
NoveMBeR 2011 | vol. 54 | No. 11 | commuNicatioNs of the acm 103

VDoi:10.1145/2018396.2018421

The PatchMatch Randomized
Matching Algorithm for Image
Manipulation
By Connelly Barnes, Dan B Goldman, eli Shechtman, and Adam Finkelstein

abstract
This paper presents a new randomized algorithm for quickly
finding approximate nearest neighbor matches between
image patches. Our algorithm offers substantial perfor-
mance improvements over the previous state of the art
(20–100×), enabling its use in new interactive image editing
tools, computer vision, and video applications. Previously,
the cost of computing such matches for an entire image had
eluded efforts to provide interactive performance. The key
insight driving our algorithm is that the elements of our
search domain—patches of image pixels—are correlated,
and thus the search strategy takes advantage of these sta-
tistics. Our algorithm uses two principles: first, that good
patch matches can be found via random sampling, and
second, that natural coherence in the imagery allows us to
propagate such matches quickly to surrounding areas. Our
simple algorithm allows finding a single nearest neighbor
match across translations only, whereas our general algo-
rithm additionally allows matching of k-nearest neighbors,
across all rotations and scales, and matching arbitrary
descriptors. This one simple algorithm forms the basis for a
variety of applications including image retargeting, comple-
tion, reshuffling, object detection, digital forgery detection,
and video summarization.

1. iNtRoDuctioN
As digital and computational photography have matured,
researchers have developed sophisticated methods for ana-
lyzing and editing digital photographs and video. Many of
the most powerful of these methods are patch-based: they
divide the image into many small, overlapping rectangles
of fixed size (e.g., 7 × 7 squares, one defined around every
pixel), called patches, and then manipulate or analyze the
image based on its patches. For example, patch-based
techniques can be used for image retargeting, in which an
image is resized to a new aspect ratio—the computer auto-
matically produces a good likeness of the original image
but with new dimensions. These techniques can also be
used for image completion, in which a user simply erases an
unwanted portion of an image, and the computer automati-
cally synthesizes replacement pixels that plausibly match
the rest of the image.

However, because these algorithms must search and
manipulate millions of patches, performance in many cases
had previously been far from interactive: operations such as
image completion could previously take minutes.24

In this paper we describe an algorithm that accelerates
many patch-based methods by at least an order of magni-
tude. This makes it possible to apply many powerful tech-
niques for image editing for the first time in an interactive
interface, as shown in Figure 1. We also offer intuitive
controls for our image editing interface. Further, our algo-
rithm is not limited to image editing, and can be applied
to many techniques that use image patches. We report our
experiences using our algorithm in object detection, digital
forgery detection, and video summarization. Because our
algorithm is a fairly general mathematical tool, we believe
similar techniques could be used for other application
domains in vision, graphics, or other fields where dense
matchings are desired.

To understand our matching algorithm, we must
consider the common components of patch-based algo-
rithms: The core element of nonparametric patch sam-
pling methods is a repeated search of all patches in one
image region for the most similar patch in another image
region. In other words, given images or regions A and B,
find for every patch in A the nearest neighbor in B under a
patch distance metric such as Lp. We call this mapping the
Nearest Neighbor Field (NNF), illustrated schematically in
the inset figure. Approaching this prob-
lem with a naïve brute force search is
expensive—O(mM2) for image regions
and patches of size M and m pixels,
respectively. Even using acceleration
methods such as approximate nearest
neighbors15 and dimensionality reduc-
tion, this search step remains the bottle-
neck of nonparametric patch sampling
methods, preventing them from attain-
ing interactive speeds. Furthermore,
these tree-based acceleration structures
use memory on the order of O(M) or
higher with relatively large constants,
limiting their application for high resolution imagery.

To design an efficient search algorithm we look at
the statistics of natural images—photographs of real
objects—and design a good search strategy by taking

The original version of this paper is entitled “PatchMatch:
A Randomized Correspondence Algorithm for Structural
Image Editing” and was published in ACM Transactions
of Graphics (Proc. SIGGRAPH), August 2009.

104 commuNicatioNs of the acm | NoveMBeR 2011 | vol. 54 | No. 11

research�highlights�

advantage of these statistics. Specifically, we look at the
correlation between adjacent patches, and find that they
are highly correlated. For example, as shown in Figure 2,
given an approximate match between patches with patch
distance D, the locations of matches with patch distance
less than D are not uniformly distributed throughout the
image, but instead follow a peaked distribution. We can
also ask in the ground truth nearest neighbor matches,
for two patches that are horizontally or vertically adja-
cent, how far apart spatially are their matches? This is
visualized as a histogram in Figure 3 which again shows a
peaked distribution.

Such biased distributions allow us to devise an efficient
iterative search strategy for natural images—PatchMatch—
that focuses computational effort on regions most likely to
produce good matches. It converges for all images in the
limit, but converges extremely quickly for natural images
that follow its prior assumptions. We make several observa-
tions about the problem:

Dimensionality of offset space. First, although the
dimensionality of the patch space is large (m dimensions),
it is sparsely populated (O(M) patches). Many previous
methods have accelerated the nearest neighbor search by
attacking the dimensionality of the patch space using tree
structures (e.g., kd-tree), and dimensionality reduction
methods (e.g., PCA). In contrast, our algorithm searches in
the 2-D space of possible patch offsets, achieving greater
speed and memory efficiency.

natural structure of images. Second, the usual indepen-
dent search for each pixel ignores the natural structure in
images. In patch-sampling synthesis algorithms, the output

typically contains large contiguous chunks of data from the
input (as observed by Ashikhmin1). Thus we can improve
efficiency by performing searches for adjacent pixels in an
interdependent manner.

the law of large numbers. Finally, whereas any one ran-
dom choice of patch assignment is very unlikely to be a good
guess, some nontrivial fraction of a large field of random
assignments will likely be good guesses. As this field grows
larger, the chance that no patch will have a correct offset
becomes vanishingly small.

Based on these three observations we offer a random-
ized algorithm for computing approximate NNFs using
incremental updates (Section 3). The algorithm begins with
an initial guess, which may be derived from prior informa-
tion or may simply be a random field. The iterative process
consists of two phases alternated at each patch: propaga-
tion, in which coherence is used to disseminate good solu-
tions to adjacent pixels in the field; and random search, in
which the current offset vector is perturbed by multiple
scales of random offsets. Theoretical and empirical tests
show the algorithm has good convergence properties for
tested imagery up to 2 MP, and our CPU implementation
shows speedups of 20–100 times versus kd-trees with PCA.
Tree methods search in time O(cmmM), and incur the “curse
of dimensionality:” cm is exponential in the patch dimen-
sion m [15]. In contrast, our algorithm takes time O(NmM),
where N is the number of iterations (typically 5 when
searching translations and 20 for rotations and scales). In

(a) Original (b) Hole + constraints (c) Hole filled (d) Constraints (e) Constrained retarget (f) Reshuffle

figure 1. manipulating images using our interactive tools. Left to right: (a) the original image; (b) a hole is marked (magenta) and we use line
constraints (red/green/blue) to improve the continuity of the roofline; (c) the hole is filled in; (d) user-supplied line constraints for retargeting;
(e) retargeting using constraints eliminates two columns automatically; and (f) user translates the roof upward using reshuffling.

figure 2. Given an approximate match between patches with patch
distance D, these 2D histograms show peaked distributions of
the (x, y) coordinates where better matches are located. a better
initial match with lower distance D causes more peaking. this is
averaged over a dataset of more than 100 similar and dissimilar
natural image pairs. Note the center pixel is black, but this is not
visible at print resolution.

D = 50 D = 25 D = 10

0
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

5 10 15 20 25 30 35 40

figure 3. histogram showing a correlation between adjacent patches’
nearest neighbors. on the horizontal axis, we measure how far apart are
nearest neighbors of adjacent patches, in euclidean 2D distance. on the
vertical axis, we count the number of patches with a given distance. most
patches have zero euclidean distance, indicating perfect coherence.

NoveMBeR 2011 | vol. 54 | No. 11 | commuNicatioNs of the acm 105

addition, unlike kd-trees, our algorithm uses substantially
less auxiliary memory.

2. ReLateD WoRk
Patch-based sampling methods have become a popular tool
for image and video synthesis and analysis. Applications
include texture synthesis, image and video completion,
summarization and retargeting, image recomposition and
editing, image stitching and collages, new view synthesis,
morphing, noise removal, super-resolution and more. We will
next review some of these applications and discuss the com-
mon search techniques that they use as well as their degree of
interactivity.

nearest neighbor search methods. Correspondence
searches can be classified as either local, where a search is
performed in a limited spatial window, or global, where all
possible displacements are considered. Correspondences
can also be classified as sparse, determined only at a subset
of key feature points, or dense, determined at every pixel or
on a dense grid in the input. For efficiency, many algorithms
only use local or sparse correspondences. Local search can
only identify small displacements, so multiresolution refine-
ment is often used (e.g., in optical-flow3), but large motions
of small objects can be missed. Sparse keypoint14 correspon-
dences are commonly used for alignment, 3D reconstruc-
tion, and object detection and recognition. These methods
work best on textured scenes at high resolution, but are less
effective in other cases.

Dense patch-based methods. Those methods that find
both dense and global matches have often had high time
cost in the matching stage. Moreover, whereas in texture
synthesis the texture example is usually a small image, in
other applications such as patch-based completion, retar-
geting and reshuffling, the input image is typically much
larger, making the search problem even more critical.
Various speedups for this search have been proposed, gen-
erally involving tree structures such as TSVQ23, kd-trees,10, 24
and VP-trees,12 each of which supports both exact and
approximate search (ANN). The FLANN method16 automati-
cally chooses which tree algorithm to use according to the
data. In synthesis applications, approximate search is often
used in conjunction with dimensionality reduction tech-
niques such as PCA,10 because ANN methods are much more
time- and memory-efficient in low dimensions. Ashikhmin1
proposed a local propagation technique exploiting local
coherence in the synthesis process by limiting the search
space for a patch to the source locations of its neighbors in
the exemplar texture. The propagation step of our algorithm
is inspired by the same coherence assumption. The k-coher-
ence technique21 combines the propagation idea with a pre-
computation stage in which the k nearest neighbors of each
patch are cached, and later searches take advantage of these
precomputed sets. Although this accelerates the search
phase, k-coherence still requires a full nearest-neighbor
search for all pixels in the input. It assumes that the initial
offsets are close enough that only a small number of nearest
neighbors need to be searched. This may be true for small
pure texture inputs, but we found that for large complex
images our random search phase is required to escape local

minima. In this work we compare speed and memory usage
of our algorithm against kd-trees with dimensionality reduc-
tion, and we show that it is at least an order of magnitude
faster than the best competing combination (ANN + PCA)
and uses significantly less memory. Our algorithm also
provides more generality than kd-trees because it can be
applied with arbitrary nonlinear distance metrics, allows
searching over additional continuous domains such as rota-
tion and scale, and can be easily modified with constraints
in the image space to preserve structures and enable local
interactions. Locality sensitive hashing is an alternative to
tree structures that can be used to search image patches,18
but it also requires substantial additional memory and a
precomputation step, unlike our algorithm.

matching across rotations and scales. When search
across a large range of scales and rotations is required, a
dense search was previously considered impractical due to
the high dimensionality of the search space. The common
way to deal with this case is via keypoint detectors.14 These
detectors either find a local scale and orientation for each
keypoint or do an affine normalization. These approaches
are not always reliable due to image structure ambiguities
and noise. Our generalized matching algorithm can operate
on any common image descriptors (e.g., SIFT) and unlike
many of the above tree structures, supports any distance
function. Even while the algorithm naturally supports dense
global matching, it may also be constrained to only accept
matches in a local window if desired.

texture synthesis and completion. Efros and Leung9
introduced a simple nonparametric texture synthesis
method that outperformed many previous model based
methods by sampling patches from a texture example and
pasting them in the synthesized image. Further improve-
ments modify the search and sampling approaches for
better structure preservation.1, 23 The greedy fill-in order
of these algorithms sometimes introduces inconsisten-
cies when completing large holes with complex structures,
but Wexler et al.24 formulated a related problem of image
completion as a global optimization, thus obtaining more
globally consistent synthesis of large missing regions. This
iterative multiscale optimization algorithm repeatedly
searches for nearest neighbor patches for all hole pixels in
parallel. Although their original implementation was typi-
cally slow (a few minutes for images smaller than 1 mega-
pixel), our algorithm makes this technique applicable to
much larger images at interactive rates. Patch optimization
based approaches have now become common practice in
texture synthesis.22

Control and interactivity. One advantage of patch sam-
pling schemes is that they offer a great deal of fine-scale
control. For example, in texture synthesis, the method of
Ashikhmin1 gives the user control over the process by ini-
tializing the output pixels with desired colors. The Image
Analogies framework of Hertzmann et al.10 uses auxiliary
images as “guiding layers,” enabling a variety of effects
including super-resolution, texture transfer, artistic filters,
and texture-by-numbers. In the field of image completion,
impressive guided filling results were shown by annotating
structures that cross both inside and outside the missing

106 commuNicatioNs of the acm | NoveMBeR 2011 | vol. 54 | No. 11

research�highlights�

region.20 Lines are filled first using belief propagation, and
then texture synthesis is applied for the other regions, but
the overall run-time is on the order of minutes for a 0.5
megapixel image. Our system provides similar user annota-
tions, for lines and other region constraints, but treats all
regions in a unified iterative process at interactive rates.

image retargeting. Many methods of image retarget-
ing have applied warping or cropping, using some metric
of saliency to avoid deforming important image regions.25
Seam carving2 uses a simple greedy approach to prioritize
seams in an image that can safely be removed in retarget-
ing. Although seam carving is fast, it does not preserve
structures well, and offers only limited control over the
results. Simakov et al.19 proposed framing the problem of
image and video retargeting as a maximization of bidirec-
tional similarity between small patches in the original and
output images, and a similar objective function and opti-
mization algorithm was independently proposed by Wei
et al.22 as a method to create texture summaries for faster
synthesis. Unfortunately, the approach of Simakov et al. is
extremely slow compared to seam carving. Our constrained
retargeting and image reshuffling applications employ the
same objective function and iterative algorithm as Simakov
et al., using our new nearest-neighbor algorithm to obtain
interactive speeds.

image “reshuffling” is the rearrangement of content in
an image, according to user input, without precise mattes.
Reshuffling was demonstrated simultaneously by Simakov
et al.19 and Cho et al.,8 who used larger image patches and
belief propagation in an MRF formulation. Reshuffling
requires the minimization of a global error function, as
objects may move significant distances, and greedy algo-
rithms will introduce large artifacts. In contrast to all pre-
vious work, our reshuffling method is fully interactive. As
this task might be particularly hard and badly constrained,
these algorithms do not always produce the expected result.
Therefore interactivity is essential, as it allows the user to
preserve some semantically important structures from
being reshuffled, and to quickly choose the best result
among alternatives.

object detection, digital forgeries, and collages. In addi-
tion to image editing, our algorithm can be applied to other
problems in image analysis and video. For object detec-
tion, we take an approach similar to deformable template
models.11 Unlike previous approaches, we do not need to
restrict our matching to sparse interest points or detect
principle scales or orientations. We can instead use our
matching algorithm to match all patches across all scales
and orientations. For digital forgery detection, Popescu
and Farid17 previously demonstrated a method that can
find regions of an image duplicated by a clone tool, by
sorting image blocks after discarding JPEG compression
artifacts. Our method works similarly. Our method is not
robust to JPEG artifacts, but uses our more general match-
ing algorithm, so it could potentially be generalized to
find different types of forgeries such as those produced by
our automatic hole filling. Finally, images can be stitched
into collages8, 19 using patch-based methods. We use this
approach for our video summarization application.

3. matchiNG aLGoRithm
In this section we describe our core matching algorithm,
which accelerates the problem of finding nearest neighbor
patches by 20–100 x over previous work. Our algorithm is a
randomized approximation algorithm: it does not always
return the exact nearest neighbor, but returns a good
approximate nearest neighbor quickly, and improves the
estimate with each iteration.

For brevity’s sake, in this paper we present a simplified
version of the algorithm that searches for only one near-
est neighbor per-patch, across only two translation dimen-
sions. There will be more discussion of extensions later.

3.1. high level motivation
The high level intuition behind our algorithm is shown
in Figure 4. We have two images A and B with patches
visualized as colored rectangles. We wish to find for each
patch in A the most similar patch in B. We do this by tak-
ing advantage of spatial locality properties: when we have
a good match, we can propagate it to adjacent points on
the image, and if we have a reasonable match, we can try
to improve it by randomly searching for better matches
around the target position.

We define a NNF as a function f: A  R2 of nearest neigh-
bors, defined over all possible patch coordinates (locations
of patch centers) in image A, for some distance function of
two patches D. Given patch coordinate a in image A and its
corresponding nearest neighbor b in image B, f (a) is sim-
ply b.a We refer to the values of f as nearest neighbors, and they
are stored in an array whose dimensions are those of A.

As a reminder, our key insights are to search in the space
of possible coordinate offsets, to search over adjacent
patches cooperatively, and that even random coordinate
assignments are likely to be a good guess for many patches
over a large image.

The algorithm has three main components, illustrated
in Figure 5. Initially, the NNF is filled with either uniform
random assignments or some prior information. Next, an
iterative update process is applied to the NNF, in which
good patch nearest neighbors are propagated to adjacent

a Our notation is in absolute coordinates, versus relative coordinates in
Barnes et al.6

figure 4. illustration of the matching problem. for each patch in
image A, we find the most similar patch in image B. sometimes
patches that overlap have identical or coherent matches (shown
in the yellow and green matches), and sometimes the matching
coordinates are nearby (the red match).

NoveMBeR 2011 | vol. 54 | No. 11 | commuNicatioNs of the acm 107

pixels, followed by random search in the neighborhood of
the best nearest neighbor found so far. Sections 3.2 and 3.3
describe these steps in more detail.

3.2. initialization
The NNF can be initialized either by assigning random val-
ues to the field, or by using prior information. When ini-
tializing with random values, we use independent uniform
samples across the full range of image B. The image editing
applications described in Section 4 repeat the search pro-
cess in a coarse-to-fine pyramid, interleaving search and
reconstruction at each scale. So we have the option to use
the previous solution—possibly upscaled from a coarser
level of the pyramid—as an initial guess. However, if we
use only this initial guess, the algorithm can sometimes get
trapped in suboptimal local minima. To retain the quality
of this prior but still preserve some ability to escape from
such minima, we perform a few early iterations of the algo-
rithm using a random initialization, then merge with the
initial guess only at patches where D is smaller, and then
perform the remaining iterations. This gives a good trad-
eoff of retaining local minima found on previous iterations
without getting stuck there.

3.3. iteration
After initialization, we iteratively improve the NNF. Each
iteration of the algorithm proceeds as follows: nearest
neighbors are examined in scan order (from left to right,
top to bottom), and each undergoes propagation followed by
random search. These operations are interleaved at the patch
level: if Pj and Sj denote, respectively, propagation and ran-
dom search at patch j, then we proceed in the order: P1, S1,
P2, S2,…, Pn, Sn.

Propagation. We attempt to improve f (x,y) using the
known nearest neighbors of f (x − 1, y) and f (x, y − 1), assum-
ing that the patch coordinates are likely to be offset by the
same relative translation one pixel to the right or down. For
example, if there is a good mapping at (x − 1, y), we try to use
the translation of that mapping one pixel to the right for our

mapping at (x, y). Let z = (x, y). The new candidates for f (z)
are f (z − Dp) + Dp, where Dp takes on the values of (1, 0) and
(0, 1). Propagation takes a downhill step if either candidate
provides a smaller patch distance D.

The effect is that if (x, y) has a correct mapping and
is in a coherent region R, then all of R below and to the
right of (x, y) will be filled with the correct mapping.
Moreover, on even iterations we propagate information
up and left by examining patches in reverse scan order,
and using candidates below and to the right. If used in
isolation, propagation converges very quickly, but ends
up in a local minimum. So a second set of trials employs
random search.

random search. A sequence of candidates is sampled
from an exponential distribution, and the current nearest
neighbor is improved if any of the candidates has smaller
distance D. Let v0 be the current nearest neighbor f (z).
We attempt to improve f (z) by testing a sequence of can-
didate mappings at an exponentially decreasing distance
from v0:

 ui = v0 + wa i ri (1)

where ri is a uniform random in [−1, 1] × [−1, 1], w is a large
maximum search “radius,” and a is a fixed ratio between
search window sizes. We examine patches for i = 0, 1, 2,…
until the current search radius wa i is below 1 pixel. In our
applications w is the maximum image dimension, and
a = 1/2, except where noted. Note the search window must
be clamped to the bounds of B.

halting criteria. Although different criteria for halt-
ing may be used depending on the application, in practice
we have found it works well to iterate a fixed number of
times. All the results shown here were computed with 4–5
iterations total, after which the NNF has almost always con-
verged. Convergence is illustrated in Figure 6.

efficiency. The efficiency of this naive approach can be
improved in a few ways. In the propagation and random
search phases, when attempting to improve an offset f(z)
with a candidate offset u, early termination can be used if a
partial sum for the patch distance exceeds the current best
known patch distance. Also, in the propagation stage, when
using square patches of side length p and an Lq norm, the
change in distance can be computed incrementally in O(p)
rather than O(p2) time, by noting redundant terms in the
summation over the overlap region. However, this incurs
additional memory overhead to store the current best dis-
tances D(f (x, y)).

3.4. Discussion
Our algorithm converges quickly to a good approximate
solution in a small number of iterations. We compared
our convergence with competing methods such as kd-trees
with PCA, vp-trees with PCA, and theoretically analyzed
the convergence properties of our algorithm.6 We found
that for equal matching error, and low numbers of itera-
tions, our algorithm is 20–100 x faster than the best com-
peting algorithm, kd-tree with PCA, and uses substantially
less memory.

figure 5. Phases of the randomized nearest neighbor algorithm:
(a) patches initially have random assignments; (b) the blue
patch checks above/green and left/red neighbors to see if they
will improve the blue mapping, propagating good matches;
(c) the patch searches randomly for improvements in concentric
neighborhoods.

(a) Initialization

A A A

B B B

(b) Propagation (c) Search

108 commuNicatioNs of the acm | NoveMBeR 2011 | vol. 54 | No. 11

research�highlights�

Our algorithm bears some superficial similarity to Belief
Propagation and Graph Cuts algorithms often used to
solve Markov Random Fields on an image grid. However,
unlike the MRF models, our algorithm does not have a
neighborhood term that explicitly creates smooth or coher-
ent matches. Because our search algorithm finds coher-
ent regions in early iterations, our matches implicitly err
towards coherence. Thus our approach is sufficient for
many practical synthesis applications, while avoiding the
computational expense of MRF approaches.

4. aPPLicatioNs
We have presented a fast algorithm for finding good
matches between patches in arbitrary images. Based on our
algorithm, we have developed an interactive interface for
editing images, using sophisticated patch-based synthesis
techniques. Our synthesis uses the framework of Simakov
et al.,19 which was previously demonstrated on synthesis
tasks such as image collages, reshuffling, retargeting, auto-
matic cropping, and the analogues of these in video. This
method works by iteratively improving a current output
image, starting at a coarse resolution and proceeding to
finer resolutions, in each iteration repeatedly making sure
all patches in the source image are present in the current
result, and vice versa. Thus at the core of this method is our
correspondence algorithm, which is used to query patches
in both query directions. If instead we define a region of
undesired content (a “hole”) to be removed from an image,
the method of Simakov becomes very similar to the image
completion algorithm of Wexler et al.24 Thus, undesired
objects can be removed from photographs using the same
synthesis framework. However, Simakov et al. reported sev-
eral minutes to generate output images. Because our object
removal technique offers high quality results with low syn-
thesis time, it is suitable for commercial deployment, and
has been implemented as the new Content-Aware Fill fea-
ture in Adobe Photoshop CS5.

For many of these applications, our interactive inter-
face allows the user to receive feedback in seconds. Many
synthesis techniques are therefore interactive for the first
time because of our algorithm. We also offer the user new

interactive controls for guiding the output image with
constraints.

We show a number of example user interactions in
Figure 1. These include automatically replacing an unde-
sired image region, as well as retargeting the image to
change aspect ratio (using constraints to prevent pillars
from breaking), and reshuffling, or moving up the roof of
the building. In Figure 7 we show removal of an undesired
object. In Figure 8 we show how some of our constraints
can prevent a building from bending or breaking during
the retargeting process. Because our synthesis framework
works by iteratively modifying the output image to the
desired resolution, features tend to bend or break slowly,
so constraints can be applied during the iterative process
to prevent breaks. In Figure 9 we show a local scale tool
that allows a region to be scaled while preserving texture.
In Figure 10 we show how many of these tools can be com-
bined in a workflow of editing architecture.

We have also investigated additional applications such as
object detection, label transfer, symmetry detection, denois-
ing, detecting digital forgeries,7 and video summarization.5
We present some results for object detection, forgery detec-
tion, and video summarization here.

For many of these applications, more general variants
of our matching algorithm are needed. We have developed
a generalization of our matching algorithm7 that searches
over all rotations and scales (useful for object detection),
finds k nearest neighbors instead of a single nearest neigh-
bor b (useful for detecting digital forgeries), and matches

(a) Originals (b) Random (c) 1
4 iter (d) 3

4 iter (e) 1 iter (f) 2 iters (g) 5 iters

figure 6. illustration of convergence. (a) the top image is reconstructed using only patches from the bottom image, (b) above: the reconstruction
by patch “voting” (each patch looks up its nearest neighbor’s colors, and these are averaged for all overlapping patches), below: a random
initial offset field, with magnitude visualized as saturation and angle visualized as hue, (c) 1/4 of the way through the first iteration, high-quality
offsets have been propagated in the region above the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first
iteration, (e) first iteration complete, (f) two iterations, and (g) after five iterations, almost all patches have stopped changing.

(a) Input (b) Hole and guides (c) Completion result

figure 7. example of guided image completion. the bird is removed
from input (a). the user marks the completion region and labels
constraints on the search in (b), producing the output (c) in a few
seconds.

NoveMBeR 2011 | vol. 54 | No. 11 | commuNicatioNs of the acm 109

arbitrary descriptors, that is, vectors computed at each
pixel (useful for matching features, e.g., SIFT features that
are robust to camera and lighting changes). These gener-
alizations are simple and natural extensions of our origi-
nal algorithm.

In Figure 11 we show an example of object detection.
The algorithm accepts a template image to be found within
a large target image. The template is then located by break-
ing both images into small square patches, then running our
matching algorithm across all rotations and scales, with a
patch descriptor that compensates for changes in lighting.
Then for each template object, the resulting NNF is used to
estimate the pose, after rejecting outliers due to occlusions
and poor matches.

We show a second application of detecting digital forgeries
made by the “clone brush” in Figure 12. When a user forges
an image in this way, he or she removes an object by manu-
ally replacing it with a different region of the same image.
Therefore, in the forged image some patches are duplicated in
large coherent regions. We detect these by using our match-
ing algorithm to find, for each patch, its k-nearest neighbors
within the same image. Then we detect cloned regions by
locating large regions in the NNF that are roughly coherent.

We finally present our video summarization system,5 shown
in Figure 13. This system automatically selects and collages

figure 8. constraints. the original image (a) is retargeted without
constraints (b). constraints indicated by colored lines produce
straight lines and the circle is scaled down to fit the limited space (c).

(a) Original (b) Retargeted (c) With constraints

(a) Building marked by user (b) Scaled up, preserving texture

figure 9. example using local scale tool. the user marks a source
polygon (a), and then applies a nonuniform scale (b) to the polygon,
while preserving texture.

figure 10. modifying architecture with reshuffling. the images
contain many repetitions, so the algorithm can often produce
plausible output even when subject to extreme constraints.

b Note that Liu and Freeman13 also investigated k-NN search based on our
algorithm.

figure 11. Detecting objects. templates, left, are matched to the
image, right. square patches are matched, searching over all
rotations and scales.

video frames to produce a seamlessly zoomable visual time-
line. This timeline can be used as an alternative to the simple
scrollbars typically used in video players. The user can select a
desired scene to move to with the mouse. Or, to see more details
from a given part of the film, the user can smoothly zoom in to
expose more details from that part of the film. We produce our
collages using patch-based synthesis, and because of the speed
of our algorithm, we can produce timelines interactively.

5. futuRe WoRk
We believe our algorithm can be extended to different search
domains such as 1D (e.g., audio) and 3D geometry, and allow

110 commuNicatioNs of the acm | NoveMBeR 2011 | vol. 54 | No. 11

research�highlights�

for other new applications such as synthesis of 3D geometry
or stereo depth maps. For extensive detail on the matching
algorithms, image statistics, applications, and directions
for future work, consult Barnes.4

Our research has led us to an important conclusion
about the design of image manipulation algorithms: by
understanding the natural statistics of a problem domain,
one can often customize a solution strategy around those
statistics. In our case, by understanding the correlations
between different nodes (pixels of an image), we designed
the search strategy to take advantage of these statistics. We
are excited about the potential of our techniques to acceler-
ate search in many different domains, as well as the future
work it has opened up.

acknowledgments
We would like to thank the following Flickr users for Creative
Commons imagery: Sevenbrane (Greek temple), Wili (boys), Moi
of Ra (flowers), and Celie (pagoda). This work was sponsored in
part by Adobe Systems and the NSF grant IIS-0511965.

References

 1. ashikhmin, m. synthesizing natural
textures. In I3D Proceedings (2001).
aCm, 217–226.

 2. avidan, s., shamir, a. seam carving for
content-aware image resizing. ACM
Trans. Gr. (Proc. SIGGRAPH) 26, 3
(2007), 10.

 3. baker, s., scharstein, d., lewis, J.,
roth, s., black, m., szeliski, r. a
database and evaluation methodology
for optical flow. In Proceedings of
ICCV, volume 5, 2007.

 4. barnes, C. Patchmatch: a Fast
randomized matching algorithm with
application to Image and Video. Ph.d.
thesis. Princeton university, Princeton,
nJ. may 2011.

 5. barnes, C., goldman, d.b., shechtman,
e., Finkelstein, a. Video tapestries
with continuous temporal zoom. ACM
Trans. Gr. (Proc. SIGGRAPH) 29, 3
(aug. 2010).

 6. barnes, C., shechtman, e., Finkelstein,
a., goldman, d. Patchmatch: a
randomized correspondence algorithm
for structural image editing. ACM
Trans. Gr. (Proc. SIGGRAPH) 28, 3
(2009), 24.

 7. barnes, C., shechtman, e., goldman,
d.b., Finkelstein, a. the generalized
Patchmatch correspondence
algorithm. In ECCV, sept. 2010.

 8. Cho, t.s., butman, m., avidan, s.,
Freeman, w. the patch transform and
its applications to image editing. In
IEEE Computer Society Conference
on Computer Vision and Pattern
Recognition (CVPR), 2008.

 9. efros, a.a., leung, t.K. texture
synthesis by non-parametric sampling.
IEEE ICCV 2 (1999), 1033.

 10. hertzmann, a., Jacobs, C.e., oliver, n.,
Curless, b., salesin, d. Image analogies.
In ACM Transactions on Graphics (Proc.
SIGGRAPH) (2001), 327–340.

 11. Jain, a., Zhong, y., dubuisson-Jolly,
m. deformable template models:
a review. Signal Process. 71, 2 (1998),
109–129.

 12. Kumar, n., Zhang, l., nayar, s.K. what
is a good nearest neighbors algorithm
for finding similar patches in images?
In ECCV (2008), II, 364–378.

 13. liu, C., Freeman, w. a high-quality
video denoising algorithm based
on reliable motion estimation. In
Proceedings of the ECCV, 2010.

 14. mikolajczyk, K., schmid, C. a
performance evaluation of local
descriptors. IEEE Pattern Anal.
Mach. Intell. (PAMI) 27, 10 (2005),
1615–1630.

 15. mount, d.m., arya, s. ann: a library
for approximate nearest neighbor
searching. oct. 28, 1997.

 16. muja, m., lowe, d. Fast approximate
nearest neighbors with automatic
algorithm configuration. In
International Conference on
Computer Vision Theory and
Applications (VISAPP), 2009.

 17. Popescu, a., Farid, h. Exposing Digital
Forgeries by Detecting Duplicated
Image Regions. technical report.
department of Computer science,
dartmouth College, 2004.

 18. shapira, l., avidan, s., shamir, a.
mode-detection via median-shift.
In IEEE Computer Vision and Pattern
Recognition (CVPR) (2009), Ieee,
1909–1916.

 19. simakov, d., Caspi, y., shechtman,
e., Irani, m. summarizing visual
data using bidirectional similarity.
In IEEE Computer Vision and Pattern
Recognition (CVPR), anchorage, aK,
2008.

 20. sun, J., yuan, l., Jia, J., shum, h.-y.
Image completion with structure
propagation. In ACM Transactions on
Graphics (Proc. SIGGRAPH) (2005),
861–868.

 21. tong, x., Zhang, J., liu, l., wang, x., guo,
b., shum, h.-y. synthesis of bidirectional
texture functions on arbitrary surfaces.
ACM Trans. Gr. (Proc. SIGGRAPH) 21, 3
(July 2002), 665–672.

 22. wei, l.-y., han, J., Zhou, K., bao, h.,
guo, b., shum, h.-y. Inverse texture
synthesis. ACM Trans. Gr. (Proc.
SIGGRAPH) 27, 3 (2008).

 23. wei, l.y., levoy, m. Fast texture
synthesis using tree-structured vector
quantization. In ACM Transactions on
Graphics (Proc. SIGGRAPH) (2000),
479–488.

 24. wexler, y., shechtman, e., Irani, m.
space-time completion of video. IEEE
Pattern Anal. Mach. Intell. (PAMI) 29,
3 (2007), 463–476.

 25. wolf, l., guttmann, m., Cohen-or, d.
non-homogeneous content-driven
video-retargeting. In IEEE ICCV,
2007.

Connelly Barnes, Princeton university,
Princeton, nJ.

Dan B Goldman, adobe systems,
seattle, wa.

Eli Shechtman, adobe systems,
seattle, wa.

Adam Finkelstein, Princeton university,
Princeton, nJ.

figure 12. Detecting image regions forged using the clone brush:
(a) the original, untampered image, (b) the forged image, and
(c) the cloned regions detected by our algorithm. (imagery courtesy
of Popescu and farid.17)

(a) Original (b) Forged (c) Detected forgery

figure 13. a multiscale tapestry represents an input video as
a seamless and zoomable summary image that can be used to
navigate through the video. this visualization eliminates hard
borders between frames, providing spatial continuity and also
continuous zooms to finer temporal resolutions. this figure depicts
three discrete scale levels for the film Elephants Dream (courtesy of
the Blender foundation). the lines between the scale levels indicate
the corresponding domains between scales.

© 2011 aCm 0001-0782/11/11 $10.00

