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abstract
This paper presents a new randomized algorithm for quickly 
finding approximate nearest neighbor matches between 
image patches. Our algorithm offers substantial perfor-
mance improvements over the previous state of the art 
(20–100×), enabling its use in new interactive image editing 
tools, computer vision, and video applications. Previously, 
the cost of computing such matches for an entire image had 
eluded efforts to provide interactive performance. The key 
insight driving our algorithm is that the elements of our 
search domain—patches of image pixels—are correlated, 
and thus the search strategy takes advantage of these sta-
tistics. Our algorithm uses two principles: first, that good 
patch matches can be found via random sampling, and 
second, that natural coherence in the imagery allows us to 
propagate such matches quickly to surrounding areas. Our 
simple algorithm allows finding a single nearest neighbor 
match across translations only, whereas our general algo-
rithm additionally allows matching of k-nearest neighbors, 
across all rotations and scales, and matching arbitrary 
descriptors. This one simple algorithm forms the basis for a 
variety of applications including image retargeting, comple-
tion, reshuffling, object detection, digital forgery detection, 
and video summarization.

1. iNtRoDuctioN
As digital and computational photography have matured, 
researchers have developed sophisticated methods for ana-
lyzing and editing digital photographs and video. Many of 
the most powerful of these methods are patch-based: they 
divide the image into many small, overlapping rectangles 
of fixed size (e.g., 7 × 7 squares, one defined around every 
pixel), called patches, and then manipulate or analyze the 
image based on its patches. For example, patch-based 
techniques can be used for image retargeting, in which an 
image is resized to a new aspect ratio—the computer auto-
matically produces a good likeness of the original image 
but with new dimensions. These techniques can also be 
used for image completion, in which a user simply erases an 
unwanted portion of an image, and the computer automati-
cally synthesizes replacement  pixels that plausibly match 
the rest of the image.

However, because these algorithms must search and 
manipulate millions of patches, performance in many cases 
had previously been far from interactive: operations such as 
image completion could previously take minutes.24

In this paper we describe an algorithm that accelerates 
many patch-based methods by at least an order of magni-
tude. This makes it possible to apply many powerful tech-
niques for image editing for the first time in an interactive 
interface, as shown in Figure 1. We also offer intuitive 
controls for our image editing interface. Further, our algo-
rithm is not limited to image editing, and can be applied 
to many techniques that use image patches. We report our 
experiences using our algorithm in object detection, digital 
forgery detection, and video summarization. Because our 
algorithm is a fairly general mathematical tool, we believe 
similar techniques could be used for other application 
domains in vision, graphics, or other fields where dense 
matchings are desired.

To understand our matching algorithm, we must 
consider the common components of patch-based algo-
rithms: The core element of nonparametric patch sam-
pling methods is a repeated search of all patches in one 
image region for the most similar patch in another image 
region. In other words, given images or regions A and B, 
find for every patch in A the nearest neighbor in B under a 
patch distance metric such as Lp. We call this mapping the 
Nearest Neighbor Field (NNF), illustrated schematically in 
the inset figure. Approaching this prob-
lem with a naïve brute force search is 
expensive—O(mM2) for image regions 
and patches of size M and m pixels, 
respectively. Even using acceleration 
methods such as approximate nearest 
neighbors15 and dimensionality reduc-
tion, this search step remains the bottle-
neck of nonparametric patch sampling 
methods, preventing them from attain-
ing interactive speeds. Furthermore, 
these tree-based acceleration structures 
use memory on the order of O(M) or 
higher with relatively large constants, 
limiting their application for high resolution imagery.

To design an efficient search algorithm we look at 
the statistics of natural images—photographs of real 
objects—and design a good search strategy by taking 

The original version of this paper is entitled “PatchMatch: 
A Randomized Correspondence Algorithm for Structural 
Image Editing” and was published in ACM Transactions 
of Graphics (Proc. SIGGRAPH), August 2009.
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advantage of these statistics. Specifically, we look at the 
correlation between adjacent patches, and find that they 
are highly correlated. For example, as shown in Figure 2, 
given an approximate match between patches with patch 
distance D, the locations of matches with patch distance 
less than D are not uniformly distributed throughout the 
image, but instead follow a peaked distribution. We can 
also ask in the ground truth nearest neighbor matches, 
for two patches that are horizontally or vertically adja-
cent, how far apart spatially are their matches? This is 
visualized as a histogram in Figure 3 which again shows a 
peaked distribution.

Such biased distributions allow us to devise an efficient 
iterative search strategy for natural images—PatchMatch—
that focuses computational effort on regions most likely to 
produce good matches. It converges for all images in the 
limit, but converges extremely quickly for natural images 
that follow its prior assumptions. We make several observa-
tions about the problem:

Dimensionality of offset space. First, although the 
dimensionality of the patch space is large (m dimensions), 
it is sparsely populated (O(M) patches). Many previous 
methods have accelerated the nearest neighbor search by 
attacking the dimensionality of the patch space using tree 
structures (e.g., kd-tree), and dimensionality reduction 
methods (e.g., PCA). In contrast, our algorithm searches in 
the 2-D space of possible patch offsets, achieving greater 
speed and memory efficiency.

natural structure of images. Second, the usual indepen-
dent search for each pixel ignores the natural structure in 
images. In patch-sampling synthesis algorithms, the output 

typically contains large contiguous chunks of data from the 
input (as observed by Ashikhmin1). Thus we can improve 
efficiency by performing searches for adjacent pixels in an 
interdependent manner.

the law of large numbers. Finally, whereas any one ran-
dom choice of patch assignment is very unlikely to be a good 
guess, some nontrivial fraction of a large field of random 
assignments will likely be good guesses. As this field grows 
larger, the chance that no patch will have a correct offset 
becomes vanishingly small.

Based on these three observations we offer a random-
ized algorithm for computing approximate NNFs using 
incremental updates (Section 3). The algorithm begins with 
an initial guess, which may be derived from prior informa-
tion or may simply be a random field. The iterative process 
consists of two phases alternated at each patch: propaga-
tion, in which coherence is used to disseminate good solu-
tions to adjacent pixels in the field; and random search, in 
which the current offset vector is perturbed by multiple 
scales of random offsets. Theoretical and empirical tests 
show the algorithm has good convergence properties for 
tested imagery up to 2 MP, and our CPU implementation 
shows speedups of 20–100 times versus kd-trees with PCA. 
Tree methods search in time O(cmmM), and incur the “curse 
of dimensionality:” cm is exponential in the patch dimen-
sion m [15]. In contrast, our algorithm takes time O(NmM), 
where N is the number of iterations (typically 5 when 
searching translations and 20 for rotations and scales). In 

(a) Original (b) Hole + constraints (c) Hole filled (d) Constraints (e) Constrained retarget (f) Reshuffle

figure 1. manipulating images using our interactive tools. Left to right: (a) the original image; (b) a hole is marked (magenta) and we use line 
constraints (red/green/blue) to improve the continuity of the roofline; (c) the hole is filled in; (d) user-supplied line constraints for retargeting; 
(e) retargeting using constraints eliminates two columns automatically; and (f) user translates the roof upward using reshuffling.

figure 2. Given an approximate match between patches with patch 
distance D, these 2D histograms show peaked distributions of 
the (x, y) coordinates where better matches are located. a better 
initial match with lower distance D causes more peaking. this is 
averaged over a dataset of more than 100 similar and dissimilar 
natural image pairs. Note the center pixel is black, but this is not 
visible at print resolution.
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figure 3. histogram showing a correlation between adjacent patches’ 
nearest neighbors. on the horizontal axis, we measure how far apart are 
nearest neighbors of adjacent patches, in euclidean 2D distance. on the 
vertical axis, we count the number of patches with a given distance. most 
patches have zero euclidean distance, indicating perfect coherence.
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addition, unlike kd-trees, our algorithm uses substantially 
less auxiliary memory.

2. ReLateD WoRk
Patch-based sampling methods have become a popular tool 
for image and video synthesis and analysis. Applications 
include texture synthesis, image and video completion, 
summarization and retargeting, image recomposition and 
editing, image stitching and collages, new view synthesis, 
morphing, noise removal, super-resolution and more. We will 
next review some of these applications and discuss the com-
mon search techniques that they use as well as their degree of 
interactivity.

nearest neighbor search methods. Correspondence 
searches can be classified as either local, where a search is 
performed in a limited spatial window, or global, where all 
possible displacements are considered. Correspondences 
can also be classified as sparse, determined only at a subset 
of key feature points, or dense, determined at every pixel or 
on a dense grid in the input. For efficiency, many algorithms 
only use local or sparse correspondences. Local search can 
only identify small displacements, so multiresolution refine-
ment is often used (e.g., in optical-flow3), but large motions 
of small objects can be missed. Sparse keypoint14 correspon-
dences are commonly used for alignment, 3D reconstruc-
tion, and object detection and recognition. These methods 
work best on textured scenes at high resolution, but are less 
effective in other cases.

Dense patch-based methods. Those methods that find 
both dense and global matches have often had high time 
cost in the matching stage. Moreover, whereas in texture 
synthesis the texture example is usually a small image, in 
other applications such as patch-based completion, retar-
geting and reshuffling, the input image is typically much 
larger, making the search problem even more critical. 
Various speedups for this search have been proposed, gen-
erally involving tree structures such as TSVQ23, kd-trees,10, 24 
and VP-trees,12 each of which supports both exact and 
approximate search (ANN). The FLANN method16 automati-
cally chooses which tree algorithm to use according to the 
data. In synthesis applications, approximate search is often 
used in conjunction with dimensionality reduction tech-
niques such as PCA,10 because ANN methods are much more 
time- and memory-efficient in low dimensions. Ashikhmin1 
proposed a local propagation technique exploiting local 
coherence in the synthesis process by limiting the search 
space for a patch to the source locations of its neighbors in 
the exemplar texture. The propagation step of our algorithm 
is inspired by the same coherence assumption. The k-coher-
ence technique21 combines the propagation idea with a pre-
computation stage in which the k nearest neighbors of each 
patch are cached, and later searches take advantage of these 
precomputed sets. Although this accelerates the search 
phase, k-coherence still requires a full nearest-neighbor 
search for all pixels in the input. It assumes that the initial 
offsets are close enough that only a small number of nearest 
neighbors need to be searched. This may be true for small 
pure texture inputs, but we found that for large complex 
images our random search phase is required to escape local 

minima. In this work we compare speed and memory usage 
of our algorithm against kd-trees with dimensionality reduc-
tion, and we show that it is at least an order of magnitude 
faster than the best competing combination (ANN + PCA) 
and uses significantly less memory. Our algorithm also 
provides more generality than kd-trees because it can be 
applied with arbitrary nonlinear distance metrics, allows 
searching over additional continuous domains such as rota-
tion and scale, and can be easily modified with constraints 
in the image space to preserve structures and enable local 
interactions. Locality sensitive hashing is an alternative to 
tree structures that can be used to search image patches,18 
but it also requires substantial additional memory and a 
precomputation step, unlike our algorithm.

matching across rotations and scales. When search 
across a large range of scales and rotations is required, a 
dense search was previously considered impractical due to 
the high dimensionality of the search space. The common 
way to deal with this case is via keypoint detectors.14 These 
detectors either find a local scale and orientation for each 
keypoint or do an affine normalization. These approaches 
are not always reliable due to image structure ambiguities 
and noise. Our generalized matching algorithm can operate 
on any common image descriptors (e.g., SIFT) and unlike 
many of the above tree structures, supports any distance 
function. Even while the algorithm naturally supports dense 
global matching, it may also be constrained to only accept 
matches in a local window if desired.

texture synthesis and completion. Efros and Leung9 
introduced a simple nonparametric texture synthesis 
method that outperformed many previous model based 
methods by sampling patches from a texture example and 
pasting them in the synthesized image. Further improve-
ments modify the search and sampling approaches for 
better structure preservation.1, 23 The greedy fill-in order 
of these algorithms sometimes introduces inconsisten-
cies when completing large holes with complex structures, 
but Wexler et al.24 formulated a related problem of image 
completion as a global optimization, thus obtaining more 
globally consistent synthesis of large missing regions. This 
iterative multiscale optimization algorithm repeatedly 
searches for nearest neighbor patches for all hole pixels in 
parallel. Although their original implementation was typi-
cally slow (a few minutes for images smaller than 1 mega-
pixel), our algorithm makes this technique applicable to 
much larger images at interactive rates. Patch optimization 
based approaches have now become common practice in 
texture synthesis.22

Control and interactivity. One advantage of patch sam-
pling schemes is that they offer a great deal of fine-scale 
control. For example, in texture synthesis, the method of 
Ashikhmin1 gives the user control over the process by ini-
tializing the output pixels with desired colors. The Image 
Analogies framework of Hertzmann et al.10 uses auxiliary 
images as “guiding layers,” enabling a variety of effects 
including super-resolution, texture transfer, artistic filters, 
and texture-by-numbers. In the field of image completion, 
impressive guided filling results were shown by annotating 
structures that cross both inside and outside the missing 
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region.20 Lines are filled first using belief propagation, and 
then texture synthesis is applied for the other regions, but 
the overall run-time is on the order of minutes for a 0.5 
megapixel image. Our system provides similar user annota-
tions, for lines and other region constraints, but treats all 
regions in a unified iterative process at interactive rates.

image retargeting. Many methods of image retarget-
ing have applied warping or cropping, using some metric 
of saliency to avoid deforming important image regions.25 
Seam carving2 uses a simple greedy approach to prioritize 
seams in an image that can safely be removed in retarget-
ing. Although seam carving is fast, it does not preserve 
structures well, and offers only limited control over the 
results. Simakov et al.19 proposed framing the problem of 
image and video retargeting as a maximization of bidirec-
tional similarity between small patches in the original and 
output images, and a similar objective function and opti-
mization algorithm was independently proposed by Wei 
et al.22 as a method to create texture summaries for faster 
synthesis. Unfortunately, the approach of Simakov et al. is 
extremely slow compared to seam carving. Our constrained 
retargeting and image reshuffling applications employ the 
same objective function and iterative algorithm as Simakov 
et al., using our new nearest-neighbor algorithm to obtain 
interactive speeds.

image “reshuffling” is the rearrangement of content in 
an image, according to user input, without precise mattes. 
Reshuffling was demonstrated simultaneously by Simakov 
et al.19 and Cho et al.,8 who used larger image patches and 
belief propagation in an MRF formulation. Reshuffling 
requires the minimization of a global error function, as 
objects may move significant distances, and greedy algo-
rithms will introduce large artifacts. In contrast to all pre-
vious work, our reshuffling method is fully interactive. As 
this task might be particularly hard and badly constrained, 
these algorithms do not always produce the expected result. 
Therefore interactivity is essential, as it allows the user to 
preserve some semantically important structures from 
being reshuffled, and to quickly choose the best result 
among alternatives.

object detection, digital forgeries, and collages. In addi-
tion to image editing, our algorithm can be applied to other 
problems in image analysis and video. For object detec-
tion, we take an approach similar to deformable template 
models.11 Unlike previous approaches, we do not need to 
restrict our matching to sparse interest points or detect 
principle scales or orientations. We can instead use our 
matching algorithm to match all patches across all scales 
and orientations. For digital forgery detection, Popescu 
and Farid17 previously demonstrated a method that can 
find regions of an image duplicated by a clone tool, by 
sorting image blocks after discarding JPEG compression 
artifacts. Our method works similarly. Our method is not 
robust to JPEG artifacts, but uses our more general match-
ing algorithm, so it could potentially be generalized to 
find different types of forgeries such as those produced by 
our automatic hole filling. Finally, images can be stitched 
into collages8, 19 using patch-based methods. We use this 
approach for our video summarization application.

3. matchiNG aLGoRithm
In this section we describe our core matching algorithm, 
which accelerates the problem of finding nearest neighbor 
patches by 20–100 x over previous work. Our algorithm is a 
randomized approximation algorithm: it does not always 
return the exact nearest neighbor, but returns a good 
approximate nearest neighbor quickly, and improves the 
estimate with each iteration.

For brevity’s sake, in this paper we present a simplified 
version of the algorithm that searches for only one near-
est neighbor per-patch, across only two translation dimen-
sions. There will be more discussion of extensions later.

3.1. high level motivation
The high level intuition behind our algorithm is shown 
in Figure 4. We have two images A and B with patches 
visualized as colored rectangles. We wish to find for each 
patch in A the most similar patch in B. We do this by tak-
ing advantage of spatial locality properties: when we have 
a good match, we can propagate it to adjacent points on 
the image, and if we have a reasonable match, we can try 
to improve it by randomly searching for better matches 
around the target position.

We define a NNF as a function f: A  R2 of nearest neigh-
bors, defined over all possible patch coordinates (locations 
of patch centers) in image A, for some distance function of 
two patches D. Given patch coordinate a in image A and its 
corresponding nearest neighbor b in image B, f (a) is sim-
ply b.a We refer to the values of f as nearest neighbors, and they 
are stored in an array whose dimensions are those of A.

As a reminder, our key insights are to search in the space 
of possible coordinate offsets, to search over adjacent 
patches cooperatively, and that even random coordinate 
assignments are likely to be a good guess for many patches 
over a large image.

The algorithm has three main components, illustrated 
in Figure 5. Initially, the NNF is filled with either uniform 
random assignments or some prior information. Next, an 
iterative update process is applied to the NNF, in which 
good patch nearest neighbors are propagated to adjacent 

a Our notation is in absolute coordinates, versus relative coordinates in 
Barnes et al.6

figure 4. illustration of the matching problem. for each patch in 
image A, we find the most similar patch in image B. sometimes 
patches that overlap have identical or coherent matches (shown 
in the yellow and green matches), and sometimes the matching 
coordinates are nearby (the red match).
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pixels, followed by random search in the neighborhood of 
the best nearest neighbor found so far. Sections 3.2 and 3.3 
describe these steps in more detail.

3.2. initialization
The NNF can be initialized either by assigning random val-
ues to the field, or by using prior information. When ini-
tializing with random values, we use independent uniform 
samples across the full range of image B. The image editing 
applications described in Section 4 repeat the search pro-
cess in a coarse-to-fine pyramid, interleaving search and 
reconstruction at each scale. So we have the option to use 
the previous solution—possibly upscaled from a coarser 
level of the pyramid—as an initial guess. However, if we 
use only this initial guess, the algorithm can sometimes get 
trapped in suboptimal local minima. To retain the quality 
of this prior but still preserve some ability to escape from 
such minima, we perform a few early iterations of the algo-
rithm using a random initialization, then merge with the 
initial guess only at patches where D is smaller, and then 
perform the remaining iterations. This gives a good trad-
eoff of retaining local minima found on previous iterations 
without getting stuck there.

3.3. iteration
After initialization, we iteratively improve the NNF. Each 
iteration of the algorithm proceeds as follows: nearest 
neighbors are examined in scan order (from left to right, 
top to bottom), and each undergoes propagation followed by 
random search. These operations are interleaved at the patch 
level: if Pj and Sj denote, respectively, propagation and ran-
dom search at patch j, then we proceed in the order: P1, S1, 
P2, S2,…, Pn, Sn.

Propagation. We attempt to improve f (x,y) using the 
known nearest neighbors of f (x − 1, y) and f (x, y − 1), assum-
ing that the patch coordinates are likely to be offset by the 
same relative translation one pixel to the right or down. For 
example, if there is a good mapping at (x − 1, y), we try to use 
the translation of that mapping one pixel to the right for our 

mapping at (x, y). Let z = (x, y). The new candidates for f (z) 
are f (z − Dp) + Dp, where Dp takes on the values of (1, 0) and 
(0, 1). Propagation takes a downhill step if either candidate 
provides a smaller patch distance D.

The effect is that if (x, y) has a correct mapping and 
is in a coherent region R, then all of R below and to the 
right of (x, y) will be filled with the correct mapping. 
Moreover, on even iterations we propagate information 
up and left by examining patches in reverse scan order, 
and using candidates below and to the right. If used in 
isolation, propagation converges very quickly, but ends 
up in a local minimum. So a second set of trials employs 
random search.

random search. A sequence of candidates is sampled 
from an exponential distribution, and the current nearest 
neighbor is improved if any of the candidates has smaller 
distance D. Let v0 be the current nearest neighbor f (z). 
We attempt to improve f (z) by testing a sequence of can-
didate mappings at an exponentially decreasing distance 
from v0:

 ui = v0 + wa i ri (1)

where ri is a uniform random in [−1, 1] × [−1, 1], w is a large 
maximum search “radius,” and a is a fixed ratio between 
search window sizes. We examine patches for i = 0, 1, 2,… 
until the current search radius wa i is below 1 pixel. In our 
applications w is the maximum image dimension, and 
a = 1/2, except where noted. Note the search window must 
be clamped to the bounds of B.

halting criteria. Although different criteria for halt-
ing may be used depending on the application, in practice 
we have found it works well to iterate a fixed number of 
times. All the results shown here were computed with 4–5 
iterations total, after which the NNF has almost always con-
verged. Convergence is illustrated in Figure 6.

efficiency. The efficiency of this naive approach can be 
improved in a few ways. In the propagation and random 
search phases, when attempting to improve an offset f(z) 
with a candidate offset u, early termination can be used if a 
partial sum for the patch distance exceeds the current best 
known patch distance. Also, in the propagation stage, when 
using square patches of side length p and an Lq norm, the 
change in distance can be computed incrementally in O(p) 
rather than O(p2) time, by noting redundant terms in the 
summation over the overlap region. However, this incurs 
additional memory overhead to store the current best dis-
tances D(f (x, y) ).

3.4. Discussion
Our algorithm converges quickly to a good approximate 
solution in a small number of iterations. We compared 
our convergence with competing methods such as kd-trees 
with PCA, vp-trees with PCA, and theoretically analyzed 
the convergence properties of our algorithm.6 We found 
that for equal matching error, and low numbers of itera-
tions, our algorithm is 20–100 x faster than the best com-
peting algorithm, kd-tree with PCA, and uses substantially 
less memory.

figure 5. Phases of the randomized nearest neighbor algorithm: 
(a) patches initially have random assignments; (b) the blue 
patch checks above/green and left/red neighbors to see if they 
will improve the blue mapping, propagating good matches; 
(c) the patch searches randomly for improvements in concentric 
neighborhoods.

(a) Initialization

A A A

B B B

(b) Propagation (c) Search
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Our algorithm bears some superficial similarity to Belief 
Propagation and Graph Cuts algorithms often used to 
solve Markov Random Fields on an image grid. However, 
unlike the MRF models, our algorithm does not have a 
neighborhood term that explicitly creates smooth or coher-
ent matches. Because our search algorithm finds coher-
ent regions in early iterations, our matches implicitly err 
towards coherence. Thus our approach is sufficient for 
many practical synthesis applications, while avoiding the 
computational expense of MRF approaches.

4. aPPLicatioNs
We have presented a fast algorithm for finding good 
matches between patches in arbitrary images. Based on our 
algorithm, we have developed an interactive interface for 
editing images, using sophisticated patch-based synthesis 
techniques. Our synthesis uses the framework of Simakov 
et al.,19 which was previously demonstrated on synthesis 
tasks such as image collages, reshuffling, retargeting, auto-
matic cropping, and the analogues of these in video. This 
method works by iteratively improving a current output 
image, starting at a coarse resolution and proceeding to 
finer resolutions, in each iteration repeatedly making sure 
all patches in the source image are present in the current 
result, and vice versa. Thus at the core of this method is our 
correspondence algorithm, which is used to query patches 
in both query directions. If instead we define a region of 
undesired content (a “hole”) to be removed from an image, 
the method of Simakov becomes very similar to the image 
completion algorithm of Wexler et al.24 Thus, undesired 
objects can be removed from photographs using the same 
synthesis framework. However, Simakov et al. reported sev-
eral minutes to generate output images. Because our object 
removal technique offers high quality results with low syn-
thesis time, it is suitable for commercial deployment, and 
has been implemented as the new Content-Aware Fill fea-
ture in Adobe Photoshop CS5.

For many of these applications, our interactive inter-
face allows the user to receive feedback in seconds. Many 
synthesis techniques are therefore interactive for the first 
time because of our algorithm. We also offer the user new 

interactive controls for guiding the output image with 
constraints.

We show a number of example user interactions in 
Figure 1. These include automatically replacing an unde-
sired image region, as well as retargeting the image to 
change aspect ratio (using constraints to prevent pillars 
from breaking), and reshuffling, or moving up the roof of 
the building. In Figure 7 we show removal of an undesired 
object. In Figure 8 we show how some of our constraints 
can prevent a building from bending or breaking during 
the retargeting process. Because our synthesis framework 
works by iteratively modifying the output image to the 
desired resolution, features tend to bend or break slowly, 
so constraints can be applied during the iterative process 
to prevent breaks. In Figure 9 we show a local scale tool 
that allows a region to be scaled while preserving texture. 
In Figure 10 we show how many of these tools can be com-
bined in a workflow of editing architecture.

We have also investigated additional applications such as 
object detection, label transfer, symmetry detection, denois-
ing, detecting digital forgeries,7 and video summarization.5 
We present some results for object detection, forgery detec-
tion, and video summarization here.

For many of these applications, more general variants 
of our matching algorithm are needed. We have developed 
a generalization of our matching algorithm7 that searches 
over all rotations and scales (useful for object detection), 
finds k nearest neighbors instead of a single nearest neigh-
bor b (useful for detecting digital forgeries), and matches 

(a) Originals (b) Random (c) 1
4 iter (d) 3

4 iter (e) 1 iter (f) 2 iters (g) 5 iters

figure 6. illustration of convergence. (a) the top image is reconstructed using only patches from the bottom image, (b) above: the reconstruction 
by patch “voting” (each patch looks up its nearest neighbor’s colors, and these are averaged for all overlapping patches), below: a random 
initial offset field, with magnitude visualized as saturation and angle visualized as hue, (c) 1/4 of the way through the first iteration, high-quality 
offsets have been propagated in the region above the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first 
iteration, (e) first iteration complete, (f) two iterations, and (g) after five iterations, almost all patches have stopped changing.

(a) Input (b) Hole and guides (c) Completion result

figure 7. example of guided image completion. the bird is removed 
from input (a). the user marks the completion region and labels 
constraints on the search in (b), producing the output (c) in a few 
seconds.
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arbitrary descriptors, that is, vectors computed at each 
pixel (useful for matching features, e.g., SIFT features that 
are robust to camera and lighting changes). These gener-
alizations are simple and natural extensions of our origi-
nal algorithm.

In Figure 11 we show an example of object detection. 
The algorithm accepts a template image to be found within 
a large target image. The template is then located by break-
ing both images into small square patches, then running our 
matching algorithm across all rotations and scales, with a 
patch descriptor that compensates for changes in lighting. 
Then for each template object, the resulting NNF is used to 
estimate the pose, after rejecting outliers due to occlusions 
and poor matches.

We show a second application of detecting digital forgeries 
made by the “clone brush” in Figure 12. When a user forges 
an image in this way, he or she removes an object by manu-
ally replacing it with a different region of the same image. 
Therefore, in the forged image some patches are duplicated in 
large coherent regions. We detect these by using our match-
ing algorithm to find, for each patch, its k-nearest neighbors 
within the same image. Then we detect cloned regions by 
locating large regions in the NNF that are roughly coherent.

We finally present our video summarization system,5 shown 
in Figure 13. This system automatically selects and collages 

figure 8. constraints. the original image (a) is retargeted without 
constraints (b). constraints indicated by colored lines produce 
straight lines and the circle is scaled down to fit the limited space (c).

(a) Original (b) Retargeted (c) With constraints

(a) Building marked by user (b) Scaled up, preserving texture

figure 9. example using local scale tool. the user marks a source 
polygon (a), and then applies a nonuniform scale (b) to the polygon, 
while preserving texture.

figure 10. modifying architecture with reshuffling. the images 
contain many repetitions, so the algorithm can often produce 
plausible output even when subject to extreme constraints.

b Note that Liu and Freeman13 also investigated k-NN search based on our 
algorithm.

figure 11. Detecting objects. templates, left, are matched to the 
image, right. square patches are matched, searching over all 
rotations and scales.

video frames to produce a seamlessly zoomable visual time-
line. This timeline can be used as an alternative to the simple 
scrollbars typically used in video players. The user can select a 
desired scene to move to with the mouse. Or, to see more details 
from a given part of the film, the user can smoothly zoom in to 
expose more details from that part of the film. We produce our 
collages using patch-based synthesis, and because of the speed 
of our algorithm, we can produce timelines interactively.

5. futuRe WoRk
We believe our algorithm can be extended to different search 
domains such as 1D (e.g., audio) and 3D geometry, and allow 
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for other new applications such as synthesis of 3D geometry 
or stereo depth maps. For extensive detail on the matching 
algorithms, image statistics, applications, and directions 
for future work, consult Barnes.4

Our research has led us to an important conclusion 
about the design of image manipulation algorithms: by 
understanding the natural statistics of a problem domain, 
one can often customize a solution strategy around those 
statistics. In our case, by understanding the correlations 
between different nodes (pixels of an image), we designed 
the search strategy to take advantage of these statistics. We 
are excited about the potential of our techniques to acceler-
ate search in many different domains, as well as the future 
work it has opened up.
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figure 12. Detecting image regions forged using the clone brush: 
(a) the original, untampered image, (b) the forged image, and 
(c) the cloned regions detected by our algorithm. (imagery courtesy 
of Popescu and farid.17)

(a) Original (b) Forged (c) Detected forgery

figure 13. a multiscale tapestry represents an input video as 
a seamless and zoomable summary image that can be used to 
navigate through the video. this visualization eliminates hard 
borders between frames, providing spatial continuity and also 
continuous zooms to finer temporal resolutions. this figure depicts 
three discrete scale levels for the film Elephants Dream (courtesy of 
the Blender foundation). the lines between the scale levels indicate 
the corresponding domains between scales.
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