
MATRIX ALGEBRA REVIEW

(

PRELIMINARIES

A matrix is a way of organizing information.

It is a rectangular array of elements arranged in rows and columns.  For example, the following matrix
A has m rows and n columns.

All elements can be identified by a typical element ija , where i=1,2,…,m denotes rows and j=1,2,…,n

denotes columns.

A matrix is of order (or dimension) m by n (also denoted as (m x n)).
A matrix that has a single column is called a column vector.
A matrix that has a single row is called a row vector.

TRANSPOSE
The transpose of a matrix or vector is formed by interchanging the rows and the columns.  A matrix of
order (m x n) becomes of order (n x m) when transposed.

For example, if a (2 x 3) matrix is defined by

 Then the transpose of A, denoted by A’, is now (3 x 2)

• AA =′′)(
• AkkA ′=′)( , where k is a scalar.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mnmmm

n

n

n

aaaa

aaaa

aaaa

aaaa

A

�

�����

321

3333231

2232221

1131211

...

...

...

⎥
⎦

⎤
⎢
⎣

⎡
=

232221

131211

aaa

aaa
A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′

2313

2212

2111

aa

aa

aa

A



2

SYMMETRIC MATRIX

When AA =′ , the matrix is called symmetric.  That is, a symmetric matrix is a square matrix, in that it
has the same number of rows as it has columns, and the off-diagonal elements are symmetric (i.e.

jandiallforaa jiij = ).

For example,

A special case is the identity matrix, which has 1’s on the diagonal positions and 0’s on the off-
diagonal positions.

The identity matrix is a diagonal matrix, which can be denoted by ),...,,( 21 naaadiag , where ia  is the
ith  element on the diagonal position and zeros occur elsewhere.  So, we can write the identity matrix as

)1,...,1,1(diagI = .

ADDITION AND SUBTRACTION
Matrices can be added and subtracted as long as they are of the same dimension.  The addition of
matrix A and matrix B is the addition of the corresponding elements of A and B.  So, BAC +=
implies that ijijij bac +=  for all i and j.

For example, if

Then

• ABBA ±=±
• )()( CBACBA ±±=±±
• BABA ′±′=′± )(
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MULTIPLICATION

If k is a scalar and A is a matrix, then the product of k times A is called scalar multiplication.  The
product is k times each element of A.  That is, if kAB = , then ijij kab =  for all i and j.

In the case of multiplying two matrices, such as ABC = , where neither A nor B are scalars, it must be
the case that

the number of columns of A = the number of rows of B

So, if A is of dimension (m x p) and B of dimension (p x n), then the product, C, will be of order (m x
n) whose ijth element is defined as

In words, the ijth element of the product matrix is found by multiplying the elements of the ith row of A,
the first matrix, by the corresponding elements of the jth column of B, the second matrix, and summing
the resulting product.  For this to hold, the number of columns in the first matrix must equal the
number of rows in the second.

For example,

• A (m x 1) column vector multiplied by a (1 x n) row vector becomes an (m x n) matrix.
• A (1 x m) row vector multiplied by a (m x 1) column vector becomes a scalar.
• In general, BAAB ≠ .
• But, AkkA =  if k is a scalar and A is a matrix.
• And, IAAI =  if A is a matrix and I is the identity matrix and conformable for multiplication.

The product of a row vector and a column vector of the same dimension is called the inner product
(also called the dot product), its value is the sum of products of the components of the vectors.  For
example, if j is a (T x 1) vector with elements 1, then the inner product, j’j, is equal to a constant T.

Note:  two vectors are orthogonal if their inner product is zero.

• ACABCBA +=+ )( .

• BCACCBA +=+ )( .
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• CABBCA )()( = .

A matrix with elements all zero is called a null matrix.

• ABAB ′′=′)( .
• ABCABC ′′′=′)( .

TRACE OF A SQUARE MATRIX
The trace of a square matrix A, denoted by tr(A), is defined to be the sum of its diagonal elements.

nnaaaaAtr ++++= ...)( 332211

• AAtr =)( , if A is a scalar.

• )()( AtrAtr =′ , because A is square.

• )()( AtrkkAtr ⋅= , where k is a scalar.

• nItr n =)( , the trace of an identity matrix is its dimension.

• )()()( BtrAtrBAtr ±=± .

• )()( BAtrABtr = .

• ∑∑
= =

=′=′
n

i

n

j
ijaAAtrAAtr

1 1

2)()( .

DETERMINANT OF A SQUARE MATRIX

The determinant of a square matrix A, denoted by det(A) or A , is a uniquely defined scalar number

associated with the matrix.

i)  for a single element matrix (a scalar, 11aA = ), det(A) = 11a .

ii)  in the (2 x 2) case,
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the determinant is defined to be the difference of two terms as follows,

21122211 aaaaA −=

which is obtained by multiplying the two elements in the principal diagonal of A and then subtracting
the product of the two off-diagonal elements.

iii)  in the (3 x 3) case,
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iv)  for general cases, we start first by defining the minor of element ija  as the determinant of the

submatrix of A that arises when the ith row and the jth column are deleted and is usually denoted as

ijA .  The cofactor of the element ija  is ij
ji

ij Ac +−= )1( .  Finally, the determinant of an n x n matrix

can be defined as

nirowanyforcaA
n

j
ijij ,...,2,1

1

== ∑
=

.

njcolumnanyforca
n

i
ijij ,...,2,1

1

== ∑
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.

• AA =′

• 
db

ca
k

dkb

cka

kdb

kca
==

• AkkA n= , for scalar k and n x n matrix A.

• If any row (or column) of a matrix is a multiple of any other row (or column) then the determinant
is zero, e.g.

0)( =−== ababk
bb

aa
k

kbb

kaa

• If A is a diagonal matrix of order n, then nnaaaA �2211=
• If A and B are square matrices of the same order, then BAAB = .

• In general, BABA +≠+

RANK OF A MATRIX AND LINEAR DEPENDENCY

Rank and linear dependency are key concepts for econometrics.  The rank of any (m x n) matrix can be
defined (i.e., the matrix does not need to be square, as was the case for the determinant and trace) and
is inherently linked to the invertibility of the matrix.

The rank of a matrix A is equal to the dimension of the largest square submatrix of A that has a
nonzero determinant.  A matrix is said to be of rank r if and only if it has at least one submatrix of
order r with a nonzero determinant but has no submatrices of order greater than r with nonzero
determinants.

For example, the matrix
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That is, the largest submatrix of A whose determinant is not zero is of order 3.

The concept of rank also can be viewed in terms of linear dependency.  A set of vectors is said to be
linearly dependent if there is a nontrivial combination (i.e., at least one coefficient in the combination
must be nonzero) of the vectors that is equal to the zero vector.  More precisely, denote n columns of
the matrix A as naaa ,,, 21 � .  This set of these vectors is linearly dependent if and only if there exists

a set of scalars },,,{ 21 nccc � , at least one of which is not zero, such that 0aaa =+++ nnccc �2211 .

In the above example, the columns of the matrix A are linearly dependent because,

0=
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If a set of vectors is not linearly dependent, then it is linearly independent.  Also, any subset of a
linearly independent set of vectors is linearly independent.

In the above example, the first three columns of A are linearly independent, as are the first two
columns of A.  That is, we cannot find a set of scalars (with at least one nonzero) such that the linear
combination of scalars and columns equals the zero vector.

The connection between linear dependency and the rank of a matrix is as follows:  the rank of a
matrix A may be defined as the maximum number of linearly independent columns or rows of A.

In other words, the maximum number of linearly independent columns is equal to the maximum
number of linearly independent rows, each being equal to the rank of the matrix.  If the maximum
number of linearly independent columns (or rows) is equal to the number of columns, then the matrix
has full column rank.  Additionally, if the maximum number of linearly independent rows (or
columns) is equal to the number of rows, then the matrix has full row rank.  When a square matrix A
does not have full column/row rank, then its determinant is zero and the matrix is said to be singular.
When a square matrix A has full row/column rank, its determinant is not zero, and the matrix is said to
be nonsingular (and therefore invertible).

• Full rank (nonsingular matrix) ⇔  0A ≠   ⇔  A is invertible.
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Furthermore, the maximum number of linearly independent (m x 1) vectors is m.  For example,
consider the following set of two linearly independent vectors,
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where 21 bandb  can be any numbers, then the three unknown scalars 321 ,, candcc  can always be
found by solving the following set of equations,
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In other words, the addition of any third vector will result in a (2 x 3) matrix that is not of full rank and
therefore not invertible.

Generally speaking, this is because any set of m linearly independent (m x 1) vectors are said to span
m-dimensional space.  This means, by definition, that any (m x 1) vector can be represented as a linear
combination of the m vectors that span the space.  The set of m vectors therefore is also said to form a
basis for m-dimensional space.

• nIrank n =)(

• )()( ArankkArank = , where k is a nonzero constant

• )()( ArankArank =′
• If A is an (m x n) matrix, then },min{)( nmArank ≤ .
• If A and B are matrices, then )}(),(min{)( BrankArankABrank ≤ .

• If A is an (n x n) matrix, then nArank =)(  if and only if A is nonsingular; nArank <)(  if and
only if A is singular.

There are operations on the rows/columns of a matrix that leave its rank unchanged:

• Multiplication of a row/column of a matrix by a nonzero constant.
• Addition of a scalar multiple of one row/column to another row/column.
• Interchanging two rows/columns.

INVERSE OF A MATRIX

The inverse of a nonsingular (n x n) matrix A is another (n x n) matrix, denoted by A-1, that satisfies
the following equalities: IAAAA == −− 11 . The inverse of a nonsingular (n x n) matrix is unique.

The inverse of a matrix A in terms of its elements can be obtained from the following formula:
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Note that C’ is the transpose of the matrix of cofactors of A as defined in the section on determinants.
C’ is also called the adjoint of A.

For example, let

⎥
⎦

⎤
⎢
⎣

⎡
=

43

21
A .
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• II =−1

• AA =−− 11 )(

• )()( 11 ′=′ −− AA

• If A is nonsingular, then 1−A  is nonsingular.
• If A and B are nonsingular, then 111)( −−− = ABAB .

SOLUTIONS FOR SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Consider the following system of linear equations: bAx = where A is a (m x n) matrix of known
coefficients, x is a (n x 1) vector of unknown variables, and b is a (m x 1) vector of known coefficients.

We want to find the conditions under which: 1) the system has no solution, 2) the system has infinitely
many solutions, 3) the system has a unique solution.  Define the matrix A|b as the augmented matrix of
A.  This is just the matrix A with the b vector attached on the end.  The dimension of A|b is therefore
(m x (n+1)).

Succinctly put, the conditions for the three types of solutions are as follows.  (Note: there are numerous
ways of characterizing the solutions, but we will stick to the simplest representation):

1. The system has no solution if rank(A|b) > rank(A).
2. The system has infinitely many solutions if rank(A|b) = rank(A) and rank(A) < n.
3. The system has a unique solution if rank(A|b) = rank(A) and rank(A) = n.

Let’s look at examples for each case.

Case 1:  No Solution
Intuition: if rank(A|b) > rank(A), then b is not in the space spanned by A; so b cannot be represented as
a linear combination of A; so there is no x that solves (Ax = b); so there is no solution.
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Consider the system,

964

832

9

8

64

32

21

21

2

1

=+
=+

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
xx

xx
or

x

x

singular0
64

32
⇒=

1
64

32
=⎥

⎦

⎤
⎢
⎣

⎡
rank

)()|(2
964

832
ArankbArankrank >⇒=⎥

⎦

⎤
⎢
⎣

⎡

If we attempt to solve for 1x  in the first equation and substitute the result into the second equation, the
resulting equality is 916 = , which is a contradiction.

Case 2:  Infinitely Many Solutions
Intuition: if rank(A|b) = rank(A), then b is in the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b).  But because rank(A) < n, there are
more variables than equations.  This gives us “free variables” and therefore multiple solutions, one
associated with each choice of values for the free variables.

Consider the following system of equations
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In this case, rank(A|b) = rank(A), but the rank is less than the number of unknown variables (n).  Also
notice that each equation is just some linear combination of the other two, so we really have only one
equation and two unknowns.  There are infinitely many solutions that can solve this system, including
(4 0)’, (2 1)’, (0 2)’.
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Case 3:  Unique Solution
Intuition: if rank(A|b) = rank(A), then b is in the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b).  Because rank(A) = n, there are equal
numbers of variables and equations.  This gives us no “free variables” and therefore a single solution.

Consider the following system,
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So, rank(A|b) = rank(A) = 2 = n < m.  There is full column rank, and the system can be uniquely
solved.  In fact, any two independent equations can be used to solve for the x’s.  The solution is

.1,2 21 == xx

In econometrics, we often deal with square matrices, so the following is important for us:

• If A is a square matrix (m = n) and nonsingular, then bAx 1−=  is the unique solution.

KRONECKER PRODUCT
Let A be an (M x N) matrix and B be a (K x L) matrix.  Then the Kronecker product (or direct
product) of A and B, written as BA ⊗ , is defined as the (MK x NL) matrix
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• ABBA ⊗≠⊗ ,
• BABA ′⊗′=′⊗ )(
• BDACDCBA ⊗=⊗⊗ ))((

• 111)( −−− ⊗=⊗ BABA
• CABACBA ⊗+⊗=+⊗ )(

VECTOR AND MATRIX DIFFERENTIATION
In least squares and maximum likelihood estimation, we need to take derivatives of the objective
function with respect to a vector of parameters.

Let a function relating y, a scalar, to a set of variables nxxx ,,, 21 �  be ),,,( 21 nxxxfy �=  or

)(xfy = , where x is an (n x 1) column vector.  (Notice that x is in bold to indicate a vector.)

The gradient of y is the derivatives of y with respect to each element of x as follows
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Notice the matrix of derivatives of y is a column vector because y is differentiated with respect to x, an
(n x 1) column vector.

The same operations can be extended to derivatives of an (m x n) matrix X, such as



12

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

mnmm

n

n

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

X

y

�

����

�

�

21

22221

11211

Notice in this case, the matrix of derivatives is an (m x n) matrix (the same dimension as X).

If, instead, y is an (m x 1) column vector of miyi ,...,2,1, =  and x is a (n x 1) column vector of

njx j ,...,2,1, = , then the first derivatives of y with respect to x can be represented as an (m x n)

matrix, called the Jacobian matrix of y with respect to x’:
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Aside:  when differentiating vectors and matrices, note the dimensions of the independent variable (y)
and the dependent variables (x).  These will determine if the differentiation will entail the transpose of
a matrix.  In the above example, the first column of the resulting (m x n) matrix is the derivative of the
vector of miyi ,...,2,1, =  with respect to the first 1x .  The second column is the derivative with respect

to 2x  and so on.  Also note that the first row is the derivative of 1y  with respect to the vector x′  (a (1 x
n) row vector).  Therefore because x is a column vector, we need to transpose it to represent the
derivative of the m observations of y (down the column) with respect to the n unknown x variables
(across the row).  The y vector does not need to be transposed because y is represented along the
column of the resulting Jacobian matrix.

If we turn back to the scalar case of y, the second derivatives of y with respect to the column vector x
are defined as follows.
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This matrix is symmetric and is called the Hessian matrix of y.

Note that the Hessian matrix is just the second derivative of the gradient with respect to the x vector.
We need to transpose the x vector when taking the second derivative because for the Hessian, we are
taking the derivative of the gradient (a vector) with respect to each x variable.  So, the first column is
the gradient differentiated with respect to 1x , and the second column is the gradient differentiated with

respect to 2x  and so on.  So, we need to differentiate the gradient with respect to x’ to order these
derivatives across the rows of the resulting matrix.
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Based on the previous definitions, the rules of derivatives in matrix notation can be established for
reference.  Consider the following function xc′=z , where c is a (n x 1) vector and does not depend on
x, and x is an (n x 1) vector, and z is a scalar.  Then

c
xc =
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If xCz ′= , where C is an (n x n) matrix and x is an (n x 1) vector, then

( ) C
C ==

∂
′∂

=
∂

′∂
n21 ccc

x
�

xx

z

where ic  is the ith column (remember c is a vector) of C.

The following formula for the quadratic form xx Az ′=  is also useful (for any (n x n) matrix A),

xxx
xx

A)A(A
A

+′=+′=
∂
′∂

=
∂
∂

A
z

xx
.  The proof of this result is given in the appendix.

If A is a symmetric matrix (A = A’), then

x
xx

A2
A =

∂
′∂
x

For the second derivatives for any square matrix A,

A
A2

′+=
′∂∂

′∂
A

x
x)x(

x

and if A = A’ (if A is symmetric), then

2A
A2

=
′∂∂

′∂
x

x)x(
x

Some other rules (x is a scalar, unless noted otherwise):

• yx
yx ′=

∂
′∂
B
B

, where x and y are (n x 1) column vectors and B is an (n x n) matrix

• I
Atr =

∂
∂

A
)(
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• 1)(
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Since this review was by no means complete, if you want to learn more about matrix algebra, the
following are good references:

Anton, Howard (1994), Elementary Linear Algebra, 7th edition, New York:  John Wiley & Sons.

The math behind it all.  Check out chapters 1, 2, 5.6.

Judge, George G., R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee
(1988), Introduction to the Theory and Practice of Econometrics, 2nd Edition, New York: John
Wiley & Sons, Appendix A.

These notes follow the Appendix fairly closely.

Leon, Steven J. (1994), Linear Algebra with Applications, 4th edition, New Jersey: Prentice Hall.

Simon, Carl P. and Lawrence Blume (1994), Mathematics for Economists, New York:  W.W. Norton.

Look at chapters 6 – 9, & 26.
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APPENDIX

Claim:  xxx
xx

A)A(A
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Proof:

Write out the quadratic form for an (n x n) matrix A,
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Now differentiate this with respect to the vector x,

But this can be rewritten as,
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or

xA)A( +′=
∂
∂
x

z

If A is symmetric, then ji,allforaa jiij = , so

xA2=
∂
∂
x

z

This also holds if n = n +1, so, by induction, the result holds for any (n x n) matrix.


