A Brief Review of Linear Algebra

1 STARTING DEFINITIONS

1.1 Matrix structure

Matrices are most often represented as rectangular arrays of scalars.! The m x n matrix A has m
rows and n columns. The subscript notation A; is used to reference the ith row of the matrix, and
A;; is used to reference the scalar in the ith row and jth column of A.

For example, A is a 2x3 matrix:

4 2 -5
A‘[1 0 —8]’ Aig = -5

A column vector (quite often referred to simply as a vector) is an n x 1 matrix, where n is referred
to as the dimension of the vector. The scalar v; is the ith element of vector v.

A matrix with the same number of rows and columns is, not surprisingly, referred to as a square
matriz. A commonly used notational convention is to use capital letters (i.e., A) to denote matrices
and lower case letters (i.e., v) to denote vectors.

1.2 DMatrix transpose
The transpose of m x n matrix A is denoted AT. AT is an n x m matrix whose elements are:
T
(A%)ij = Aji

The transpose of a column vector is called a row vector. An object twice transposed will produce
the original object: (AT)T = A.

1.3 Addition and multiplication

Adding two matrices A and B results in a matrix whose elements are the sums of the corresponding
elements from A and B:

If C=A+8B, then Cij = Aij + Bj;

n the examples presented, scalars will be real numbers, but in general they can be complex.



(A and B must have the same dimensions to be able to add them together.) Addition is commutative
and associative, just like regular addition.

A matrix A multiplied by a scalar k£ produces a new B = kA whose elements are the elements of

A each multiplied by k. Multiplying two matrices together is more complicated: multiplying m x n
matrix A by n X p matrix B produces an m x p matrix C = AB whose elements are defined to be:

If C= AB, then Cik = ZAiijk

Jj=1

In this example, a 4 x 2 matrix is multiplied by a 2 x 3 matrix to produce a 4 x 3 matrix:

2 3 17 1 9
4 0|1 20]_| 428 o0
3 -2 {5 -1 3}_ -7 8 —6
5 1 10 9 3

Note that matrix multiplication can only be performed between two matrices A and B if A has
exactly as many columns as B has rows.

Like ordinary multiplication, matrix multiplication is associative and distributive, but unlike ordi-
nary multiplication, it is not commutative:

e AB # BA, in general

From the definitions of multiplication and transpose, we derive the following identity:

(AB)T = BTAT

1.4 Inner product

The inner product (also known as the dot product) of n-dimensional vectors x and y is defined as
xT'y which is a scalar?. By our definitions of matrix transpose and matrix multiplication, this means
that the inner product is the sum of the products of corresponding elements from the two vectors:

n
x'y = Z TilYi
i=1

If the inner product of two vectors is zero, they are said to be orthogonal, which has the usual
geometric connotation of perpendicularity.

1.5 Square matrices

The diagonal of an n X n square matrix A are the elements A;; running diagonally from the top
left corner to the bottom right. A diagonal matriz is a matrix which has zeroes everywhere off the
diagonal.

2When working with complex vectors, we use the inner product x*y, which returns a real value when y = x. x*
is the complex conjugate of the transpose of x. The complex conjugate X has Re[T;] = Re[z;] and Im[Z;] = —Im][z;].



The symbol I is reserved for a particular diagonal matrix known as the identity matriz, which has
ones along its diagonal and zeroes elsewhere. It is the multiplicative identity for matrix multiplication
of square matrices. In other words, given any n X n square matrix A, it has the following property:
AI=TA = A.

The n x n square matrix A is called invertible if there exists a matrix denoted A~' which statisfies:
AAT'=ATA=1

If A=! exists, it is called the inverse matriz. If A~ does not exist, A is called a singular matrix.

The inverse of the inverse matrix is simply the original matrix.

e Show that (AT)~! = (A—1)T

e Show that (AB) ! =B 1A!

All square matrices have a particular scalar value associated with them, known as the determinant,
which is written as
det A = |A]

For two dimensions, the formula for calculating the determinant is simple:

‘ A iz g A, — A A

A21 A22

In general, the algebraic formula for determinants is more complicated, but there is a simple and very
useful recursive definition (which you can look up in any linear algebra book). For your amusement,
the algebraic formula for the determinant of an n x n matrix can be summarized as

|A| = sign(0)Are, Azg, - - Ane,

where the sum is over all n! permutations of (1...n), and sign(o) is +1 if o is an even permutation,
else —1 if o is an odd permutation®. Happily, determinants can be quite useful even without calcu-
lating them. A few facts about determinants include |AB| = |A| |B|, and that if the determinant
of a matrix is zero, the matrix is singular, which we’ll use below.

2 EIGENVALUES AND EIGENVECTORS
A simple way to find if a matrix A is invertible or not is to find its determinant, since
detA=0 if and only if A is not invertible

If A is invertible, the only x satisfying Ax = 0 is x = 0 (why?). On the other hand, if A is not
invertible, there can be interesting non-zero solutions for x.

3 Even and odd refer to how many swaps of adjacent elements are required to transform (1...n) into . For n = 3,
the even permutations are {(1 2 3),(23 1),(3 1 2)}.



¢ Find a condition for which the equation
Ax =)Xx
(X a scalar) has interesting non-zero solutions for x.

e Use this condition to write an equation that A must satisfy in order to get non-zero solutions to
the following equation:
5 -1 T . T
3R] (5] g

Solve the equation you got for A. You will get two possible values. Using one of them, find values
for z; and x that satisfy equation (1).

Note that if x satisfies Ax = Ax, so does ax. So you won’t be able to solve for a unique x1 and x=,
just for the direction that x should lie in. That direction is called the eigenvector direction, and all
vectors parallel to it are eigenvectors with the same eigenvalue.

e Now use the other A to find the other eigenvector direction.

To restate, if x # 0 and Ax = Ax then A is an eigenvalue of A and x is an eigenvector of A with
eigenvalue \.

For larger square matrices, we can find eigenvalues and eigenvectors using the same approach you
used for the 2x 2 matrix. First, we look for values of A such that A — I\ is singular, i.e., |[A — I\ =0.
Using the formula for determinants, this leads to a polynomial of degree n, which is called the
characteristic polynomial of A. You will recall from algebra that every polynomial of degree n has
exactly n (not necessarily distinct) complex roots (some of which may be real, of course). Therefore,
every matrix A has exactly n (not necessarily distinct and possibly complex) eigenvalues. Once the
eigenvalues are known, the eigenvectors can be determined.

e Find a matrix A for which 0 is an eigenvalue, and find all the eigenvectors.

T

A common convention is to chose eigenvectors to be unit vectors?, i.e. xTx = 1.

2.1 Some words about eigenvalues

If you write the eigenvector directions as column vectors and put them side by side, you get a new
matrix— call it E. Convince yourself that since the columns of E are eigenvectors, the following is
true:

B A O
ap-p [} 0]

where A; is the first column’s eigenvalue, and Az is the second column’s eigenvalue We can multiply
on the right by E~! (assuming E is invertible) to get

— . >\1 0 .71
A=E { 0 )\2} E

This expression helps us describe the true significance of the matrix A, and why eigenvalues are so
important.

41f the eigenvectors are complex, there is no obvious way to find a unique representation for the eigenvector by
normalizing, since an eigenvector multiplied by any complex number is still an eigenvector, with the same eigenvalue.
For convenience one can set x*x = 1.



Multiplying on the left by A is the same as performing the following sequence of operations:

1. first multiplying by E~!. Think of this as doing a linear change of coordinates. That is, we
change coordinates to some special coordinate system.

At O
0 X
multiply with, since the coordinates don’t mix! We can easily visualize what is going on: the
first coordinate gets stretched (or squeezed) by A1, the second by As.

2. In that coordinate system, multiply by [ . But this is a particularly easy matrix to

3. Then go back to your original coordinates, by multiplying by the inverse of E~!, namely E.

That is, there is some special coordinate system in which multiplying by A just stretches the two
coordinates independently. Clearly this is the natural coordinate system for the problem, the one
we want to be thinking in. Many times it is enough to know the eigenvalues: we know we could
always transform the problem into the special system if we wanted to. We just pretend that we’ve
already done the transformation.

This illustrates a very important concept that cannot be stressed enough: the real guts of a matrix,
what it really does, don’t depend on what coordinate system we use to describe it. Here, if A is a
positive definite matrix, then E is an orthonormal matrix and represents simply a rotation.®> Who
cares if we rotate coordinates around? They’re our coordinates, not the physical problem’s. The
eigenvalues are what really matter.

e Find the eigenvalues and eigenvectors of the following two matrices:

10 2 2
{ ;) :f ] and 2 22 =5
2 =5 22

The arguments we used above all rely on our casual assumption that E is invertible. This is usually
an acceptable assumption to make, for the sorts of matrices commonly encountered in neural network
theory. But it can be helpful to have some understanding of the other possibilities.®

2.2 Some more useful facts about eigenvectors
In the following, assume when necessary that E is invertible, with eigenvectors e; ...e, and corre-
sponding eigenvalues A; ... \,.

e If C has eigenvectors and eigenvalues {e;, A;}, then the matrix B = C — 4I has eigenvectors and
eigenvalues {e;, \; —7}.

o If C is a real symmetric matrix, (i.e. C;; = Cj;), then all the eigenvalues of C are real. We can
also choose all the eigenvectors to be real. 7

5Positive definite matrix: a matrix M such that x7Mx > 0 for all non-zero x. Orthonormal matrix: One where
MTM = I. The important point is that if these conditions are satisfied, the matrix E is just a coordinate rotation
and/or a reflection. (Though reflections aren’t properly rotations, we almost always include them when we say,
abusing notation, “rotation matrix”.

6 A quick summary: Suppose the n (possibly complex) eigenvalues of M are distinct. Then to each eigenvalue there
is a unique (up to multiplication by a complex number) eigenvector, and all the eigenvectors are linearly independent
(i.e. they span C\). Now suppose there are m eigenvalues with the same value A. In this case, unfortunately, there
might not be m linearly independent eigenvectors all with the same eigenvalue A, in which case E must be singular.
In both these cases, there is nothing special about the eigenvalue 0 — the issue is only whether an eigenvalue is a
multiple root of the characteristic polynomial.

"Hint: Start with a potentially complex eigenvalue X and its potentially complex eigenvector x, satisfying Cx = Ax.



e If C is a real symmetric matrix, any two eigenvectors of C with different eigenvalues are orthog-
onal. 8

e Let be x a random vector, and define the cross correlation matrix:
Cij = (wiz;)

that is, the ¢jth component of C is the expected value (i.e. mean value) of the product z;z;. C is
symmetric, and all its eigenvalues are positive, i.e., A\; > 0. ?

Think about the vector defined by the row of intensities in one horizontal line on a television screen.
What do you think the cross correlation matrix C of that vector looks like, averaged over many
pictures? What do you think the principal eigenvector of C looks like? (The principal eigenvector
is the one with largest eigenvalue.) What about the next few principal components? °

e We can express a vector w in terms of the complete orthonormal set of eigenvectors e;:
w = E w;ie;
i
where w; = w’e;. The w; are the components of w in the eigenvector basis.

e If Cw = b, we can write an explicit solution for w = C~'b in terms of b and {e;, \;} (assuming
all \; > 0):

3 LINEAR DIFFERENTIAL EQUATIONS

The simplest linear differential equation is the one variable equation

dx
>
a "
where ) is a scalar.

e Confirm for yourself that its solution is an exponential,

z(t) = z(0)eM (2)

where :(0) is the initial condition. Clearly, z = 0 is a fixed point of this equation since then & = 0,
that is, # stays put.'! We can ask about the stability of this fixed point: if we were to add a little

By convention, we’ve chosen a unit eigenvector (why can we always do this?) so x*x = 1. Combine these two equations
and C* = C to show that A* = X\. We now need to show that x is real; look at what C does to the real and imaginary
components of x independently.

8Hint: if x; and xy are eigenvectors with eigenvalues A1 and A2, use the definition of an eigenvector to show that
x?xz = i—;x?xz, or something similar.

9Hint: to prove that all \; > 0, it is sufficient to show that yZ'Cy > 0 for any vector y.

10Hint 1: The cross correlation matrix has to be all positive, if the pixel intensities are positive. It is plausible that
the correlation between two pixels should just be a function of their separation, so that the matrix should have a
banded symmetrical appearance. (A matrix for which C;; = ¢(i—j) is called a Toeplitz matrix.) The correlation must
be biggest on the diagonal because a pixel is most correlated with itself. Away from the diagonal, the correlations
must get smaller, but not necessarily monotonically.

Hint 2: The principal eigenvector of an all-positive matrix must be an all-positive vector. Imagine multiplying a
not quite all-positive vector repeatedly by C, and think what happens to it; repeated multiplication yields a vector
looking more and more like the principal eigenvector. Think of a monotonic Toeplitz C and you should confirm that
this vector must end up looking like a symmetrical hump.

Hint 3: What is the next thing to having no changes of sign in a vector?

. . . . . . . 2
114 is a notational variant of ’fi—“t” and Z is a notational variant of ‘fiT;”.



disturbance to x, would z return to the fixed point, or would it shoot off in some direction? The
stability of fixed points is of great practical importance in a world full of natural small random
disturbances. For example, the bottom of a spherical bowl is a stable fixed point: fruit stays down
there. But the top of a glass sphere is an unstable fixed point: we could very carefully balance an
apple on top of it — but any small disturbance, and the apple will fall off.

e For ‘fi—”f = Az, convince yourself that = 0 is a stable fixed point if A < 0 and is unstable if A > 0.

The phrasing and solution to the above problem assume A is real. What if A is complex? Convince
yourself that equation 2 still holds. The imaginary part of A just represents an oscillation (e =
coswt + i sinwt). So the condition above, to be completely general, should really read “stable fixed
point if the real part of A < 0, unstable if the real part of A > 0”. What happens if the real part of
A = 0 exactly?

Now consider the following equation:
I =—yT —wz

One of the nice things about linear differential equations is that we can always take a single n-th
order equation and turn it into n coupled first-order equations by rewriting some of the variables.
So we define 1 =&, 2 =, to get the equivalent equations

EINERIIH

e Convince yourself that these equations indeed represent the same system.

You will have noticed that we already wrote this down in matrix form. We will now get a chance
to use what we saw in section 2. Call the vector on the left x, the matrix on the right hand side A,
and the vector on the right hand side x, so the equation is x = Ax.

We said that we can find special coordinates where our matrix doesn’t mix coordinates (that is, it
is a diagonal matrix). Suppose that we find matrices E and A, where A is a diagonal matrix that
holds the eigenvalues, such that A = EAE~!, as in section 2.1. Then

x =EAE 'x

Multiplying on the left by E~!, and remembering that as a linear operation in commutes with
differentiation by time, we get

doo1 —1
E(E x) = A(E™ x)

Let’s just say that we define new coordinates x' = E~'x. Then we get an equation that looks like
56,1 — )\1 0 .Tll
xh 0 A 5

But this is just two completely sparate equations, each one in the simple single-variable form we saw
at the beginning of this section! We know how to solve that, and how to know whether their fixed
point is stable; and since these equations are the same as our original ones (simply represented in
different coordinates), if these are stable so are the original ones, and vice-versa.

HMEERiE

is the fixed-point (0,0) stable or unstable? Why? You need to consider both equations at once.

e In the following system,



e In equation 3, if v = 3 and w = 1, is (0,0) stable or unstable?
e How about if v =2 and w = 27

Note that the fixed point doesn’t always has to be at (0,0). We just put it there in these examples
for simplicity. The eigenvalue analysis still holds, however.

4 THE TRACE IS THE SUM OF THE EIGENVALUES

Take an n by n matrix A. Then
is called the Trace of A. Let Ay,..., A, be the eigenvalues of A, with corresponding eigenvectors

er,...,e,. Then Tr A =}, \;. We will show this below in two ways.

First note what this means for dynamical systems: if the matrix that describes the linearization
about a given fixed point of the dynamics has Trace equal to zero, then either (1) all its eigenvalues
have zero real part; or (2) some have a negative real part and some have a positive real part. In the
second (more usual) case, therefore, the fixed point is a saddle and is unstable.

Method 1 (easy but not beautiful)

Tr (AB)=> > A4;Bj

i

simply from the definition of matrix multiplication. The order in which we do the sums doesn’t
matter, however, so we can quickly see that

Tr (AB) =) > AyBji=)_ ) Bjidy=Tr (BA)

J Jj o
that is, Trace is commutative.
Now recall (if necessary from the basic math class) that A can be written as
A =EAE™!
where the columns of E are the eigenvectors of A and A is a diagonal matrix with the eigenvalues
of A as its diagonal elements. (We have assumed E is invertible.) Then

Tt A=Tr (EAE™!) =Tr (EA)E™") =Tr (E7(EA)) =Tr (ET'E)A) =Tr A

This last is just the sum of the eigenvalues.

Method 2 (much more interesting concepts here)

Recall that for any square matrix the eigenvalues are found by obtaining the solutions to the char-
acteristic polynomial:
det(A —AI) =0



Suppose, for example, that A is a 2-by-2 matrix. Then we end up with a quadratic, something like

MN4tar+4=0

Now we make an interesting statement: the matriz A satisfies the same characteristic polynomial
as its eigenvalues. In the example above, this means that

A?+aA+3=0 (4)

To see this, suppose the eigenvectors of A span the entire space . (That is, there are n of them and
they are linearly independent— equivalent to the condition that E be invertible in method 1 above.)
Then any vector v can be represented as a sum of the eigenvectors times some linear coefficients:

V=), cie

Multiply the left hand side of equation (4) above on the right by v to get

(AZ +OéA+ﬂ) (Zciei> :ZCZ(A2+OKA+ﬂ)eZ
= Zciei (A +a); + B)

=0 (5)

since A? + a); + 3 = 0 for every \;. (Remember, the e; are eigenvectors.) Hence the left hand side
of equation 4, multiplied by any vector, always gives zero. This necessarily means that (4) is true.

Ok, now we know that (4) is true. What does this tell us about A? Well, it describes A in terms
of what it does; that is, in terms of how it operates. A is a linear operator (it operates on vectors,
transforming them to new vectors)— and when you apply it twice, add « times applying it once,
and add (3 times the vector you started from, you get zero.

This tells us about A without making any reference to the matrix representation of A, or to the
coordinates A might be described in. So if we were to rotate, or change coordinates, so that the
matrix representation of A were to change, this wouldn’t change (4). The characteristic polynomial
is invariant to coordinate transformations of the form TAT™'. That is, the coefficients in the
polynomial will not change.

Since TAT ™! is precisely the form of the transformation used to diagonalize A, we know that the
characteristic polynomial is invariant under diagonalization.

Thinking of matrices as representation-independent operators is a very powerful concept. Let’s use
it now, and move in for the kill with respect to Trace being sum of eigenvalues.

Define Trace as (minus the second coefficient) of the characteristic polynomial.'? In the example
above, say, this would be —a. Trace is then clearly the sum of diagonal terms (because of how
det(A — AI) is calculated), whatever representation A is in. And if we choose the representation
that diagonalizes A, this is the sum of the eigenvalues. QED.

Another fun one is that the product of the diagonal entries in a square matrix is always just the
product of the eigenvalues.

2For n by n matrices I mean by second coefficient the constant that multiplies A»~!; and we choose as sign
convention that the A™ term in the polynomial be positive.



