Since λ is a scalar, it can change position on the right-hand side of the equation. Also, because of the associativity of matrix multiplication, we may write:

$$(u^T g)(g^T u) = \lambda u^T u$$ \hspace{1cm} (2.43)$$

Since u is an eigenvector, $u^T u = 1$. Therefore:

$$(g^T u)^T (g^T u) = \lambda$$ \hspace{1cm} (2.44)$$

g^T u$ is some vector y. Then we have: $\lambda = y^T y$ which means that λ is non-negative since $y^T y$ is the square magnitude of vector y.

Example 2.7

If λ_i are the eigenvalues of $g g^T$ and u_i the corresponding eigenvectors, show that $g^T g$ has the same eigenvalues, with the corresponding eigenvectors given by $v_i = g^T u_i$.

By definition:

$gg^T u_i = \lambda_i u_i$ \hspace{1cm} (2.45)$$

Multiply both sides from the left with g^T:

$$g^T gg^T u_i = g^T \lambda_i u_i$$ \hspace{1cm} (2.46)$$

As λ_i is a scalar, it may change position with respect to the other factors on the right-hand side of (2.46). Also, by the associativity of matrix multiplication:

$$g^T g(g^T u_i) = \lambda_i (g^T u_i)$$ \hspace{1cm} (2.47)$$

This identifies $g^T u_i$ as an eigenvector of $g^T g$ with λ_i the corresponding eigenvalue.

Example 2.8

You are given an image: $g = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Compute the eigenvectors u_i of
We start by computing first gg^T:

$$
 gg^T = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

The eigenvalues of gg^T will be computed from its characteristic equation:

$$
\begin{vmatrix}
1 - \lambda & 2 & 0 \\
2 & 6 - \lambda & 1 \\
0 & 1 & 1 - \lambda
\end{vmatrix} = 0 \Rightarrow (1 - \lambda)(6 - \lambda)(1 - \lambda) - 2[2(1 - \lambda)] = 0
$$

$$
\Rightarrow (1 - \lambda)(6 - \lambda)(1 - \lambda) - 1 - 4 = 0 \quad (2.50)
$$

One eigenvalue is $\lambda = 1$. The other two are the roots of:

$$
6 - 6\lambda - \lambda^2 - 5 = 0 \Rightarrow \lambda^2 - 7\lambda + 1 = 0 \Rightarrow \lambda = \frac{7 \pm \sqrt{49 - 4}}{2} = \frac{7 \pm 6.7}{2}
$$

$$
\Rightarrow \lambda = 6.854 \text{ or } \lambda = 0.146 \quad (2.51)
$$

In descending order, the eigenvalues are:

$$
\lambda_1 = 6.854, \lambda_2 = 1, \lambda_3 = 0.146
$$

Let $u_i = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be the eigenvector which corresponds to eigenvalue λ_i. Then:

$$
\begin{pmatrix} 1 & 2 & 0 \\ 2 & 6 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda_i \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \Rightarrow \begin{cases} x_1 + 2x_2 = \lambda_1 x_1 \\ 2x_1 + 6x_2 + x_3 = \lambda_2 x_2 \\ x_2 + x_3 = \lambda_3 x_3 \end{cases}
$$

For $\lambda_i = 6.854$

$$
2x_2 - 5.854x_1 = 0 \quad (2.54)
$$

$$
2x_1 - 0.854x_2 + x_3 = 0 \quad (2.55)
$$

$$
x_2 - 5.854x_3 = 0 \quad (2.56)
$$

Multiply (2.55) with 5.854 and add equation (2.56) to get:

$$
11.7x_1 - 4x_2 = 0 \quad (2.57)
$$
Equation (2.57) is the same as (2.54). So we have really only two independent equations for the three unknowns. We choose the value of \(x_1 \) to be 1. Then:

\[
x_2 = 2.927 \quad \text{and from (2.55) } x_3 = -2 + 0.85 \times 2.925 = -2 + 2.5 = 0.5 \quad (2.58)
\]

Thus, the first eigenvector is

\[
\begin{pmatrix}
1 \\
2.927 \\
0.5
\end{pmatrix}
\]

and after normalisation, i.e. division with \(\sqrt{1^2 + 2.927^2 + 0.5^2} = 3.133 \), we obtain:

\[
\mathbf{u}_1 = \begin{pmatrix}
0.319 \\
0.934 \\
0.160
\end{pmatrix} \quad (2.60)
\]

For \(\lambda_i = 1 \), the system of linear equations we have to solve is:

\[
x_1 + 2x_2 = x_1 \Rightarrow x_2 = 0 \\
2x_1 + x_3 = 0 \Rightarrow x_3 = -2x_1
\]

Choose \(x_1 = 1 \). Then \(x_3 = -2 \). Since \(x_2 = 0 \), we must divide all components with \(\sqrt{1^2 + 2^2} = \sqrt{5} \) for the eigenvector to have unit length:

\[
\mathbf{u}_2 = \begin{pmatrix}
0.447 \\
0 \\
-0.894
\end{pmatrix} \quad (2.62)
\]

For \(\lambda_i = 0.146 \), the system of linear equations we have to solve is:

\[
0.854x_1 + 2x_2 = 0 \\
2x_1 + 5.854x_2 + x_3 = 0 \\
x_2 + 0.854x_3 = 0
\]

Choose \(x_1 = 1 \). Then \(x_2 = -\frac{0.854}{2} = -0.427 \) and \(x_3 = \frac{-0.427}{0.854} = 0.5 \). Therefore, the third eigenvector is:

\[
\begin{pmatrix}
1 \\
-0.427 \\
0.5
\end{pmatrix}
\]

and after division with \(\sqrt{1 + 0.427^2 + 0.5^2} = 1.197 \) we obtain:

\[
\begin{pmatrix}
1 \\
-0.835 \\
0
\end{pmatrix}
\]
The corresponding eigenvectors of \(g^T g \) are given by \(g^T u_1 \); ie the first one is:

\[
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0.319 \\
0.934 \\
0.160
\end{pmatrix}
= \begin{pmatrix} 2.187 \\ 0.934 \\ 1.094 \end{pmatrix}
\] (2.66)

We normalise it by dividing with \(\sqrt{2.187^2 + 0.934^2 + 1.094^2} = 2.618 \), to obtain:

\[
\nu_1 = \begin{pmatrix} 0.835 \\ 0.357 \\ 0.418 \end{pmatrix}
\] (2.67)

Similarly

\[
\nu_2 = \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0.447 \\
0 \\
-0.894
\end{pmatrix}
= \begin{pmatrix} 0.447 \\ 0 \\ -0.894 \end{pmatrix}
\] (2.68)

while the third eigenvector is

\[
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0.835 \\
-0.357 \\
0.418
\end{pmatrix}
= \begin{pmatrix} 0.121 \\ -0.357 \\ 0.061 \end{pmatrix}
\] (2.69)

which after normalisation becomes:

\[
\nu_3 = \begin{pmatrix} 0.319 \\ -0.934 \\ 0.160 \end{pmatrix}
\] (2.70)

What is the singular value decomposition of an image?

The Singular Value Decomposition (SVD) of an image \(f \) is its expansion in terms of vector outer products, where the vectors used are the eigenvectors of \(ff^T \) and \(f^T f \), and the coefficients of the expansion are the eigenvalues of these matrices. In that case, equation (2.9) may be written as

\[
f = \sum_{i=1}^{r} \lambda_i \frac{1}{\sqrt{\lambda_i}} u_i v_i^T
\] (2.71)

since the only nonzero terms are those with \(i = j \). Elementary images \(u_i v_i^T \) are known as the eigenimages of image \(f \).