Since λ is a scalar, it can change position on the right-hand side of the equation. Also, because of the associativity of matrix multiplication, we may write:

$$(\mathbf{u}^T g)(g^T \mathbf{u}) = \lambda \mathbf{u}^T \mathbf{u} \tag{2.43}$$

Since **u** is an eigenvector, $\mathbf{u}^T\mathbf{u} = 1$. Therefore:

$$\left(g^T \mathbf{u}\right)^T \left(g^T \mathbf{u}\right) = \lambda \tag{2.44}$$

 $g^T \mathbf{u}$ is some vector \mathbf{y} . Then we have: $\lambda = \mathbf{y}^T \mathbf{y}$ which means that λ is non-negative since $\mathbf{y}^T \mathbf{y}$ is the square magnitude of vector \mathbf{y} .

Example 2.7

If λ_i are the eigenvalues of gg^T and $\mathbf{u_i}$ the corresponding eigenvectors, show that g^Tg has the same eigenvalues, with the corresponding eigenvectors given by $\mathbf{v_i} = g^T\mathbf{u_i}$.

By definition:

$$gg^T \mathbf{u_i} = \lambda_i \mathbf{u_i} \tag{2.45}$$

Multiply both sides from the left with g^T :

$$g^T g g^T \mathbf{u_i} = g^T \lambda_i \mathbf{u_i} \tag{2.46}$$

As λ_i is a scalar, it may change position with respect to the other factors on the right-hand side of (2.46). Also, by the associativity of matrix multiplication:

$$g^T g(g^T \mathbf{u_i}) = \lambda_i(g^T \mathbf{u_i}) \tag{2.47}$$

This identifies $g^T \mathbf{u_i}$ as an eigenvector of $g^T g$ with λ_i the corresponding eigenvalue.

Example 2.8

You are given an image: $g = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Compute the eigenvectors $\mathbf{u_i}$ of

$$g^T = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \tag{2.48}$$

We start by computing first gg^T :

$$gg^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
(2.49)

The eigenvalues of gg^T will be computed from its characteristic equation:

$$\begin{vmatrix} 1 - \lambda & 2 & 0 \\ 2 & 6 - \lambda & 1 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = 0 \Rightarrow (1 - \lambda)[(6 - \lambda)(1 - \lambda) - 1] - 2[2(1 - \lambda)] = 0$$
$$\Rightarrow (1 - \lambda)[(6 - \lambda)(1 - \lambda) - 1 - 4] = 0 \quad (2.50)$$

One eigenvalue is $\lambda = 1$. The other two are the roots of:

$$6 - 6\lambda - \lambda + \lambda^2 - 5 = 0 \Rightarrow \lambda^2 - 7\lambda + 1 = 0 \Rightarrow \lambda = \frac{7 \pm \sqrt{49 - 4}}{2} = \frac{7 \pm 6.7}{2}$$
$$\Rightarrow \lambda = 6.854 \text{ or } \lambda = 0.146 \quad (2.51)$$

In descending order, the eigenvalues are:

$$\lambda_1 = 6.854, \ \lambda_2 = 1, \ \lambda_3 = 0.146$$
 (2.52)

Let $\mathbf{u_i} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigenvector which corresponds to eigenvalue λ_i . Then:

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda_i \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + 2x_2 &= \lambda_i x_1 \\ 2x_1 + 6x_2 + x_3 &= \lambda_i x_2 \\ x_2 + x_3 &= \lambda_i x_3 \end{aligned}$$
(2.53)

For $\lambda_i = 6.854$

$$2x_2 - 5.854x_1 = 0 (2.54)$$

$$2x_1 - 0.854x_2 + x_3 = 0 (2.55)$$

$$x_2 - 5.854x_3 = 0 (2.56)$$

Multiply (2.55) with 5.854 and add equation (2.56) to get:

$$11.7x_1 - 4x_2 = 0 (2.57)$$

Equation (2.57) is the same as (2.54). So we have really only two independent equations for the three unknowns. We choose the value of x_1 to be 1. Then:

$$x_2 = 2.927$$
 and from (2.55) $x_3 = -2 + 0.85 \times 2.925 = -2 + 2.5 = 0.5$ (2.58)

Thus, the first eigenvector is

$$\begin{pmatrix} 1 \\ 2.927 \\ 0.5 \end{pmatrix} \tag{2.59}$$

and after normalisation, ie division with $\sqrt{1^2 + 2.927^2 + 0.5^2} = 3.133$, we obtain:

$$\mathbf{u_1} = \begin{pmatrix} 0.319\\ 0.934\\ 0.160 \end{pmatrix} \tag{2.60}$$

For $\lambda_i = 1$, the system of linear equations we have to solve is:

$$x_1 + 2x_2 = x_1 \Rightarrow x_2 = 0$$

 $2x_1 + x_3 = 0 \Rightarrow x_3 = -2x_1$ (2.61)

Choose $x_1 = 1$. Then $x_3 = -2$. Since $x_2 = 0$, we must divide all components with $\sqrt{1^2 + 2^2} = \sqrt{5}$ for the eigenvector to have unit length:

$$\mathbf{u_2} = \begin{pmatrix} 0.447 \\ 0 \\ -0.894 \end{pmatrix} \tag{2.62}$$

For $\lambda_i = 0.146$, the system of linear equations we have to solve is:

$$0.854x_1 + 2x_2 = 0$$

$$2x_1 + 5.854x_2 + x_3 = 0$$

$$x_2 + 0.854x_3 = 0$$
(2.63)

Choose $x_1 = 1$. Then $x_2 = -\frac{0.854}{2} = -0.427$ and $x_3 = -\frac{0.427}{0.854} = 0.5$. Therefore, the third eigenvector is:

$$\begin{pmatrix} 1 \\ -0.427 \\ 0.5 \end{pmatrix}, \tag{2.64}$$

and after division with $\sqrt{1+0.427^2+0.5^2}=1.197$ we obtain:

The corresponding eigenvectors of g^Tg are given by $g^T\mathbf{u_i}$; ie the first one is:

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0.319 \\ 0.934 \\ 0.160 \end{pmatrix} = \begin{pmatrix} 2.187 \\ 0.934 \\ 1.094 \end{pmatrix}$$
 (2.66)

We normalise it by dividing with $\sqrt{2.187^2 + 0.934^2 + 1.094^2} = 2.618$, to obtain:

$$\mathbf{v_1} = \begin{pmatrix} 0.835 \\ 0.357 \\ 0.418 \end{pmatrix} \tag{2.67}$$

Similarly

$$\mathbf{v_2} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0.447 \\ 0 \\ -0.894 \end{pmatrix} = \begin{pmatrix} 0.447 \\ 0 \\ -0.894 \end{pmatrix}, \tag{2.68}$$

while the third eigenvector is

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0.835 \\ -0.357 \\ 0.418 \end{pmatrix} = \begin{pmatrix} 0.121 \\ -0.357 \\ 0.061 \end{pmatrix}$$
 (2.69)

which after normalisation becomes:

$$\mathbf{v_3} = \begin{pmatrix} 0.319 \\ -0.934 \\ 0.160 \end{pmatrix} \tag{2.70}$$

What is the singular value decomposition of an image?

The Singular Value Decomposition (SVD) of an image f is its expansion in terms of vector outer products, where the vectors used are the eigenvectors of ff^T and f^Tf , and the coefficients of the expansion are the eigenvalues of these matrices. In that case, equation (2.9) may be written as

$$f = \sum_{i=1}^{r} \lambda_i^{\frac{1}{2}} \mathbf{u}_i \mathbf{v}_i^T \tag{2.71}$$

since the only nonzero terms are those with i = j. Elementary images $\mathbf{u_i} \mathbf{v_i}^T$ are known as the eigenimages of image f.