
Introduction
to OpenCV

Marvin Smith

Introduction

• OpenCV is an Image Processing library created by Intel and
maintained by Willow Garage.

• Available for C, C++, and Python

• Newest update is version 2.2

• Open Source and free

• Easy to use and install

Installation Instructions

• For Mac OS X. Simply install Mac Ports then type
 sudo port install opencv

• Do not use synaptic on Linux to install OpenCV.
 It is version 1.2.

• For Linux and Windows, follow the installation guide at
http://opencv.willowgarage.com/wiki/InstallGuide

• Linux users can come to me for help. I have built it on
Ubuntu dozens of times. I have built it successfully on
Windows once.

• Make sure to read the beginning as it gives you
precise commands to install ffmpeg, libavformat-dev,
libswscale-dev, and other required libraries.

•Follow instructions exactly!!!!!

BASIC OPENCV STRUCTURES

• Point, Point2f - 2D Point

• Size - 2D size structure

•Rect - 2D rectangle object

•RotatedRect - Rect object with angle

•Mat - image object

Point
• 2D Point Object
- int x, y;

• Functions
- Point.dot(<Point>) - computes dot product
- Point.inside(<Rect>) - returns true if point

is inside

•Math operators, you
may use
- Point operator +

- Point operator +=

- Point operator -

- Point operator -=

- Point operator *

- Point operator *=

- bool operator ==

- bool operator != double
norm

Size

• 2D Size Structure
- int width, height;

• Functions
- Point.area() - returns (width * height)

RECT
• 2D Rectangle Structure
- int x, y, width, height;

• Functions
- Point.tl() - return top left point

- Point.br() - return bottom right point

cv::Mat
• The primary data structure in

OpenCV is the Mat object. It stores
images and their components.

• Main items

• rows, cols - length and width(int)

• channels - 1: grayscale, 3: BGR

• depth: CV_<depth>C<num chan>

• See the manuals for more information

cv::Mat
•Functions
- Mat.at<datatype>(row, col)[channel] - returns pointer to image location

- Mat.channels() - returns the number of channels

- Mat.clone() - returns a deep copy of the image

- Mat.create(rows, cols, TYPE) - re-allocates new memory to matrix

- Mat.cross(<Mat>) - computes cross product of two matricies

- Mat.depth() - returns data type of matrix

- Mat.dot(<Mat>) - computes the dot product of two matrices

cv::Mat
•Functions
- Mat(Range(xmin,xmax),Range(ymin,ymax)) - returns sub image

- Mat.type() - returns the TYPE of a matrix

•Iterator Usage
- Mat.begin() - moves Mat iterator to beginning of image

- Mat.end() - moves Mat iterator to end of image

Image TYPES
• The TYPE is a very important aspect of OpenCV

• Represented as CV_<Datatype>C<# Channels>

• Example Datatypes/ Depths

Pixeltypes
• PixelTypes shows how the image is represented in data

• BGR - The default color of imread(). Normal 3 channel color

• HSV - Hue is color, Saturation is amount, Value is lightness. 3 channels

• GRAYSCALE - Gray values, Single channel

•OpenCV requires that images be in BGR or Grayscale in order
to be shown or saved. Otherwise, undesirable effects may
appear.

HELLO WORLD
•Example Code

//Loads image and displays
//call by ./a.out image.jpg
//
#include <cv.h>
#include <cvaux.h>
#include <highgui.h>

using namespace cv;

int main(int argc, char* argv[]){
 Mat image = imread(argv[1]);

 namedWindow(“Sample Window”);
 imshow(“Sample Window”,image);
 waitKey(0);
 return 0;
}

This program will load and show
an image

Starting Out in OpenCV

• OpenCV uses the cv namespace.

• cv::Mat object replaces the original C standard IplImage and
CvMat classes.

• All original functions and classes of the C standard OpenCV
components in the Bradski book are still available and current.
However you will need to read that book for it.

• namedWindow is used for viewing images. See my manual
for instructions on calling it.
• In general, default string as input with original image size

set. Else, use string as input name and 0 for adjustable size.

Image I/O

• OpenCV provides simple and useful
ways to read and write images.

• Note that there are many extra
options to these commands which are
available on the wiki.

• waitKey(int x) has two main features.

- if x > 0, then waitKey will wait x
milliseconds

- if x = 0, then waitKey will not move
until key is pressed

•Examples
//Read an image
Mat image = imread(<string>, <0 -gray, 1 -BGR>)
 //Note 1 is default

//Write an image
imwrite(<string filename> , image);

//Create window for output
namedWindow(<window name>);

//Output image to window
imshow(<window name> , <image Mat to show>);

//pause program for input
key = waitKey(0);

DRAWING STUFF
• Sometimes it is necessary to draw stuff onto the image. Instead of

using complicated functions, why not just call a simple function?

• Here are some simple examples...

• void circle(image, Point(x,y),int rad, CV_BGR(b,g,r), int thickness=1)

• void ellipse(image, RotatedRect box, CV_BGR(b,g,r), int thickness=1)

• void line(image, Point(x,y), Point(x,y), CV_BGR(b,g,r), int thickness= 1)

• void rectangle(img, Point(x,y), Point(x,y), CV_BGR(b,g,r), int thickness)
• NOTE: negative thickness will fill in the rectangle

• MORE... http://opencv.willowgarage.com/documentation/cpp/core_drawing_functions.html

Drawing stuff

Using the Mouse

•OpenCV allows you to
use the mouse to
interact with the
screen. Note that this
feature is from OpenCV
1.0 and is compatible
with Mat objects.

• This program allows
you to draw dots on
the image.

USING THE MOUSE

Converting colorspaces
• cvtColor(image, image, code)
• Codes
• CV_<colorspace>2<colorspace>
• Examples
• CV_BGR2GRAY
• CV_BGR2HSV
• CV_BGR2LUV

Image Normalization

• normalize(imagein, imageout, low, high, method);

• Image normalization is the process of
stretching the range of an image from [a, b]
to [c, d].

• This is incredibly important for visualization
because if the image is beyond [0,255] it will
cause truncation or unsightly effects.

Thresholding
• threshold(image, image, thresh, maxVal, CODE);

• CODE - this is the method of thresholding. Different actions will be taken
depending on this code.

Edge Detection
• Sobel Edge Detection
void cv::Sobel(image in, image out, CV_DEPTH, dx, dy);

• Scharr Edge Detection
void cv::Scharr(image in, image out, CV_DEPTH, dx, dy);

• Laplacian Edge Detection
void cv::Laplacian(image in, image out, CV_DEPTH);

Image Smoothing
• Image smoothing is used to reduce the the sharpness

of edges and detail in an image.
• OpenCV includes most of the commonly used

methods.

• void GaussianBlur(imagein, imageout, Size ksize, sig);
• Note that there are more options, however this

should keep things simple

• void medianBlur (imagein, imageout, Size ksize);

• Other functions include generic convolution,
separable convolution, dilate, and erode.

Original Gaussian Blur Median Blur

STOP!

This is not relevent until the last part
of the class.

Beware!

Linear Algebra

Operators
given: Mat image;

•image.inv(); //inverse

•image.t(); //transpose

•image.clone(); //creates deep copy

•image.diag(int d=0) //returns diagonal

• image.mul(mat, double); //performs
elementwise multiplication.

• image.cross(mat); //performs cross product

• image.dot(mat); //performs dot product

• image.eye(); //converts mat to identity
matrix

• OpenCV contains many useful
and simple functions for applying
linear algebra on images.

• Most major operators are
allowed.

• operator * performs matrix
multiplication, NOT elementwise
multiplication.

Singular Value Decomposition

• Singular Value Decomposition is a vital
part of any computer vision based
system. Luckily, OpenCV makes this a
trivial task.

• To solve a least-squares problem, simply
call the solve command.

• bool solve(src1, src2, dst, int flags);

• Usually, src1 is A, src2 is b, and dst is x.
Remember flags is method...

• DECOMP_LU - Fast but cannot solve over-determined
systems.

• DECOMP_SVD - SVD, can solve just about anything

• Others available, but stick to the basics...

Example
given:
-11x + 2y = 0
 2x + 3y = 7
 2x - y = 5

SVD Results
• Using OpenCV

• Using GNU Octave

Principle Component Analysis
• Since you will need to learn this, I will include it. Although you will undoubtably

will have to create your own PCA program, OpenCV covers it very nicely.

• PCA(Mat data, Mat mean, int FLAG, int numcomp=0)
• FLAG: PCA_DATA_AS_ROW / PCA_DATA_AS_COL
• numcomp is the k value, 0 means all values retained
• in general, just pass the vectors into data and the mean will be returned.

• PCA.project(Mat vector)
• projects the vector into the built eigenspace and returns the result

• PCA.backproject(Mat vector)
• reconstructs the vector from the principle component subspace

Important Tips

• Remember that images are read from file as 8-bit
unsigned integers. In order to do complicated math
operations, convert to 32-bit floating point type. Then
convert back to write to file.

• Always remember that rows is your y coordinate and that
cols is your x coordinate. Size objects are called X,Y while
images are referenced row, col. There are many subtle
things that will ruin good code.

