
CS485/685 Computer Vision
Spring 2012 – Dr. George Bebis

Programming Assignment 2
Due Date: 3/27/2012

In this assignment, you will implement an algorithm for normalizing face image using SVD. Face
normalization is a required preprocessing step for many face recognition algorithms to account
for variations with respect to face location, orientation (in-plane), and scale. To address these
issues, you will implement an iterative algorithm based on affine transformations.

Figure 1. An example showing facial features of interest for normalization.

The main idea is using an affine transformation to map certain facial features to predetermined
locations in a fixed window (see Figure 1). Figure 2 shows examples of un-normalized and
normalized faces; normalization was performed by mapping the left eye center, right eye center,
and mouth center to predetermined locations in a fixed 20 x 20 window.

Figure 2. Examples of face images before (top) and after (bottom) normalization.

The face images to be used in your experiments are available from the course’s webpage. You
will use the following five facial features for normalization: (1) left eye center, (2) right eye center,
(3) tip of nose, (4) mouth center, and (5) tip of chin. The coordinates of these features have
been extracted manually and are available from the course’s webpage. In practice, however,
these features should be extracted automatically.

Fixed window

You will be using a fixed window of size 48 x 40. Note that the original images have size 112 x
92, so this choice maintains the aspect ratio of the face images. You can download the
coordinates of the facial features within the fixed window from the course’s webpage.

Algorithm

You need to implement the algorithm described below to compute the parameters of an affine
transformation that maps the facial features of each image to the predetermined facial feature
locations in the 48 x 40 window. This can be done in different ways. We describe below an
iterative algorithm (see page 3 from reference [1]) which has shown to work well:

Step1: Use a vector F to store the average locations of each facial feature over all
face images (i.e., (i.e., F =(1P , 2P , 3P , 4P , 5P) where 1P and 2P correspond to the

average positions of the eye centers, 3P corresponds to the average position of the

nose’s tip, 4P corresponds to the average position of the mouth center, and 5P

corresponds to the average position of the chin’s tip); For simplicity, initialize F with the
feature locations of just the first face image F1 (i.e., F = F1).

Step 2: Using SVD, compute the affine transformation that aligns F with the
predetermined positions Ff=(fP1 , fP2 , fP3 , fP4 , fP5) in the 48 x 40 window.

An affine transformation can be used in this step. Since each pair of corresponding
features must satisfy the affine transformation equations, we have the following
equations:

fP1 =A 1P +b
fP2 =A 2P +b
fP3 =A 3P +b
fP4 =A 4P +b
fP5 =A 5P +b

where

Since there are 10 equations (i.e., two for each feature) in 6 unknowns, the system is over-
determined and can be solved using SVD. By separating the x-coordinates from the y-
coordinates, the above equations can be rewritten as follows:

where

P=























1
1
1
1
1

55

44

33

22

11

YX
YX
YX
YX
YX

 px=























f

f

f

f

f

X
X
X
X
X

5

4

3

2

1

 py=























f

f

f

f

f

Y
Y
Y
Y
Y

5

4

3

2

1

Compute the aligned features F ′=A F +b and update F by setting F = F ′ .

Step 3: For every face image Fi, use SVD to compute the affine transformation (Ai,bi)
that aligns the facial features of Fi with the average facial features F ; let’s call the
aligned features iF ′where iF ′ =Ai Fi+bi.

Step 4: Update F by averaging the aligned feature locations iF ′ for each face image i.

Step 5: If || F (t) - F (t-1)|| is less than a threshold, then stop; otherwise, go to Step 2.

The above algorithm typically converges within 5-7 iterations depending on the threshold used.
For each face image, it yields an affine transformation that maps the face image to the 48 x 40
window. You should verify that the computed affine transformation aligns the facial
features with the fixed facial features.

Computing the affine transformation using SVD

In Step 2 (and 3), you will need to use SVD to find c1 and c2. The function svdcmp(), provided
on the course’s webpage, computes the SVD of an (m x n) matrix A while the function svbksb()
uses the results of svdcmp() to solve Ax=b. I have provided an example (i.e., solve_system.c)
to demonstrate how to use these functions. I would recommend that you first test these
functions by solving an over-determined system of questions whose solution you know. Both
svdcmp() and svdcmp() are from the book “Numerical Recipes in C” which is freely available
on-line (http://www.nr.com/).

http://www.nr.com/

Computing the normalized images

To avoid gaps when computing the normalized images, each point in the normalized images
should be determined by applying the inverse affine transformation equations as shown in
Figure 3. The inverse affine equations are given below. So, you should iterate through every
point in the output image, find the corresponding point in the input image, and copy it over in the
output image. Make sure that you understand how to implement the equation shown
below correctly (i.e., multiply [X’ Y’ 1] with every column of the inverse matrix and divide the
results by the quantity shown).

Figure 3. Inverse affine mapping.

Graduate Students Only

Once a face image has been normalized with respect to position, scale, and orientation, some
light correction can be applied to account for non-uniform illumination (see pages 9-10, from
reference [2]). First, a linear (or higher order) model is fit to the intensity of the image; for
example, the following model can be used:

f(x,y)=ax+by+cxy+d

Each pixel (x,y) in the input image must satisfy the above equation where f(x,y) is the intensity
value of the input image at location (x,y). Using SVD, we can find the "best" coefficients a, b, c,
and d (i.e., in a "least-squares" sense). For an N x M image, this yields NM equations with four
unknowns (i.e., over-determined system).

Figure 4 shows an example; the first row shows some input images while the second row shows
the linear model fit to each of these images. To correct for lighting, simply subtract the linear
model from the original image. The last row of Figure 4 shows some results. Your task in this
part of the assignment will be to apply light normalization on the normalized face images.

a12b2-a22b1 a21b1-a11b2 a11a22-a21a12

Figure 4. Original images (1st row), model fit (2nd row) light-corrected images (3rd row).

What to turn in

You are to turn in a report including a print-out of your source code. Your report should include
the following: a description of the experiments, results (i.e., include graphic output of your
results), discussion of results and comparisons, and a brief summary of what you have learned.
The report is very important in determining your grade for the programming assignment.
Be well organized, type your reports, and include figure captions with a brief description for all
the figures included in your report. Motivation and initiative are greatly encouraged and will earn
extra points.

References

[1] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, January, 1998, pp.
23-38.

[2] G. Bebis, S. Uthiram, and M. Georgiopoulos, "Face Detection and Verification Using Genetic
Search", International Journal on Artificial Intelligence Tools, vol 9, no 2, pp. 225-246, 2000.

