfair but very effective abuse
of potation.

7.3.2 Basics

The reference frames of the left and right cameras are related via the extrinsic param-
eters. These define a rigid transformation in 3-D space, defined by a translation vector,

T = (0, — 07), and a rotation matrix, R. Given a point P in space, the relation between
P; and P, is therefore

P, = R(P,—T). (7.7)

The name epipolar geometry is used because the points at which the line through the
centers of projection intersects the image planes (Figure 7.6) are called epipoles. We
denote the left and right epipole by e; and e, respectively. By construction, the left
epipole is the image of the projection center of the right camera and vice versa.

% Notice that, if the line through the centers of projection is parallel to one of the image
planes, the corresponding epipole is the point at infinity of that line.

The relation between a point in 3-D space and its projections is described by the
usual equations of perspective projection, in vector form:

CPr= %Pg (78)
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and

pr = ——g— e (7.9)

The practical importance of epipolar geometry stems from the fact that the plane
identified by P, Oy, and O, called epipolar plane, intersects each image in a line, called |
\ epipolar line (see Figure 7.6). Consider the triplet P, p;, and p,. Given p;, P can lie i
anywhere on the ray from O; through p;. But, since the image of this ray in the right |
image is the epipolar line through the corresponding point, p,, the correct match must lie j

on the epipolar line. Thisimportant fact is known as the epipolar constraint. It establishes
a mapping between points in the left image and lines in the right image and vice versa.

w  Incidentally, since all rays include the projection center by construction, this also proves
that all the epipolar lines go through the epipole. ‘ ;

So, if we determine the mapping between points on, say, the left image and

corresponding epipolar lines on the right image, we can restrict the search for the

s~ match of p; along the corresponding epipolar line. The search for correspondences

(7&%/ is thus reduced to a 1-D problem. Alternatively, the same knowledge can be used to

verify whether or not a candidate match lies on the corresponding epipolar line. This is i

usually a most effective procedure to reject false matches due to occlusions. Let us now v
summarize the main ideas encountered in this section:

S

Definition: Epipolar Geometry i

Given a stereo pair of cameras, any point in 3-D space, P, defines a plane, 7p, going through P
and the centers of projection of the two cameras. The plane rp is called epipolar plane, and the
lines where 7 p intersects the image planes conjugated epipolar lines. The image in one camera of
the projection center of the other is called epipole.

Properties of the Epipoles i

With the exception of the epipole, only one epipolar line goes through any image point.
All the epipolar lines of one camera go through the camera’s epipole.

Definition: Epipolar Constraint }

Corresponding points must lie on conjugated epipolar lines.

The obvious question at this point is, can we estimate the epipolar geometry?
Or equivalently, how do we determine the mapping between points in one image and
epipolar lines in the other? This is the next problem we consider. Its solution also makes
clear the relevance of epipolar geometry for reconstruction.

7.3.3 The Essential Matrix, E

The equation of the epipolar plane through P can be written as the coplanarity condition
of the vectors P;, T, and P, — T (Figure 7.6), or
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2

P -D'TxP =0, o
Using (7.7), we obtain
(R'P)TT x P =0. (7.10)

9] XRecang\ that a vector product can be written as a multiplication by a rank-deficient

matrix, Wwe can write

Tx P =S5P
where
0 -1, T
S=| 1. 0 -T,|. (7.11)
-7, T, O
Using this fact, (7.10) becomes
P EP, =0, (7.12)
with VA
E=%s - (7.13)

Note that, by construction, § has always rank 2. The matrix E is called the essential
matrix and establishes a natural link between the epipolar constraint and the extringsic
parameters of the stereo system. You will learn how to recover the extrinsic parameters

. from the essential matrix in the next section. In the meantime, observe that, using (7.8)

and (7.9), and dividing by Z,Z;, (7. 12) can be rewntten as
BT ER=0. (7.14)

As already mentioned, the image points p; and p,, which lie on the left and right image
planes respectively, can be regarded as points in the projective plane P? defined by the
left and right image planes respectively (Appendix, section A.4). Consequently, you are
entitled to think of Ep; in (7.14) as the projective line in the right plane, u,, that goes
through p, and the epipole e,:

u, = Epy. (7.15)

As shown by (7.14) and (7.15), the essential matrix is the mapping between points and
epipolar lines we were looking for.

=5 Notice that the whole discussion used coordinates in the camera reference frame, but what
we actually measure from images are pixel coordinates. Therefore, in order to be able to
make profitable use of the essential matrix, we need to know the transformation from
camera coordinates to pixel coordinajess-that is, the intrinsic parameters. This limitation
is removed in the next sectxon butat a pnce\

———
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7.3.4 The Fundamental Matrix, F

We now show that the mapping between points and epipolar lines can be obtained from
corresponding points only, with no prior information on the stereo system.

Let M; and M, be the matrices of the intrinsic parameters (Chapter 2) of the
left and right camera respectively. If p; and p, are the points in pixel coordinates
corresponding to p; and p, in camera coordinates, we have

pr =M (7.16)
and
pr =M, b | (7.17)
By substituting (7.16) and (7.17) into (7.14), we have
B0 (718)
where S ,4,/,;?’ CO =
F=MTEM (7.19)

F is named fundamental matrix. The essential and fundamental matrix, as well as (7.14)
and (7.18), are formally very similar. As with Ep, in (7.14), Fp, in (7.18) can be thought
of as the equation of the projective epipolar line, @, that correspond to the point p, or

i, = Fi. (7.20)

The most important difference between (7.15) and (7.20), and between the essential
and fundamental matrices, is that the fundamental matrix is defined in terms of pixel
coordinates, the essential matrix in terms of camera coordinates. Consequently, if you can
estimate the fundamental matrix from a number of point matches in pixel coordinates,
you can reconstruct the epipolar geometry with no information at all on the inirinsic or
extrinsic parameters.

i Thisindicates that the epipolar constraint, as the mapping between points and correspond-
ing epipolar lines, can be established with no prior knowledge of the stereo parameters.

The definitions and basic mathematical properties of these two important matrices
are worth a summary.

Definition: Essential and Fundamental Matrices

For each pair of corresponding points p; and p, in camera coordinates, the essential matrix satisfies
the equation

p, Ep;=0.

For each pair of corresponding points p; and p;, in pixel coordinates, the fundamental matrix
satisfies the equation

B Fipy =0.
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Properties

Both matrices enable full reconstruction of the epipolar geometry.
If M; and M, are the matrices of the intrinsic parameters, the relation between the essential
and fundamental matrices is given by
F=MTEM™

The essential matrix:

1. encodes information on the extrinsic parameters only (see (7.13))
2. hasrank 2,since S in (7.11) has rank 2 and R full rank

3. its two nonzero singular values are equal
The fundamental matrix:

1. encodes information on both the intrinsic and extrinsic parameters
2. has rank 2, since T[ and,??; have full rank and £ has rank 2

‘o 3
i

e
7.3.5 Computing E and F: The Eight-point Algorithm

Y i :
How do we compute the essential and fundamental matrices? Of the various methods
possible, the eight-point algorithm is by far the simplest and definitely the one you can-
not ignore (if you are curious about other techniques, look into the Further Readings).
We consider here the fundamental matrix only, and leave it to you to work out the
straightforward modification needed to recover the essential matrix.

The idea behind the eight-point algorithm is very simple. Assume that you have
been able to establish n point correspondences between the images. Each correspon-
dence gives you a homogeneous linear equation like (7.18) for the nine entries of F;
these equations form a homogeneous linear system. If you have at least eight corre-
spondences (i.e., n > 8) and the n points do not form degenerate configurations,® the
nine entries of F can be determined as the nontrivial solution of the system Since the
more than eight pomts so that the systern is overdetermﬁed ‘the solutxon can once
again be obtained by means of SVD related techniques. If A is the system’s matrix and
A=UDV', the solution is the column of V corresponding to the only null singular
value of A (see Appendix, section A.6),

@ & Because of noise, numerical errors and inaceurate correspondences A is more likely to be

& The estimated fundamental matrix is almost certainly nonsingular. We can enforce the
singularity constraint by adjusting the entries of the estimated matrix F as done in Chapter 6

8For a thorough discussion of the degenerate configurations of eight or more points, as well as of the
instabilities in the estimation of the essential and fundamental matrices, see the Further Readings.
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for rotation matrices: we compute the singular value decomposition of the estimated matrix,
F=UDVT, and set the smallest singular value on the diagonal of the matrix D equal to
0.If D' is the corrected D matrix, the corrected estimate, F” is given by F/ = UD'V T (see
Appendix, section A.6).

The following is the basic structure of the eight-point algorithm:

Algorithm EIGHT_POINT
JQ' The input is formed by n point correspondences, with n > 8.

G\Q 1. Construct system (7.18) from » correspondences. Let A be the n x 9 matrix of the coeffi-
cients of the system and A = UDVT the SVD of A.
& . The entries of F (up to an unknown, signed scale factor) are the components of the column

Ao

2{ of V corresponding to the least singular value of A.
. To enforce the singularity constraint, compute the singular value decomposition of F:

~ Q”v
O&, &

F=UDVT,

o

Set the smallest singular value in the diagonal of D equal to 0; let D' be the corrected matrix.
. The corrected estimate of F, F', is finally given by

6
i

¢ F=UDVT,

The output is the estimate of the fundamental matrix, F’.

In order to avoid numerical instabilities, the eight-point algorithm should be implemented
with care. The most important action to take is to normalize the coordinates of the cor-
responding points so that the entries of A are of comparable size. Typically, the first two
coordinates (in pixels) of an image point are referred to the top left corner of the image,
and can vary between a few pixels to a few hundreds; the differences can make A seriously
ill-conditioned (Appendix, section A.6). To make things worse, the third (homogeneous)
coordinate of image points is usually set to one. A simple procedure to avoid numerical
A instability is to translate the first two coordinates of each point to the centroid of each data
set, and scale the norm of each point so that the average norm over the data set is 1. This

@ can be accomplished by multiplying each left (right) point by two suitable 3 x 3 matrices,

5 1

H; and H, (see Exercise 7.6 for details on how to compute both H; and H,). The algo-
rithm EIGHT_POINT is then used to estimate the matrix F = H, F H;, and F obtained as
H7UPH

7.3.6 Locating the Epipoles from E and F

We can now establish the relation between the epipoles and the two matrices E and F.
Consider for example the fundamental matrix, F. Since & lies on all the epipolar lines
of the left image, we can rewrite (7.18) as

I_’;rFéz =0
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for every p,. But since F is not identically zero, this is possible if and only if

= Y T N
[(Fe=0,) f’f'jéf,»@?
[ { y =0

'éﬁ:ipole, &, is the null space

(7.21)

of F;similarly, &, is the null space of F T, { o Frak

We are now in a position to present an'algorithm for finding the epipoles. Accurate
epipole localization is helpful for refining the location of corresponding epipolar lines,
checking the geometric consistency of the entire construction, simplifying the stereo
geometry, and recovering 3-D structure in the case of uncalibrated stereo.

Again we present the algorithm in the case of the fundamental matrix. The adap-
tation to the case of the essential matrix is even simpler than before. The algorithm
follows easily from (7.21): To determine the location of the epipoles, it is sufficient to

find the null spaces of F and F7.

©F  These can be determined, for instance, from the singular value decomposition F =UDVT
and FT =VDUT as column of V and U respectively corresponding to the null singular
value in the diagonal matrix D. ‘

Algorithm EPIPOLES_LOCATION

The input is the fundamental matrix F.

1. Find the SVD of F, thatis, F=UDVT.
2. The epipole ¢ is the column of V corresponding to the null singular value.
3. The epipole e, is the column of U corresponding to the null singular value.

The output are the epipoles, e; and e,.

& Notice that we can safely assume that there is exactly one singular value equal to 0 because
algorithm EYGHT_POINT enforces the singularity constraint explicitly,

v

It has to be noticed that there are alternative methods to locate the epipoles, not
based on the fundamental matrix and requiring as few as 6 point correspondences. More
about them in the Further Readings.

7.3.7 Rectification

Before moving on to the problem of 3-D reconstruction, we want to address the issue of
rectification. Given a pair of stereo images, rectification determines a transformation (or
warping) of each image such that pairs of conjugate epipolar lines become collinear and
parallelto one of the image axes, usually the horizontal one. Figure 7.7 shows an example.
The importance of rectification is that the correspondence problem, which involves 2-
D search in general, is reduced to a 1-D search on a scanline identified trivially. In other
words, to find the point corresponding to (i, ji;) of the left image, we just look along the
scanline j = j; in the right image.
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Left image Right image

(a)

Rectified left image Rectified right image

(®)

Figure 7.7 (a) A stereo pair. (b) The pair rectified. The left images plot the epipolar lines
corresponding to the points marked in the right pictures. Stereo pair courtesy of INRIA (France).

Let us begin by stating the problem and our assumptions.

Assamptions and Problem Statement

Given a stereo pair of images; the intrinsic parameters of each camera, and theextrinsic param-
eters of the system, R and T, compute the image transformation that makes conjugated epipolar
lines collinear and parallel to the horizontal image axis.

The assumption of knowing the intrinsic and extrinsic parameters is not strictly
necessary (see Further Readings) but leads to a very simple technique. How do we
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P

".

Figure 7.8 Rectification of a stereo pair. The epipolar lines associated to a 3-D point
P in the original cameras (black lines) become collinear in the rectified cameras (light
grey). Notice that the original cameras can be in any position, and the optical axes may
not intersect.

go about computing the rectifying image transformation? The rectified images can be
thought of as acquired by a new stereo rig, obtained by rotating the original cameras
around their optical centers. This is illustrated in Figure 7.8, which shows also how the
points of the rectified images are determined from the points of the original images and
their corresponding projection rays.

We proceed to describe a rectification algorithm assuming, without losing gener-
ality, that in both cameras

\é 1. the origin of the image reference frame is the principal point;
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The algorithm consists of four steps:

L4

Rotate the left camera so that the epipole goes to infinity along the horizontal axis.

Apply the same rotation to the right camera to recover the original geometry.

Rotate the right camera by R. ( Takbkien ‘“QW\K G\Qj\ .M} f'\b‘)\:\i\ (chuseron
Adjust the scale in both camera reference frames. ‘Zﬁ WA (@@)

To carry out this method, we construct a triple of mutually orthogonal unit vectors ey,
e, and es. Since the problem is underconstrained, we are going to make an arbitrary
choice. The first vector, e1, is given by the epipole; since the image center is in the origin,
e, coincides with the direction of translation, or o 7

o — T
TR

oy |

et TR

The only constraint we have on the second vector, ey, is that it must be orthogonal to ey.
To this purpose, we compute and normalize the cross product of e with the direction
vector of the optical axis, to obtain

1 T
e = ————=[-T), T, 0] . ey
/T2 + 17 e

The third unit vector is unambiguously determined as

€3 =€ X €.

It is easy to check that the orthogonal matrix defined as
Reer=1| € (7.22)

rotates the left camera about the projection center in such a way that the epipolar lines
become parallel to the horizontal axis. This implements the first step of the algorithm.
Since the remaining steps are straightforward, we proceed to give the customary algo-
rithm:

Algorithm RECTIFICATION

The input is formed by the intrinsic and extrinsic parameters of a stereo system and a set of points
in each camera to be rectified (which could be the whole images). In addition, Assumptions 1 and
2 above hold.

1. Build the matrix Ryees as in (7.22);
2. Set R; = Ryect and R, = RRyecrs




s
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3. For each left-camera point, p; = [x, y, £]7 compute

Rip =[x,y 2] 4

/ f 1o "
bi=L1xy2) Q

4. Repeat the previous step for the right camera using R, and p,.

The output is the pair of transformations to be applied to the two cameras in order to rectify
the two input point sets, as well as the rectified sets of points.

Notice that the rectified coordinates are in general not integer. Therefore, if you
want to obtain integer coordinates (for instance if you are rectifying the whole images),
you should implement RECTIFICATION backwards, that is, starting from the new
image plane and applying the inverse transformations,.so that the pixel values in the
new image plane can be computed-as a bilinear interpoléﬁon of the pixel values in the

",

old image plane. e

= A rectified image is not in general contained in the same resion of the image plane as the
original image. You may have to alter the focal lengths of the rectified cameras o keep all
Do S e onsl . . o Pl
the points within images of the sime size as the original.

We are now fully equipped to deal with the reconstruction problem of stereo.

7.4 3-D Reconstruction

We have learned methods for solving the correspondence problem and determining
the epipolar geometry from at least eight point correspondences. At this point, the
3-D reconstruction that can be obtained depends on the amount of 4 priori knowledge ;-
available on the parameters of the stereo system; we can identify three cases.? First, if*~~
both intrinsic and extrinsic parameters are known, you can solve the reconstruction
problem{unambiguously}by triangulation, as detailed in section 7.1. Secondi only
the intrinsic parameters are known, you can still solve the problem and, at the same
time, estirqafg\the extrinsic parameters of the system, but only up to an unknown
scaling factor?Third, if the pixel correspondences are the only information available,
and neither the intrinsic nor the extrinsic parameters are known, you can still obtain
a reconstruction of the environment, but only up o an unknown, global projective
transformation. Here is a visual summary.

“In reality there are several intermediate cases, but we concentrate on these three for simplicity.
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A Priori Knowledge 3-D Reconstruction from Two Views

Intrinsic and extrinsic parameters ~ Unambiguous (absolute coordinates)

Intrinsic parameters only Up to an unknown scaling factor

No information on parameters Up to an unknown projective transformation of
the environment

We now consider these three cases in turn.

v

P '/7’7.4.1N‘_:Reconstruction by Triangulation

Thlsxs the simplest case. If you know both the intrinsic and the extrinsic parameters of
your stereo system, reconstruction is straightforward.

Assumptions and Problem Statement

Under the assumption that the intrinsic and extrinsic parameters are known, compute the 3-D
location of the points from their projections, p; and p,.

As shown in Figure 7.6, the point P, projected into the pair of corresponding
points p; and p,, lies at the intersection of the two rays from Oy through p; and from
0, through p, respectively. In our assumptions, the rays are known and the intersection
can be computed. The problem is, since parameters and image locations are known only
approximately, the two rays will not actually intersect in space; their intersection can only
be estimated as the point-of minimum distance from both rays. This is what we set off

N0 O, T . B

TINIO O, st T e
; )%\ | Letap; (a €R)be the ray, [, through O; and p;. Let T + bR g, (b € R) be the ray,
\_ /Ui through O, and p, expressed in the left reference frame. Let w be a vector orthogonal

\\\\\

~—-to both [ and r. Our problem reduces to determining the midpoint, P’, of the segment
parallel to w that joins / and r (Figure 7.9).

This is very simple because the endpoints of the segment, say aop; and T + boR "pr,

can be computed solving the linear system of equations

PR

'{'\.\w,ﬁ “ ap; — bRTp,, +c(pr % RTp,) =T ) (7.23)
Oy X W
o for ag, bo, and ¢o. We summarize this simple method below:

, | o N
All vectors and coordinates are referred to th@&eft camera reference framejfThe input is formed
by a set of corresponding points; let p; and p; be & geTeric pait. T

¥
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Letap;, a € R, be the ray / through 0; (e =0) and p; (a =1). Let T + bRTp,, b e R, the ray r
through O (b =0) and p, (b =1). Let w = p; x R p, the vector orthogonal to both [ and r, and
ap: + ¢w, ¢ € R, the line w through apy (for some fixed @) and parallel to w.

1. Determine the endpoints of the segment, s, belonging to the line parallel to w that joins /
and r, aop; and T + bR " p,, by solving (7.23).

2. The triangulated point, P/, is the midpoint of the segment s.

The output is the set of reconstructed 3-D points.

% The determinant of the coefficients of system (7.23) is the triple product of py, RTp,«,,':a-nd%
p: x Rp,. Therefore, as expected from geometric considerations, the system hasa unique)
solution if and only if the two rays and(% are not parallel. ; P

% Reconstruction can be performed from rectified images directly; that is, without going back
to the coordinate frames of the original pair (Exercise 7.7)

How often can we assume to know the intrinsic and extrinsic parameters of a
stereo system? If the geometry of the system does not change with time, the intrinsic
and extrinsic parameters of each camera can be estimated through the procedures of
Chapter 6. If T;, R;, and T,, R, are the extrinsic parameters of the two cameras in the L
world reference frame, it is not difficult to show that the extrinsic parameters of the
stereo system, T and R, are g

o,

T=T,-R'T,
Try to derive (7.24) yourself. If you need help, see Exercise 7.10.

Figure 7.9 Triangulation with nonintersecting rays.
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Y,

~

L/ @7\_4.2 )Reconstruction up to a Scale Factor

i

o now consider the case in which only the intrinsic parameters of both the cameras are
known and derive a method to estimate the extrinsic parameters of the stereo system
as well as the 3-D structure of the scene. Since the method makes use of the essential
matrix, we must assume that at least eight point correspondences have been established.

Assumptions and Problem Statement

Assuming that only the intrinsic parameters and n point correspondences are given, with n = 8,
compute the location of the 3-D points from their projections, p; and p,.

Unlike triangulation, in which the geometry of the stereo system was fully known,
the solution cannot rely on sufficient information to locate the 3-D points unambigu-
ously. Intuitively, since we do not know the baseline of the system, we cannot recover the
true scale of the viewed scene. Consequently, the reconstruction is unique only up to an

“GRknown scaling factor. This factor can be determined if we know the distance between
two points in the observed scene.

The origin of this ambiguity is quite clear in the method that we now present. The
first step requires estimation of the essential matrix, E, which can only be known up to
an arbitrary scale factor; therefore, we look for a convenient normalization of E. From
the definition of the essential matrix, (7.13), we have

ETE=STRTRS=5S'5,

or

T§+T§ 1,7, ~TxT,
ETE=| -T,T, T}!+77 -T,T, |. (7.25)
~T,T, ~T,T, T2+T}

From (7.25) we have that the trace of EE " is

Tr(ETE)=2|T|% =)

so that dividing the entries of the essential matrix by

Yy N=\TrETE)2

is equivalent to normalizing

w  Notice that, by effect of this normalization, the difference between the true essential matrix

and the one estimated through the eight-point algorithm is, at most, a glg?éféign change.
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) A A A A L {‘/ /" 7[!/@’%“!

-T2 -T.T, -T.T, : WM} v

ETE=| -T,T, 1-T2 -1,T, |, ’[;‘gw (7.26)
~T.T. -T,07, 1-T1? Mol byl

where E is the normalized essential matrlx and T=T /ITI the normalized translatlon
vector. Recovering the components of T from any row or column of the matrix £7 £
is now a simple matter. However, since each entry of the matrix ETE in (7.26) is
quadratic in the components of T, the estimated components might differ from the
true components by a global sign change: Let us assume, for the time being, that T has
been recovered with the proper global sign; then the rotation matrix can be obtained
by simple algebraic computations. We define

Using this normalization, (7.25) can be rewritten as

A

W; = Ei X T, (727)

withi =1,2,3 and l:ll» the three rows of the normalized essential matrix £, thought of as
3-D vectors. If R; are the rows of the rotation matrix R, again thought of as 3-D vectors,
easy but rather lengthy algebraic calculations yield

Ri=w; + Wi X Wi (728)

with the triplet (7, j k) spanning all Lyclic permutations of 1,2, 3)

cdmpute the third component of each point in t

(7.7) and (7.9), and since Z, = R; (P, — T), we obtain
) _HR®-T)
| R/ P -1

'Tﬂus, for the first component of p, we have

LR =T

T (7.29)
R, (P, —T)
Finally, plugging (7.8) into (7.29) with T = T, and solving for Z;,
T T
r - rR T i
7= f (frR1 — x,R3) [‘ (730)

We can recover the other coordinates of P; from (7.8), and the coordinates of P, from
the relation

P,=R(P, ~T. (7.31)
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1t turns out that only one of the four estimates of (T, R) yields geometrically consistent
(i.e., positive) Z; and Z, coordinates for all the points. The actions to take in order to
determine the correct solution are detailed in the box below, which summarizes the
entire algorithm.

Algorithm EUCLID_REC

The input is formed by a set of corresponding image points in camera coordinates, with p; and p;
a generic pair, and an estimate of the normalized essential matrix, £.

Recover T from (7.26).

Construct the vectors w from (7.27), and compute the rows of the matrix R through (7.28).
Reconstruct the Z; and Z, coordinates of each point using (7.30), (7.8) and (7.31).

If the signs of Z; and Z, of the reconstructed points are

Fal o

(a) both negative for some point, change the sign of T and go to step 3;

(b) one negative, one positive for some point, change the sign of each entry of E and go
to step 2;

(c) both positive for all points, exit.

The output is the set of reconstructed 3-D points (up to a scale factor).

w  When implementing EUCLID_REC, make sure that the algorithm does not go through
more than 4 iterations of steps 2-4 (since there are only 4 possible combinations for the
unknown signs of T and E). Keep in mind that, in the case of very small displacements,
the errors in the disparity estimates may be sufficient to make the 3-D reconstruction

~~._ inconsistent; when this happens, the algorithm keeps going through steps 2-4.

7.4.3 Reconstruction up to a Projective Transformation

“The aim of this section is to show that you can compute a 3-D reconstruction even in the

absence of any information on the intrinsic and extrinsic parameters. The price to pay is
that the reconstruction is unique only up to an unknown projective transformation of the
world. The Further Readings point you to methods for determining this transformation.

Assumptions and Problem Statement

Assuming that only n point correspondences are given, with n > 8 (and therefore the location of
the epipoles, e and €’), compute the location of the 3-D points from their projections, py and p,.

v Tt is worth noticing that, if no estimates of the intrinsic and extrinsic parameters arc
available and nonlinear deformations can be neglected, the accuracy of the reconstruction
is only affected by that of the algorithms computing the disparities, not by calibration.

The plan for this section is as follows. We show that, mapping five arbitrary scene
points into the standard projective basis of P3, and using the epipoles, the projection
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matrix of each camera can be explicitly recovered up to an unknown projective trans-
formation (the one associating the standard basis to the five points selected, which is
unknown as we do not know the location of the five 3-D points in camera coordinates).!0
Once the projection matrices are determined, the 3-D location of an arbitrary point in
space is obtained by triangulation in projective space. You can find the essential notions
of projective geometry needed to cope with all this in the Appendix, section A.4.

Determining the Projection Matrices. In order to carry out our plan, we intro-
duce a slight change of notation. In what follows, we drop the [ and r subscripts and
adopt the unprimed and primed letters to indicate points in the left and right images
respectively. In addition, capital letters now denote points in the projective space P3
(four coordinates), while small letters points in P? (three coordinates). The 3-D space
is regarded as a subset of P3, and each image plane as a subset of P2, This means
that we regard the 3-D point [X, ¥, Z]" of R® as the point [X, ¥, Z, 1|7 of P3, and a
point [x, y]" of R? as the point [x, y,1]" of P2 Let O and O’ denote the projection
centers.

We let Py, ..., P, be the points in P? to be recovered from their left and right
images, p1,. .., P, and pi, ..., p,,, and assume that, of the first five P; (P, Py, ... Ps),
no three are collinear and no four are coplanar.

We first show that, if we choose Py, Py, . . ., Psas the standard projective basis of P3
(see Appendix, section A.4), each projection matrix can be determined up to a projective
Jactor that depends on the location of the epipoles. Since a spatial projective transforma-

tion is fixed if the destiny of five points is known, we can, without losing generality,

set up a projective transformation that sends Py, P, . . . Ps into the standard projective
basis of P?, Py =[1,0,0,0]", P, =[0,1,0,0]", Py =[0,0,1,0]7, P, =[0,0,0,1]", and
Ps=[1,1,1,1]".

For the corresponding image points p; in the left camera, we can write

IWP[ = piPi> (732)

where M is the projection matrix and p; 5 0. Similarly, since a planar projective trans-
formation is fixed if the destiny of four points is known, we can also set up a projective
transformation that sends the first four p; into the standard projective basis of P2, that
i, pr=(10,007, po=(0,1,0)7, ps = (0,0,1)7, and pg = (1, 1, ). In what follows, it
is assumed that the coordinates of the fifth point, ps, of the epipole e, and of any other
image point, p;, are obtained applying this transformation to their old coordinates.

The purpose of all this is to simplify the expression of the projection matrix:
substituting Py, ..., P4 and py, ..., ps into (7.32), we see that the matrix M can be
rewritten as

p1 0 0 pg
M=10 p 0 p4]. (7.33)
0 0 p3 o4

0You should convince yourself that knowing the locations of the five points in the camera reference frame
amounts to camera calibration, which rather defeats the point of uncalibrated stereo.
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Let [«, B, |7 be the coordinates of ps in the standard basis; (7.32) with i = 5 makes it
possible to eliminate p1, p; and p3 from (7.33), obtaining

ops — P4 0 0 P4
M= 0 Bps — p4 0 P4 |- (7.34)
0 0 YPs = P4 P4

Finally, since a projection matrix is defined only up to a scale factor, we can divide each
entry of matrix (7.34) by p4, obtaining

ax—1 0 0 1
M= 0 Bx—1 0o 11. (7.35)
0 0 yx—1 1

where x = ps/pa. The projection matrix of the left camera has been determined up to the
unknown projective parameter x.

In order to determine x, it is useful to relate the entries of M to the coordinates
of the projection center, Q. This can be done by observing that M models a perspective
projection with O as projection center. Therefore, M projects every point of P3, with the
exception of O, into a point of P2, Since M has rank 3, the null space of M is nontrivial
and consists necessarily of O:

MO =0. (7.36)

Equation (7.36) can be solved for Oy, Oy and O;:

1 1 1 T
Om[l—ax’l—ﬁx’l—yx’ljl ' (7.37)

Corresponding relations and results can be obtained for the right camera (in the primed
reference frame). In particular, we can write

o'x' —1 0 0 1
M = 0 B'x' — 1 0 1
0 0 yix'—1 1
and
1 1 1 T
O = I .
l:l—«a/x”l—ﬁ/x”lwy’x” } (7.38)

Since the location of the epipoles is known, x and x’ (and hence the full projection
matrices and the centers of projection) can be determined from

MQ =oe (7.39)
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and
MO =qg'¢ (7.40)

with o 5 0 and o’ # 0.1}
Let’s see first what we can recover from (7.39). Substituting (7.35) and (7.38) into
(7.39), we obtain the following system of equations

o —o e, X oey
B =B Ple, x' =1 oe, (7.41)
v v ve ox’ oe;

Since o is unknown, system (7.41) is homogeneous and nonlinear in the three unknown
x, x', and o. However, we can regard it as a linear system in the unknown x,x"and ox/,
so that solving for o x’ we have

,__el(psxpl)
e R

axX =
vT(ps x p)

(7.42)

with v = (a/e,, B'ey, v'e,). Since e, Ps, ps, and v are known and the unknown factor o
cancels out, (7.42) actually determines x’.
A similar derivation applied to (7.40) yields

)T ’
r= o P XPs) T(ps i /5> (7.43)
v (ps x pg)

with v/ = (ael, Be,, ye,). Having determined both x and x’ we can regard both the
projection matrices and the centers of projections as completely determined.

Computing the Projective Reconstruction. We are now in a position to recon-

struct any point in P? given its corresponding image points, p = [p, p,, pZ]T and
T

p = [p(: j p;] - The reconstruction is unique up to the unknown projective trans-

formation fixed by the choice of Py, ..., Ps as the standard basis for P3. Observe that
the projective line / defined by

) T
20 + 1 [Oxpy, Oypy, O,p., o], (7.44)

with A, 4 € R and not both 0, goes through O (for A =1 and x = 0) and also through p,
since

O px

Oyp

MY <.
O.p; P
0

USince the epipoles and the centers of projection lie on a straight fine, (7.39) and (7.40) are not independent.
For the purpose of this brief introduction, however, this can be safely ignored.
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Similarly, the projective line I’
) /0/ + 7 0/ / O/ 7 Of / O T
N 12 » P ypy’ szs ’

with 2/, 1/ € R and not both 0, goes through O’ and p’. The projective point P can thus
be obtained by intersecting the two projective lines | and !'. This amounts to looking for
the non-trivial solution of the homogeneous system of linear equations
Or Oxpx —O;: —_0;[}; A
Oy, Oypy =0y —0yp} w
O,p, —0; —=0.p, A
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w  Once again, singular value decomposition U DV of the system matrix of (7.45) provides
a numerically stable procedure for solving this linear system: The solution is given by the
column of V associated with the smallest singular value along the diagonal of D.

Algorithm UNCAL_STEREO

The input is formed by n pairs of corresponding points, p; and pj, with i =, ..., nandn > 5, images
of n points, Py, . . ., P,,. We assume that, of the first five P; (P, P, ... Ps), no three are collinear
and no four are coplanar.

We assume to have estimated the location of the epipoles, e and ¢/, using EPIPOLES_
LOCATION. Let Py, . . ., Ps be the standard projective basis of P3. We assume the same notation
used throughout the section.

1. Determine the planar projective transformations 7 and 7' that map the p; and p; (i =
1,...,4) into the standard projective basis of P? on each image plane. Apply 7 to the p;
and the epipole e, and T” to the p; and the epipole ¢’ Let (e, 8, y) and (o', B/, y") be the
new coordinates of ps and pr. :

2. Determine x and x’ from (7.42) and (7.43).

3. Determine O and ©' from (7.37) and (7.38).

4. Given a pair of corresponding points p and p/, reconstruct the location of the point P in the
standard projective basis of P? using (7.44) with A and . nontrivial solution of (7.45).

The output is formed by the coordinates of Py, ..., Py in the standard projective basis.

Having found a projective reconstruction of our points, how do we go back to
Euclidean coordinates? If we know the location of Py, . . ., Ps in the world frame, we can
determine the projective transformation introduced at the beginning of this section that
mapped these five points, thought of as points of P?, into the standard projective basis
(see the Appendix, section A.4 for details on how to do it). The Further Readings point
to (nontrivial) algorithms for Euclidean reconstruction which relax this assumption, but
need more than two images.




