
A Brief Review of Linear Algebra

� STARTING DEFINITIONS

��� Matrix structure

Matrices are most often represented as rectangular arrays of scalars�� The m � n matrix A has m
rows and n columns� The subscript notation Ai is used to reference the ith row of the matrix� and
Aij is used to reference the scalar in the ith row and jth column of A�

For example� A is a ��� matrix�

A �

�
� � �	

 � ��

�
� A�� � �	

A column vector quite often referred to simply as a vector� is an n� 
 matrix� where n is referred
to as the dimension of the vector� The scalar vi is the ith element of vector v�

A matrix with the same number of rows and columns is� not surprisingly� referred to as a square

matrix� A commonly used notational convention is to use capital letters i�e�� A� to denote matrices
and lower case letters i�e�� v� to denote vectors�

��� Matrix transpose

The transpose of m� n matrix A is denoted AT � AT is an n�m matrix whose elements are�

AT �ij � Aji

The transpose of a column vector is called a row vector� An object twice transposed will produce
the original object� AT �T � A�

��� Addition and multiplication

Adding two matrices A and B results in a matrix whose elements are the sums of the corresponding
elements from A and B�

If C � A �B� then Cij � Aij � Bij

�In the examples presented� scalars will be real numbers� but in general they can be complex�



A and B must have the same dimensions to be able to add them together�� Addition is commutative
and associative� just like regular addition�

A matrix A multiplied by a scalar k produces a new B � kA whose elements are the elements of
A each multiplied by k� Multiplying two matrices together is more complicated� multiplying m� n

matrix A by n� p matrix B produces an m� p matrix C � AB whose elements are de�ned to be�

If C � AB� then Cik �

nX
j��

AijBjk

In this example� a � � � matrix is multiplied by a � � � matrix to produce a � � � matrix�
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Note that matrix multiplication can only be performed between two matrices A and B if A has
exactly as many columns as B has rows�

Like ordinary multiplication� matrix multiplication is associative and distributive� but unlike ordi�
nary multiplication� it is not commutative�

� AB �� BA� in general

From the de�nitions of multiplication and transpose� we derive the following identity�

AB�T � BTAT

��� Inner product

The inner product also known as the dot product� of n�dimensional vectors x and y is de�ned as
xTy which is a scalar�� By our de�nitions of matrix transpose and matrix multiplication� this means
that the inner product is the sum of the products of corresponding elements from the two vectors�

xTy �

nX
i��

xiyi

If the inner product of two vectors is zero� they are said to be orthogonal� which has the usual
geometric connotation of perpendicularity�

��� Square matrices

The diagonal of an n � n square matrix A are the elements Aii running diagonally from the top
left corner to the bottom right� A diagonal matrix is a matrix which has zeroes everywhere o� the
diagonal�

�When working with complex vectors� we use the inner product x�y� which returns a real value when y � x� x�

is the complex conjugate of the transpose of x� The complex conjugate x has Re�xi� � Re�xi� and Im�xi� � �Im�xi��

�



The symbol I is reserved for a particular diagonal matrix known as the identity matrix� which has
ones along its diagonal and zeroes elsewhere� It is the multiplicative identity for matrix multiplication
of square matrices� In other words� given any n� n square matrix A� it has the following property�
AI � IA � A�

The n�n square matrix A is called invertible if there exists a matrix denoted A�� which statis�es�

AA�� � A��A � I

If A�� exists� it is called the inverse matrix� If A�� does not exist� A is called a singular matrix�
The inverse of the inverse matrix is simply the original matrix�

� Show that AT ��� � A���T

� Show that AB��� � B��A��

All square matrices have a particular scalar value associated with them� known as the determinant�
which is written as

det A � jAj

For two dimensions� the formula for calculating the determinant is simple�

				 A�� A��

A�� A��

				 � A��A�� �A��A��

In general� the algebraic formula for determinants is more complicated� but there is a simple and very
useful recursive de�nition which you can look up in any linear algebra book�� For your amusement�
the algebraic formula for the determinant of an n� n matrix can be summarized as

jAj �
X
�

sign��A���A��� � � � An�n

where the sum is over all n� permutations of 
 � � � n�� and sign�� is �
 if � is an even permutation�
else �
 if � is an odd permutation�� Happily� determinants can be quite useful even without calcu�
lating them� A few facts about determinants include jABj � jAj jBj� and that if the determinant
of a matrix is zero� the matrix is singular� which we�ll use below�

� EIGENVALUES AND EIGENVECTORS

A simple way to �nd if a matrix A is invertible or not is to �nd its determinant� since

detA � � if and only if A is not invertible

If A is invertible� the only x satisfying Ax � � is x � � why��� On the other hand� if A is not

invertible� there can be interesting non�zero solutions for x�

�
Even and odd refer to how many swaps of adjacent elements are required to transform �� � � � n	 into �� For n � 
�

the even permutations are f�� � 
	� �� 
 �	� �
 � �	g�
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� Find a condition for which the equation

Ax � �x

� a scalar� has interesting non�zero solutions for x�

� Use this condition to write an equation that � must satisfy in order to get non�zero solutions to
the following equation� �

	 �

�� �

� �
x�
x�

�
� �

�
x�
x�

�

�

Solve the equation you got for �� You will get two possible values� Using one of them� �nd values
for x� and x� that satisfy equation 
��

Note that if x satis�es Ax � �x� so does �x� So you won�t be able to solve for a unique x� and x��
just for the direction that x should lie in� That direction is called the eigenvector direction� and all
vectors parallel to it are eigenvectors with the same eigenvalue�

� Now use the other � to �nd the other eigenvector direction�

To restate� if x �� � and Ax � �x then � is an eigenvalue of A and x is an eigenvector of A with
eigenvalue ��

For larger square matrices� we can �nd eigenvalues and eigenvectors using the same approach you
used for the ��� matrix� First� we look for values of � such that A� I� is singular� i�e�� jA� I�j � ��
Using the formula for determinants� this leads to a polynomial of degree n� which is called the
characteristic polynomial of A� You will recall from algebra that every polynomial of degree n has
exactly n not necessarily distinct� complex roots some of which may be real� of course�� Therefore�
every matrix A has exactly n not necessarily distinct and possibly complex� eigenvalues� Once the
eigenvalues are known� the eigenvectors can be determined�

� Find a matrix A for which � is an eigenvalue� and �nd all the eigenvectors�

A common convention is to chose eigenvectors to be unit vectors�� i�e� xTx � 
�

��� Some words about eigenvalues

If you write the eigenvector directions as column vectors and put them side by side� you get a new
matrix� call it E� Convince yourself that since the columns of E are eigenvectors� the following is
true�

AE � E �

�
�� �
� ��

�

where �� is the �rst column�s eigenvalue� and �� is the second column�s eigenvalue We can multiply
on the right by E�� assuming E is invertible� to get

A � E �

�
�� �
� ��

�
�E��

This expression helps us describe the true signi�cance of the matrix A� and why eigenvalues are so
important�

�If the eigenvectors are complex� there is no obvious way to �nd a unique representation for the eigenvector by
normalizing� since an eigenvector multiplied by any complex number is still an eigenvector� with the same eigenvalue�
For convenience one can set x�x � ��

�



Multiplying on the left by A is the same as performing the following sequence of operations�


� �rst multiplying by E��� Think of this as doing a linear change of coordinates� That is� we
change coordinates to some special coordinate system�

�� In that coordinate system� multiply by

�
�� �
� ��

�
� But this is a particularly easy matrix to

multiply with� since the coordinates don�t mix� We can easily visualize what is going on� the
�rst coordinate gets stretched or squeezed� by ��� the second by ���

�� Then go back to your original coordinates� by multiplying by the inverse of E��� namely E�

That is� there is some special coordinate system in which multiplying by A just stretches the two
coordinates independently� Clearly this is the natural coordinate system for the problem� the one
we want to be thinking in� Many times it is enough to know the eigenvalues� we know we could
always transform the problem into the special system if we wanted to� We just pretend that we�ve
already done the transformation�

This illustrates a very important concept that cannot be stressed enough� the real guts of a matrix�
what it really does� don�t depend on what coordinate system we use to describe it� Here� if A is a

positive de�nite matrix� then E is an orthonormal matrix and represents simply a rotation�� Who
cares if we rotate coordinates around� They�re our coordinates� not the physical problem�s� The
eigenvalues are what really matter�

� Find the eigenvalues and eigenvectors of the following two matrices�

�

 �
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�
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�
� 
� � �

� �� �	
� �	 ��

�
�

The arguments we used above all rely on our casual assumption that E is invertible� This is usually
an acceptable assumption to make� for the sorts of matrices commonly encountered in neural network
theory� But it can be helpful to have some understanding of the other possibilities��

��� Some more useful facts about eigenvectors

In the following� assume when necessary that E is invertible� with eigenvectors e� � � �en and corre�
sponding eigenvalues �� � � � �n�

� If C has eigenvectors and eigenvalues fei� �ig� then the matrix B � C� �I has eigenvectors and
eigenvalues fei� �i � �g�

� If C is a real symmetric matrix� i�e� Cij � Cji�� then all the eigenvalues of C are real� We can
also choose all the eigenvectors to be real� �

�Positive de�nite matrix a matrix M such that xTMx � � for all non�zero x� Orthonormal matrix One where
MTM � I� The important point is that if these conditions are satis�ed� the matrix E is just a coordinate rotation
and�or a re�ection� �Though re�ections aren�t properly rotations� we almost always include them when we say�
abusing notation� �rotation matrix��

�A quick summary Suppose the n �possibly complex	 eigenvalues ofM are distinct� Then to each eigenvalue there
is a unique �up to multiplication by a complex number	 eigenvector� and all the eigenvectors are linearly independent
�i�e� they span Cn	� Now suppose there are m eigenvalues with the same value �� In this case� unfortunately� there
might not be m linearly independent eigenvectors all with the same eigenvalue �� in which case E must be singular�
In both these cases� there is nothing special about the eigenvalue � � the issue is only whether an eigenvalue is a
multiple root of the characteristic polynomial�

�Hint Start with a potentially complex eigenvalue � and its potentially complex eigenvector x� satisfyingCx � �x�

	



� If C is a real symmetric matrix� any two eigenvectors of C with di�erent eigenvalues are orthog�
onal� 	

� Let be x a random vector� and de�ne the cross correlation matrix�

Cij � hxixji

that is� the ijth component of C is the expected value i�e� mean value� of the product xixj � C is
symmetric� and all its eigenvalues are positive� i�e�� �i � �� 


Think about the vector de�ned by the row of intensities in one horizontal line on a television screen�
What do you think the cross correlation matrix C of that vector looks like� averaged over many
pictures� What do you think the principal eigenvector of C looks like� The principal eigenvector
is the one with largest eigenvalue�� What about the next few principal components� ��

� We can express a vector w in terms of the complete orthonormal set of eigenvectors ei�

w �
X
i

�iei

where �i � wT ei� The �i are the components of w in the eigenvector basis�

� If Cw � b� we can write an explicit solution for w � C��b in terms of b and fei� �ig assuming
all �i 	 ���

C�� �
X
i

eTi � b�

�i
ei

� LINEAR DIFFERENTIAL EQUATIONS

The simplest linear di�erential equation is the one variable equation

dx

dt
� �x

where � is a scalar�

� Con�rm for yourself that its solution is an exponential�

xt� � x��e�t ��

where x�� is the initial condition� Clearly� x � � is a �xed point of this equation since then �x � ��
that is� x stays put��� We can ask about the stability of this �xed point� if we were to add a little

By convention� we�ve chosen a unit eigenvector �why can we always do this�	 so x�x � �� Combine these two equations
and C� � C to show that �� � �� We now need to show that x is real� look at what C does to the real and imaginary
components of x independently�

�Hint if x� and x� are eigenvectors with eigenvalues �� and ��� use the de�nition of an eigenvector to show that
xT
�
x� � ��

��
xT
�
x�� or something similar�

	Hint to prove that all �i � �� it is su�cient to show that yTCy � � for any vector y�
�
Hint � The cross correlation matrix has to be all positive� if the pixel intensities are positive� It is plausible that

the correlation between two pixels should just be a function of their separation� so that the matrix should have a
banded symmetrical appearance� �A matrix for which Cij � c�i�j	 is called a Toeplitz matrix�	 The correlation must
be biggest on the diagonal because a pixel is most correlated with itself� Away from the diagonal� the correlations
must get smaller� but not necessarily monotonically�
Hint � The principal eigenvector of an all�positive matrix must be an all�positive vector� Imagine multiplying a

not quite all�positive vector repeatedly by C� and think what happens to it� repeated multiplication yields a vector
looking more and more like the principal eigenvector� Think of a monotonic Toeplitz C and you should con�rm that
this vector must end up looking like a symmetrical hump�
Hint 
 What is the next thing to having no changes of sign in a vector�
�� �x is a notational variant of dx

dt
and �x is a notational variant of d�x

dt�
�

�



disturbance to x� would x return to the �xed point� or would it shoot o� in some direction� The
stability of �xed points is of great practical importance in a world full of natural small random
disturbances� For example� the bottom of a spherical bowl is a stable �xed point� fruit stays down
there� But the top of a glass sphere is an unstable �xed point� we could very carefully balance an
apple on top of it � but any small disturbance� and the apple will fall o��

� For dx
dt

� �x� convince yourself that x � � is a stable �xed point if � 
 � and is unstable if � 	 ��

The phrasing and solution to the above problem assume � is real� What if � is complex� Convince
yourself that equation � still holds� The imaginary part of � just represents an oscillation eiwt �
coswt� i sinwt�� So the condition above� to be completely general� should really read �stable �xed
point if the real part of � 
 �� unstable if the real part of � 	 ��� What happens if the real part of
� � � exactly�

Now consider the following equation�
�x � �� �x� �x

One of the nice things about linear di�erential equations is that we can always take a single n�th
order equation and turn it into n coupled �rst�order equations by rewriting some of the variables�
So we de�ne x� � �x� x� � x� to get the equivalent equations�

�x�
�x�

�
�

�
�� ��

 �

� �
x�
x�

�
��

� Convince yourself that these equations indeed represent the same system�

You will have noticed that we already wrote this down in matrix form� We will now get a chance
to use what we saw in section �� Call the vector on the left �x� the matrix on the right hand side A�
and the vector on the right hand side x� so the equation is �x � Ax�

We said that we can �nd special coordinates where our matrix doesn�t mix coordinates that is� it
is a diagonal matrix�� Suppose that we �nd matrices E and �� where � is a diagonal matrix that
holds the eigenvalues� such that A � E�E��� as in section ��
� Then

�x � E�E��x

Multiplying on the left by E��� and remembering that as a linear operation in commutes with
di�erentiation by time� we get

d

dt
E��x� � �E��x�

Let�s just say that we de�ne new coordinates x� � E��x� Then we get an equation that looks like�
�x�
�

�x�
�

�
�

�
�� �
� ��

� �
x��
x��

�

But this is just two completely sparate equations� each one in the simple single�variable form we saw
at the beginning of this section� We know how to solve that� and how to know whether their �xed
point is stable and since these equations are the same as our original ones simply represented in
di�erent coordinates�� if these are stable so are the original ones� and vice�versa�

� In the following system� �
�x�
�x�

�
�

�
�� �
� �

� �
x�
x�

�
is the �xed�point ���� stable or unstable� Why� You need to consider both equations at once�

�



� In equation �� if � � � and � � 
� is ���� stable or unstable�

� How about if � � � and � � ��

Note that the �xed point doesn�t always has to be at ����� We just put it there in these examples
for simplicity� The eigenvalue analysis still holds� however�

� THE TRACE IS THE SUM OF THE EIGENVALUES

Take an n by n matrix A� Then

Tr A �
X
i

Aii

is called the Trace of A� Let ��� � � � � �n be the eigenvalues of A� with corresponding eigenvectors
e�� � � � � en� Then Tr A �

P
i �i� We will show this below in two ways�

First note what this means for dynamical systems� if the matrix that describes the linearization
about a given �xed point of the dynamics has Trace equal to zero� then either 
� all its eigenvalues
have zero real part or �� some have a negative real part and some have a positive real part� In the
second more usual� case� therefore� the �xed point is a saddle and is unstable�

Method � �easy but not beautiful�

Tr AB� �
X
i



�X

j

AijBji

�
A

simply from the de�nition of matrix multiplication� The order in which we do the sums doesn�t
matter� however� so we can quickly see that

Tr AB� �
X
j

X
i

AijBji �
X
j

X
i

BjiAij � Tr BA�

that is� Trace is commutative�

Now recall if necessary from the basic math class� that A can be written as

A � E�E��

where the columns of E are the eigenvectors of A and � is a diagonal matrix with the eigenvalues
of A as its diagonal elements� We have assumed E is invertible�� Then

Tr A � Tr E�E��� � Tr E��E��� � Tr E��E��� � Tr E��E��� � Tr �

This last is just the sum of the eigenvalues�

Method � �much more interesting concepts here�

Recall that for any square matrix the eigenvalues are found by obtaining the solutions to the char�
acteristic polynomial�

detA� �I� � �

�



Suppose� for example� that A is a ��by�� matrix� Then we end up with a quadratic� something like

�� � �� � � � �

Now we make an interesting statement� the matrix A satis�es the same characteristic polynomial

as its eigenvalues� In the example above� this means that

A� � �A � � � � ��

To see this� suppose the eigenvectors of A span the entire space �n� That is� there are n of them and
they are linearly independent� equivalent to the condition that E be invertible in method 
 above��
Then any vector v can be represented as a sum of the eigenvectors times some linear coe!cients�
v �

P
i ciei�

Multiply the left hand side of equation �� above on the right by v to get

A� � �A � ��

X
i

ciei

�
�
X
i

ci A� � �A � �� ei

�
X
i

ciei ��i � ��i � ��

� � 	�

since ��i � ��i � � � � for every �i� Remember� the ei are eigenvectors�� Hence the left hand side
of equation �� multiplied by any vector� always gives zero� This necessarily means that �� is true�

Ok� now we know that �� is true� What does this tell us about A� Well� it describes A in terms
of what it does that is� in terms of how it operates� A is a linear operator it operates on vectors�
transforming them to new vectors�� and when you apply it twice� add � times applying it once�
and add � times the vector you started from� you get zero�

This tells us about A without making any reference to the matrix representation of A� or to the
coordinates A might be described in� So if we were to rotate� or change coordinates� so that the
matrix representation of A were to change� this wouldn�t change ��� The characteristic polynomial

is invariant to coordinate transformations of the form TAT��� That is� the coe!cients in the
polynomial will not change�

Since TAT�� is precisely the form of the transformation used to diagonalize A� we know that the
characteristic polynomial is invariant under diagonalization�

Thinking of matrices as representation�independent operators is a very powerful concept� Let�s use
it now� and move in for the kill with respect to Trace being sum of eigenvalues�

De�ne Trace as minus the second coe!cient� of the characteristic polynomial��� In the example
above� say� this would be ��� Trace is then clearly the sum of diagonal terms because of how
detA � �I� is calculated�� whatever representation A is in� And if we choose the representation
that diagonalizes A� this is the sum of the eigenvalues� QED�

Another fun one is that the product of the diagonal entries in a square matrix is always just the
product of the eigenvalues�

��For n by n matrices I mean by second coe�cient the constant that multiplies �n��� and we choose as sign
convention that the �n term in the polynomial be positive�

�


