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Abstract. Recognition systems attempt to recover information about the identity of observed objects and the
location in the environment. A fundamental problem in recognitigrose estimationThis is the problem of using

a correspondence between some portions of an object model and some portions of an image to determine whe
the image contains an instance of the object, and, in case it does, to determine the transformation that relate:
model to the image. The current approaches to this problem are divided into methods that use “global” proper
of the object (e.g., centroid and moments of inertia) and methods that use “local” properties of the object (e.
corners and line segments). Global properties are sensitive to occlusion and, specifically, to self occlusion. Lc
properties are difficult to locate reliably, and their matching involves intensive computation.

We present a novel method for recognition that uses region information. In our approach the model and the im:
are divided into regions. Given a match between subsets of regions (without any explicit correspondence betw
different pieces of the regions) the alignment transformation is computed. The method applies to planar obje
under similarity, affine, and projective transformations and to projections of 3-D objects undergoing affine at
projective transformations. The new approach combines many of the advantages of the previous two approac
while avoiding some of their pitfalls. Like the global methods, our approach makes use of region information th
reflects the true shape of the object. But like local methods, our approach can handle occlusion.

Keywords: object recognition, occlusion, affine, perspective, regions, pose estimation, uniqueness, tw
dimensional, three-dimensional, model

1. Introduction objects are expressed directly as sets of points avoiding
the need to compute more complex descriptions, (e.g.,
One of the key problems of visual object recognition corners, or moments) which may be difficult to obtain
is to determine how best to effectively represent our in the presence of noise and occlusion. Although our
knowledge of objects. In this paper we introduce a representation is simple and flexible, it is not obvious
new representation in which the regions (i.e., parts) of that we can use it effectively for recognition. How-
ever, we demonstrate the utility of our representation by
. . . showing how to use it to solve one of the central prob-
*Thg research of Ronen Basri was supported in part by the Israeli lems of recognition, that gfose estimationMoreover
Ministry of Science, Grant No. 6281. Ronen Basri is an incumbent - L . _ !
of Arye Dissentshik Career Development Chair at the Weizmann OUT solution method is compatible with one based on
Institute. local geometric features (points and lines), allowing us
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be matched to some, as yet unknown point in the model
part by the correct transformation. Previous methods
typically attempt to solve this problem by computing
and matching more distinctive features of the objectand
image, whereas our method will determine the correct
transformation directly from a region correspondence.

For example, one set of previous methods represents
objects or their parts using “global” features. In one
example of a global method an object is represented in
some canonical coordinate frame obtained by normal-
izing certain properties of the object (e.g., the origin
is set at the object’s center of mass, and the axes are
aligned with its principal moments). Given an image,
the region that contains the object is first segmented
from the image. The corresponding properties of the
object in the image are then computed and used to
bring the object into the canonical description. Higher
order moments, or other global descriptors may also
Figure1l Anexample of region-based pose determination. Thetwo be used to identify the object (Hu, 1962; Richard and
matched regions determine the pose under an affine transformation. Hemami, 1974; Dudani et al., 1977; Persoon and Fu,

1977; Sadjadiand Hall, 1980; Reeves etal., 1988). The

to combine our representation with these, when they advantage of this approach is that it is computationally
are also applicable. efficient, since processing the image can be carried out

Pose estimation is the problem of determining the independently of the model. The main difficulty with
transformation that relates the model to the image given this approach is that it requires a good segmentation
a correspondence between some portions of an objectof the object, and it is sensitive to occlusion, and in
model and some portions of an image. This is obvi- particular to self occlusion. This makes the method
ously essential if we wish to determine the position of unsuitable for recognizing 3-D objects from single 2-D
objects in the world from their appearance in an image. images, or to recognition in cluttered scenes.

Also, to recognize objects we frequently seek to elimi-  In a second previous approach, local features are
nate the effects of viewpoint by bringing the model and extracted from the model and from the image. Sub-
the image into alignment. sets of model features are matched to subsets of im-

We present a novel method for determining the pose age features, and this match is used to recover the
of a known object based on matching portions of a alignment transformation. This has been done using
known model, and some (possibly occluded) areas of point features (Fischler and Bolles, 1981; Horaud,
the image. Our method finds a model pose that will 1987; Huttenlocher and Ullman, 1990; Ullman and
project these portions of the model onto the corre- Basri, 1991; Alter and Grimson, 1993; Alter and
sponding image areas, without requiring knowledge Jacobs, 1994), line segments (Lowe, 1985; Ayache
of the correspondence between specific points in the and Faugeras, 1986; Rothwell et al., 1992), ver-
model and image. An example is shown in Fig. 1. We tices (Thompson and Mundy, 1987), and distinguished
show that in general a small number of region corre- points on curves such as inflection points or bitangents
spondences determine the correct pose of the object(Joshi et al., 1994, Rothwell et al., 1992). Other meth-
uniquely. We further analyze the degenerate cases andods use algebraic descriptions of portions of contours
present experiments that demonstrate the usefulness ofo compute alignments (Kriegman and Ponce, 1990;
the method. Weiss, 1993; Forsyth et al., 1991; Subrahmonia et al.,

The novelty of our method lies in our use of a simple, 1996). These can contain rich information about shape
direct representation based on region information. We by describing larger portions of the object, although
assume that some part of the object model has beensuch descriptions may also be more sensitive to occlu-
matched to a possibly occluded region in the image. sion, and more difficult to compute reliably from an
This means that every point in the image region should image.
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By relying on local properties, these methods can explains why local features are an inherently unstable
be more robust than global ones. Typically we must way of describing many objects. It also explains why
isolate an entire shape to extract its global properties. local features are poorly suited for comparing different
However, we can often find local features using only objects that are instances of the same class of objects.
fragments of contours of an object. This can make local Two different chairs, for example, may be quite simi-
methods resistant to partial occlusion or to segmenta- lar in having arms, legs, a seat and a back of roughly
tion failures. similar shape and position, but still produce corners in

One disadvantage of local methods is that they can totally different positions.
be computationally expensive. For instance, for poly-  Because of these difficulties, we have developed an
hedral objects all triplets of model points must be tried alternate representation based directly on the regions
against all triplets of image points to guarantee that a that make up objects, rather than on the contours that
solution is found O (m®n®) matches). bound these regions. In our approach the model and

We feel that the relative merits of local and region- the image are divided into convex regions. (Convex-
based methods will depend on which type of repre- ity is not a limitation, however, since concave entities
sentation can best capture the shape of the object. Incan be replaced by their convex hulls.) Each region is

many situations, it has proven extremely difficult to re-
liably locate local features in images of 3-D objects.
The intensities produced by a portion of a 3-D object
will tend to vary significantly with changes in illumi-

nation and viewpoint. This leads to variations in the

described directly as a set of points, so that our repre-
sentation captures all available shape information with-
out extracting higher level descriptions. Given a match
between model regions and image regions that may
be partially occluded, the alignment transformation is

edges produced by the object, or in the performance computed. Figure 2 shows that our approach achieves
of other intensity based approaches to local feature de-a rough alignment of the two polygons by matching
tection. Also, even when the contour of an object is the regions themselves, rather than local boundary fea-
accurately detected, it can be quite difficult to reliably tures. Inthis paper we will focus primarily on develop-
find local features on contours that are even slightly ing this method for the recognition of a planar model
curved. For this reason, most demonstrations of 3-D in a 2-D image, taken from an arbitrary 3-D viewpoint.
recognition systems have been limited to objects that We will also show that the method can be extended to
are largely polyhedral. These problems can also oc- the recognition of a 3-D object in a 2-D image.
cur in the recognition of planar objects, especially of A number of previous recognition systems have also
curved planar objects. focused onrecognizing objects in terms of their compo-
We believe that these difficulties arise due to a fun- nent parts (e.g., (Bajcsy and Solina, 1987; Biederman,
damental difficulty with representations that use local 1985; Binford, 1971; Brooks, 1981; Hoffman and
features based on the contour of an object. As an exam-Richards, 1985; Marr and Nishihara, 1978; Pentland,
ple, in Fig. 2 we show two different polygonal shapes. 1987). Most of these approaches are concerned with
The locations and number of the vertices of these poly- determining the perceptual category of objects. They
gons differ considerably, while the overall shapes of further assume that the part structure of the object is
the objects are quite similar. In general, small changes invariant under changes in viewing position and across
in the surface of an object can have a large effect on the objects in the same perceptual category. Often, com-
location of features derived from the object contour, plex descriptions of object parts are computed, based
or on the algebraic description of the contour. This on the shape of the parts’ bounding contours. Recog-
nition is performed by comparing two graphs repre-
senting the descriptions and spatial relations between
the parts of the object. In contrast, our method esti-
mates the pose of specific objects whose exact shape
is known. In addition, our method does not require
the spatial relations between the parts to be invariant
in different views. Also, the method can recognize ob-
jects when only a small subset of their parts (as few
as two) are available, and it allows for the use of local
features in addition to the parts. However, the primary

Figure 2 Two polygons that differ in features yet share the same
overall structure. On the right, an alignment of the two figures using
our method.
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difference between our work and previous approaches This demonstrates that to a significant extent, our al-

to parts-based recognition is the simple representationgorithms can be applied to the recognition of 3-D ob-

that we use, which does not rely on computing high- jects in 2-D images. Finally, in Section 5 we show ex-

level, contour based representations of parts. periments on a number of real objects to demonstrate
Our method relies on two different sets of possible the system’s performance. An abbreviated description

constraints. We define these constraints precisely in of these results has previously appeared in (Basri and

Section 2. Intuitively, the first constraints require the Jacobs, 1995).

transformation to project as much of each object re-  In summary, our new approach has several practical

gion as possible so that it lies inside the corresponding advantages over previous approaches.

image region. The second set of constraints requires

that as much of each image region as possible is cov-e The new approach does not require an exact local-

ered by the projection of each model region. In the ization of features. Good estimation of the align-

case of a 2-D object and a 2-D image, we are able to ment transformation can be obtained even when the

present a very efficient algorithm that enforces either ~ boundaries of the regions can only roughly be local-

set of constraint. The second set is especially useful ized. This makes the method particularly suitable as

when the object is partially occluded, since it requires @ second stage for color and texture classifiers.

the visible image regions to be explained by the object, ® The method is computationally efficient. This is due

but does not require the object regions to be fully ex-
plained by the image. The algorithm is designed to find
poses that will match entire regions, without requiring

to two reasons. (1) Unlike points and lines, regions
can often be identified by their properties (e.qg., color
and texture). (2) In certain cases a match between

two model and image regions is already sufficient to
recover the alignment transformation. This reduces

an explicit correspondence between a local feature in
the region. Thus a pose is found that matches portions
of the model and image well without requiring us to  significantly the combinatorics of the matching pro-
isolate features in these regions, or to hypothesize a Cess.
correspondence between specific features. However,e The method handles objects with smooth curved sur-
if a correspondence between model and image point faces. Predicting the position of the contours on the
features or line features should be available, this local ~ object is not required for estimating the alignment
feature information can be fully used by the algorithm  transformation.
as well. Because our algorithm is implemented by re- The method can handle certain kinds of occlusion.
ducing our problem to a linear program, it can be run ~ When the model is planar, we can make use of im-
quite efficiently. age regions that are an arbitrary, occluded subset of
We describe the algorithm and its behavior more  the model region. For 3-D models we can handle
thoroughly in Section 3. We then address a number  Self-occlusion, and also we can make use of image
of questions concerning the algorithm’s performance.  regions that are partially occluded, when the occlud-
First, in the error-free case, we determine exactly when  ing lines have been identified.

sufficient information exists to uniquely determine the

pose of an object. These results are analogous to resultsl Nese advantages indicate that the proposed method
for local features showing, for example, the minimal has the potential to recognize objects in domains that
number of point or line correspondences needed to de-haV‘? proven difficult for existing systems to handlg. In
termine an object's pose. We show that in the general Particular, the system offers the potential to reliably
case of planar models, a correspondence between two'€cognize curved 3-D objects, on which local features
convex regions suffices to uniquely determine pose (or @nd contours may be difficultto find. Also, by focusing
three regions, when we allow for perspective effects). ©n region information, our algorithm has potential to

Next, in Section 4 we show how to extend these ideas Offér & better way of comparing the shape of different
to 3-D objects as well. We show that in this domain ©bjects that are instances of the same class of objects.

we can solve the first set of constraints using linear

programming. And in the case of 3-D objects that have 2. Problem Definition

planar regions (that are not necessarily coplanar), we

again show the minimum number of region correspon- Below we consider the following problem. Given a set
dences needed to solve uniquely for the object pose.of model regiondvs, ..., ik ¢ RY,d € {2,3}, and a



corresponding set of image regioRs, ..., R« C R?
determine the transformatioh € 7 that maps every
model regionV; to its corresponding image regid®
QL<i=<Kk).
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3. The 2-D Problem

In this section we analyze the case of matching 2-D
model regions to 2-D image regions. We consider three

Throughout the paper we assume that the regions sets of allowed transformations, similarity, affine, and
are all closed and convex. The solutions we propose projective. A similarity transformation is composed of

handle non-convex regions by replacing them with their
convex hulls. Points and line segments fall naturally
into this formulation as they form convex sets.

We consider a few variants of this problem. The
model may be 2-D or 3-D. If 2-D, the allowed trans-
formations, 7, are either the similarity (rotation,
translation, and uniform scaling), affine (linear and
translation), or projective transformations. If 3-D, we
consider affine transformations followed by either an
orthographic or perspective projection.

It will be very useful to distinguish between two sets
of constraints on the transformation.

Forward constraints every model poinf € V; should
project inside the regioR; (thatis, TV, C R)).

Backward constraintsevery image poinfj € R, is
the projection of some model poit e V; (that is,
TVi 2 R).

The backward constraints are particularly useful, since

they capture fully our knowledge of pose when we al-

low for the image regions to be arbitrarily occluded.
The problem of determining the transformation that

a rigid transformation and uniform scaling. An affine
transformation may include, in addition, stretch and
shear. 2-D affine transformations represent the set of
transformations relating two scaled-orthographic im-
ages of a plane. Projective transformations relate two
perspective images of a planar object.

We begin by defining the one-way constraints (either
forward or backward). We show that in all three cases
(similarity, affine, and projective) the one-way con-
straints can be formulated as a set of linear inequalities
with the transformation parameters as the unknowns.
Determining the transformation that relates the model
to the image is equivalent to finding a linear discrim-
inant function. In particular, the solution can be ob-
tained by applying a linear program. We show that
a unique solution to the one-way matching problem
generally exists for as few as two distinct regions.

Our method is based on Baird’s (1985) insight that
matching features to convex regions leads to linear con-
straints on the set of possible transformations relating
the two. Cass (1992) used this insight to produce the
first polynomial-time algorithm guaranteed to match
the maximum number of consistent features. Breuel
(1991) also uses these insights to make potentially

perfectly aligns a set of model regions to their corre- gynonential constraint-based search into a worst-case
sponding image regions can be described as finding apqlynomial time algorithm. However, our work differs
transformation that satisfies both the forward and the significantly from these approaches, which focus on
backward constraints. This is generally non-convex. matching simple, local features, and do not make use
That is, the set of feasible transformations need not be ¢ region-based information.
convex, or even connected. Consider for example the
case of a model square matched to an image contain-
ing an identical square. Matching the model exactly to 3.1.
the image can be performed in four ways correspond-
ing to rotating the model square so as to bring any We denote a pointin model space py= (x, y) and in
of its four sides to the top. Obviously, no intermedi- image space by = (u, v). Wheng = T () we denote
ate transformation provides a solution to this matching u = T,(p) andv = T,(p). We begin by defining the
problem. one-way constraints. There are two possible sets of
Below we consider the problem of computing the one-way constraints, the forward constraints (where
transformatior , of a family of transformations’, that model regions are required to project entirely inside
is consistent with either just the forward constraints or their corresponding image regions) and the backward
just the backward constraints. We see that individually constraints (where image regions are required to lie
each set of constraints produces a convex set of feasibleentirely inside the projection of the their corresponding
transformations, although the combination of the two model regions).
does not. This leads to efficient solutions when we use  We formulate the forward constraints as follows.
only one set of constraints. Given a convex model regio¥f and a corresponding

One-Way Constraints



150 Basri and Jacobs

conveximage regioRwe wantto find a transformation
T that map9/ insideR. Note that both/ andR might
in particular be simply points or line segments. Since
R is convex, there exists a set of lineg boundingR
from all directions such that for every poitite R and
for every linel € Lg we can write

1@ =0 1)
The constrainT V € R can be written as follows. Ev-
ery pointp € V should be mapped by to some point
g € R, and so

I(Tp) =0 )

The set of forward constraints consists of all such con-
straints obtained for all pairs of bounding lines L
and model pointg € V. (Therefore, the set of for-
ward constraints is homomorphic ks x V.) When

several model region¥y, ..., Vk and corresponding
image region®y, ..., Ry are given the set of forward

constraints is the union of sets of constraints for each

pair of corresponding modé&¥; and regionR,. The

back constraints are obtained in the same way by inter-

changing model with image regions. Below we derive
the constraints (2) explicitly for both the forward and
backward cases allowing either similarity, affine, or
projective transformations.

Forward Constraints. Let p = (X,y) € V be a
model point, and letAu + Bv + C > 0 be a half
space containingR. The forward constraints take the
form

ATu(P) + BT,(p)+C = 0. (3)
Note that given the model regidhand its correspond-
ing image regiorR the model poing is known (it may
be any of the points iV), and so is the constraint line
Au+ Bv + C > 0 (which may be any of the tangent
lines toR). The unknowns are the parameters of the
transformationT .

Similarity Transformation. Supposédl is a similarity
transformation, we can writ€ in the following form

(2)=(52)0)+ ()

The forward constraint in this case is given by

(4)

A(@x+by+c¢)+ B(-bx+ay+d)+C=>0. (5

This constraint is linear in the transformation param-
eters. (This parameterization is used and explained,
for example, in Baird (1985). Baird pointed out that
a linear bound on the location of a transformed model
point leads to a linear constraint on the feasible trans-
formations.) Denote

w' =(a, b, c, d),
and
g" = (Ax+ By, Ay — Bx, A, B),
we can rewrite the forward constraint (4) as
g'w > —C.

(6)

WhenT is restricted to be a Euclidean transformation
(with no scaling) an additional non-linear constraint is
obtained:

a?+b?>=1 (7)

This constraint is not used in our scheme.

Affine Transformation. SupposeT is an affine trans-
formation, T is given in the form
)

()=(2 50+ (;

We can now write the forward constraint for the affine
case in the following form

(8)

A(ax+by+e) + B(ex+dy+ f)+C=>0. (9)

This constraint is linear in the transformation parame-
ters. Denote

w' =(a,b,cde f)
the vector of unknown transformation parameters, and
g" = (Ax, Ay, Bx, By, A, B)
we can rewrite the forward constraint (8) as
g'w>—-C

(10)

Projective Transformation. In order to extend our
formulation of the forward constraints to handle pro-
jective transformations we should first overcome one
inherent difficulty. Our formulation relies on match-
ing convex model regions to convex image regions.



Projective transformations, however, may transform a
convex region to a non-convex one. This difficulty is
circumvented by noticing that under projectivity con-

vex shapes are mapped to non-convex ones only when

the object crosses the image plane (or, in other words,
when the vanishing line intersects the object). Since
under perspective projection the image plane always
lies between the object and the focal point it is guar-

anteed that convex regions on the object will produce
convex regions in the image. The subset of projective
transformations relevant to recognition therefore pre-
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transformations the constraints are linear and they take
the form

ST -

g w=>-C, (15)
but this time the vector of unknowns, represents the
image-to-model transformation, which is the inverse
of the transformation solved for by the forward con-
straints.

Solving for the transformation using the backward
constraints alone is particularly useful in the case of oc-

serves convexity.
We now show how to formulate the one-way con-
straints in the projective casé. can be expressed in

clusion. Image regions that are partly occluded lie in-
side the corresponding model regions (after the model
and the image are brought into alignment), but the in-

the form clusion may be strict due to the occlusion.
u a b e X
o ; =1¢ g I 31/ (11) 3.2. Solving a System of One-Way Constraints
g

The one-way problem under affine, similarity, or

projective transformations introduces a set of linear
constraints in the transformation parameters. In the
forward problem the set of constraints contains one
constraint for every point in the model regions and for
every tangent line to the image regions. In the back-

As we require the image plane to separate the objectWard problem the model and image change roles. The
from the center of projection we can assume WLOG Nhumber of constraints for a curved object is therefore

that the depth coordinatgx + hy + 1, is positive for ~ infinite. For polygonal regions the number of indepen-
all points. Imposing the constraint (3) we obtain dent constraints is finite. The system of constraints in

this case is completely defined by the vertices of the
model regions and the sides of the image regions, and
the rest of the constraints are redundant. In the curved
case we will want to sample the set of constraints. The
issue of sampling is addressed in (Basri and Jacobs,
1994).

Given a finite set of constraints

for some arbitrary scalar factar. (Note that, WLOG,
we setTs3 to be 1.) Thus,

U= ax+by+e
Cgx+hy+1

_ex+dy+ f

= 12
v gx+hy+1 (

)

A(ax+by+e) + Bex+dy+ f)

+C(gx+hy+1)>0 (13)
Again, this constraint is linear in the transformation
parameters. Denote

W' =(a,b,cd,e, f, g h)

1,....n (16)

the vector of unknown transformation parameters, and . ] ] ]
we seek a vector of parametershat is consistent with
the constraints. Denote I§ythe matrix of rowsj;, and

aT
= (AX, Ay, Bx, By, A, B,Cx,C
g ( Y Y Y) by ¢ the vector ofci’'s. We may write

we can rewrite the forward constraint (12) as
Guw > ¢ a7)
g'w>=-C (14)
where the> sign applies separately to each of the com-
Backward Constraints. In the 2-D case models and ponents.
images are interchangeable, and so the backward con- Solving the one-way problem (17) involves finding
straints can be defined in the same way as the forwarda linear discriminant function. One method of finding

constraints. Again, for affine, similarity, and projective a linear discriminant is by using linear programming.
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Eq. (18) is the one witk = 0. This will contractV to

a point, which is then translated to the point inside
furthest from any of its bounding tangent lines. This
solution produces the largest valueof Clearly, the
case of matching one region cannot be solved by the
forward constraints alone.

In what follows we prove that generally if the model
contains two or more non-overlapping regions the so-
lution is unique. We specify the degenerate cases and
show that they can be predicted from the model alone.
To generate a linear program a linear objective func-
tion should be specified. A common way of defining
such a linear program is by introducing an additional
unknown,A, in the following way.

Figure 3 The dark circles are positioned by the similarity transfor-
mation that maximizes relative to the larger, shaded circles.

3.3. Uniqueness Theorems

In this section we establish the conditions under which
a one-way region matching problem has a unique so-
lution. We state the problem as follows:

maxi

Gib >+ A1 (18)

s.t.

A solution to (17) exists if and only if a solution to (18)  Problem Statement. We are given a set of convex
with A > 0 exists. (Note that other objective functions, model regions and corresponding convex image re-
e.g., the perceptron function, can be used for recovering gions. The image regions are produced by applying
w, see e.g., (Duda and Hart, 1973) for a discussion of either a similarity, affine or projective transformation to
solutions to the linear discriminant functions problem.) the modelregions. If we consider the similarity (affine,
Whena > 0 its value represents the minimal dis- projective) transformations that will project the model
tance of a pointto any line bounding the region (Fig. 3). regions entirely inside the corresponding image re-
Maximizing A amounts to attempting to contract the gions, under what circumstances is the transformation
model region inside the image region as much as pos- that does this uniquely determined? Note that clearly,
sible. Whenk < 0 this attempt fails. In this case any in the absence of occlusion, whenever this transfor-
model point that violates the constraints is mapped to mation is unique, the inverse transformation found by
a distance of no more thgn| from its target regions.  the backward constraints will also be unique, since the
Therefore, when sensing error prevents us from fully forward and backward matching problems are identical
satisfying the constraints we will find an approximate when we are considering invertible transformations.
solution. (A|in this case represents a maximum norm,
and so itis related to the Hausdorff metric. Forworkon ~ We begin this section by proving a basic lemma
Hausdorff matching, see (Huttenlocher et al., 1993a, (Lemma 1) which establishes that the uniqueness of a
1993b). Also, Amenta (1994) specifically discusses one-way matching problem is determined by the model
the efficient Hausdorff matching of convex shapes un- alone. If a model is non-degenerate a unique solution
dergoing translation and scaling.) will be obtained when the model is matched to any

Solving the system (18) may result in over-con-

of its images, while if the model is degenerate, multi-

traction. Consider, for example, the case of matching a ple solutions will exist when the model is matched to

single model regioV to a single image regioR. The

any image of the object. The lemma states the follow-

forward constraints restrict the set of possible transfor- ing claim. The solution to a one-way matching prob-

mations to those that map every pojite V inside
the regionR. AssumeT is a feasible transformation,
thatisTV C R, then applying any contracting factor
0 < s < 1toV would also generate a valid solution;
namely,T (sV) € R. (We assume here without the loss
of generality that the origin of the model and the image
are set at the centroid & and R respectively.) Con-

lem under a certain group of transformation (similarity,
affine, or projective) is unique if and only if there exists
no transformation of that group (other than the trivial
one) which projects the model regions entirely inside
themselves.

Using Lemma 1 we show that in the similarity case
two distinct (non-intersecting) model regions and their

sequently, the case of matching one region necessarilycorresponding image regions determine the transfor-

introduces multiple solutions. The solution picked by

mation uniquely. In both the affine and the projective
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cases we show that three regions positioned such thatProof: AccordingtoLemma 1the solutiontothe one-
no straight line passes through all three regions de- way matching problemis unique if and only if there ex-
termine the transformation uniquely. Then, we derive ists no similarity transformation other than the trivial
necessary and sufficient conditions for two regions to one that map¥; andV. to inside themselves. L@tbe
determine a unique solution. In the affine case these a similarity transformation such that(V;) € V; and
conditionsimply that for most pairs of regions the trans- T (V,) C V,. SinceV; andV; are both closed and con-
formation is determined uniquely. Degenerate casesvex, and sincd is a continuous transformation map-
are analyzed in Section 3.4. In the projective case, ping these two regions to inside themselves then, by
however, we show in (Basri and Jacobs, 1994) that for Brouwer’s fixed point theorem (Conway, 1990), there
example, due to these conditions, the transformation exist two pointsp; € Vi and p, € V. that are fixed

is never determined uniquely for any pair of triangles with respect tdr, that is,

or ellipses. The analysis of the three transformation
groups appears later in this section. Section 3.3 dis-
cusses the conditions for uniqueness in the similarity
case. Section 3.3 discusses the conditions for unique-(Note thatp; # P, sinceV, andV; are distinct.) Two
ness in the affine case, and Section 4 discusses thepoints determine a similarity transformation uniquely.
conditions for uniqueness in the projective case. We Therefore, the identity transformation is the only sim-
conclude (Section 5) with a discussion of the unique- ilarity transformation that maps the two regions to
ness of the one-way matching problem when points and within themselves, and sb must be the identity trans-

12

T(B) =B

line segments are used as regions.

We now turn to showing that uniquenessis dependent

on the model alone.

Lemma 1. Let Vi, Vs, ..., Vk € R? be k distinct
(non-intersectiny regions. Let7 be the group of
similarity, affing or projective transformations. Let
R = T(V) € R? 1 < i < k be k regions
obtained from YV, ..., Vi by applying an invertible
transformation T € 7. Then there exists a trans-
formation T#T, T’ € 7 such that T(Vj) € R,
1 <i <k, if and only if there exists a transformation
T+#1,T € T (I denotes the identity transformatipn
such thaff (Vi) C V; forall 1 <i < k.

Proof: Suppose there exists a transformatiog |
such thafT (V;) € V, forall 1<i <k. LetT'=TT.
Clearly, T"#T and T'(V;) € R.. Conversely, as-
sume there exists a transformati®h# T such that
T (V) € R. Let T=T1T. Then T#1 and
T(V)) < V. Furthermore, sincel =TT’ the
transformationT belongs to the same group &s
andT’. U

Similarity Transformations. In this section we show
that a similarity transformation is determined uniquely
by two distinct regions.

Theorem 1. Let W, V, € R2 be two distinct convex
closed regiongVi NV, = #). Then the solution to

formation. d

Notice that Theorem 1 requires that the two regions
will be completely disjoint. If the two regions intersect
in a curve, or share even only a single point, then it will
always be possible to contract the model to a single
point and map it to the common intersection. In con-
trast, if the two regions are disjoint the solution to the
one way constraints will be unique even if the regions
contain symmetries or isomorphisms of any kind.

Affine Transformations. In this section we handle the
affine case. We first show that an affine transformation
is uniquely determined by three regions that cannot
be traversed by any straight line. Later we derive a
necessary and sufficient condition for two regions to
determine a unique solution.

Theorem 2. Let M, Vo, V3 € R2 be three distinct
closed regions such that there exists no straight line
passing through all three regions. Thethe solution

to the one-way matching problem with these regions as
a model under an affine transformation is unique.

Proof: Similar to Theorem 1, assunieis an affine
transformation that maps the regions to inside them-
selves. Then there exist three points that are fixed with
respect toT. Since no straight line pass through all
three regions the three fixed points are non-collinear,
and so they determine the identity as the only affine

the one-way matching problem with these regions as a transformation that maps the regions to inside them-

model under a similarity transformation is unique.

selves. Thereforé = |. O



154 Basri and Jacobs

We now turn to showing that the number of re- SinceVi NV, =@, p1 # . and the points determine
gions required to determine the affine transformation aline. This line is pointwise-fixed with respectTo
uniquely is in general two. Theorem 4 below estab-

Iishgs that_two distinct regions Qetermine the transfor- T(P1+a(P— P1) = P1+a (P2 — Pr)

mation uniquely unless the regions can be contracted
such that both regions shrink entirely inside them-

selves. This property is used further in Section 3.4

to characterize the degenerate cases.

for any scalarx. Denoting the fixed line bi, we now
show thafl represents a contraction in some direction
v towardl. Assume without the loss of generality that

o p1 = 0 and that coincides with theX-axis, thenT
Theorem 3. Let W, Vo, € R2 be two distinct closed must have the form:

regions. Thenthe solution to the one-way matching

problem with these regions as a model under an affine 1 a 0
transformation is not unique if and only if there exists T= (0 b) + (0)
a line | through \{ and \4 and a directiony such that

contracting \{, V- in the directions toward | (denoted (Sothat every pointx, 0)T is mapped toitself.) Denote

by T 3) implies the angle betweeti andl by v, then contraction in a
) directionv towardl is expressed by
Tis(Mi) C Vi i=12
X, X+ (s—1ycoty, s
(see Fig4). (X, y) = (X4 (s—Dycoty, sy)

Proof: One directionis straightforward. Assuifie; for some scalas < 1. T represents such a contraction

contracts the regions within themselveB.= T, ; is since we can set= b andy = cot™* b1 =
itself an affine transformation (different from the iden-

tity transformation). To see this, létbe thex-axis, Theorem 4 above shows that any two non-inter-
without loss of generality, and lét= (vy, vy). Then secting regions provide a unique affine solution unless
this affine transformation is given by: one can draw a line through the regions and contract
the regions toward that line so that the regions would
1 Uy 0 lie entirely inside themselves. In general, such a line
Tis = (0 1+ vy> (0) ' will not exist. An analysis of the degenerate cases is

given in Section 3.4.
Conversely, assume the solution to the one-way match-
ing problem is not unique. According to Lemma 1 Projective Transformations. Similar results extend to
there exists an affine transformatidn# | such that the projective case. Using the same techniques asinthe
TV) €V (i =1,2). We next show thal is T, ;. similarity and the affine cases it is straightforward to
Since T maps the two regions to within themselves show that four regions such that no straight line passes
there exist two pointg; € Vi and p, € V; that are through any three of the regions determine the projec-

fixed with respect t@’, tive transformation uniquely. (Simply, the four regions
induce four fixed points, and four points such that no
T(B) = P i=12 three are collinear determine the projective transfor-

mation.) Four, however, is not the minimal number of
regions that determine a unique solution. We are able
to show:

Tangent vectors paralle!

- = Model and Image Theorem 4. Let W, Vo, V3 € R? be three closed

% = Transformed Model i ) )
regions with non-zero areas such that there exists no

. . _ _ straight line passing through all three regions. Then

Figure 4 Two model regions lead to non-unique affine transforma- th lution to th ne-w matchin roblem with

tions when a lind, exists such that the tangents at all intersection € solu 0 0 the one-way matc g p'O €

points are parallel. In this case, the regions can contract towards thes_e regions as a model under a projective transfor-

the directionv. mation is unique.
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\ Figure 6. Cases when solution is non-unique: when there exists
four collinear points on the boundaries of the two regions with parallel

Figure 5 Two model regions lead to non-unique projective trans- tangent§ (left), or wheq eithgr of these poipts is'a vertex and the line

formations when a liné, exists such that the tangents at all inter-  CONNecting the four points pierces the region (right).

section points meet at a single pointIn this case, the regions can

contract towards in the directions emanating from

Theorem 6. Using just the one-way constraints

And, we can show: o A similarity transformation is determined uniquely
from two points from two line segment®r from a
Theorem 5. Let W, Vo, € R2 be two distinct closed combination of a point and a line segment.

regions with non-zero areas. Thetie solution to the e Anaffine transformation s determined uniquely from
one-way matching problem with these regions as a any three points or line segmentsrovided that no
model under a projective transformation is non-unique  line intersects all three features.

if and only if there exists a line | through, \@nd 46 and o Anaffine transformation is determined uniquely from

a point g outside Y, V, and | such that the following two or more line segments and any number of points

condition is met. Letbe any point at the intersection evenwhen aline does intersect all featurg®vided

of Vi and |. Then the tangent line to \dt the point thatthere are atleast two line segments not contained

pi includes q. More informally, this will imply that in the intersecting line that are parallel.

contracting \{ and \4 in directions emanating fromq e An affine transformation is not uniquely determined

toward | (denoted by |T;) implies when all points and line segments lie on a single,line
or when line segments that do not lie on this line are

Tiq(Vi) C Vi i=12 parallel.

e A projective transformation is determined uniquely
from four points such that no three are collineand
by three line segments in general posititiat are
not all intersected by a single line.

(see Fig5).

This theorem is the natural generalization of the two
region case under affine transformauon;. In that Case, o proof of this theorem follows directly from the
a degeneracy occurs when the tangent lines are parallel

. . . o o roofs of previous theorems.
(i.e., intersect at a point at infinity). In the projective P AN impgrtant advantage of the proposed formulation
case, a degeneracy occurs when the tangent lines inter-

o is that it can handle combinations of feature points, line
sect at any point in the plane.

The proof of these theorems is somewhat complex, segments, and regions in the same framework.

and is given in (Basri and Jacobs, 1994).
3.4. Degeneracies

Points and Line SegmentsWhen applying our
method we may wish to use points or line segments In the previous section we showed that in general two
in addition to regions. By applying the results intro- distinct regions determine the alignment transforma-
duced in this section we can analyze what combina- tion uniquely. No degenerate cases exist if the align-
tions of points and lines determine the transformation ment transformation is restricted to be a similarity
uniguely under a one-way matching problem. These transformation. The affine case, however, introduces
combinations are specified below. degeneracies, and a third region may be required to
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disambiguate a solution. In this section we analyze
the conditions for the occurance of degeneracies. We
introduce necessary and sufficient conditions for the
existence of degeneracies and complete the analysis
with several examples.

Suppose tha¥;, V, € R? are two distinct regions
(V1nV, = ). Letl denote aline passing through both
regions, and lef denote a direction, different from the
direction ofl. Denote the entry (or exit) points binto
V1 by p1, P2 and intoV, by ps, Ps. Using Theorem 4
it can be shown that this regions are degenerate under
an affine transformation if and only if there existind
v, such that each poirfi;j satisfies either one of the two
conditions:

; Figure 7. Two circles always lead to degenerate solutions under
1. The tangent to the boundary éf at p; is parallel gure . ys lead fo deg . ]
9 A Pi P an affine transformation, as shown in the figure. A line through their

to l{’ or . . . centers intersects them at points with parallel tangents, allowing con-
2. pj is avertex| intersects the interior of;, and the traction in the direction perpendicular to this line.

line throughp; with directionv does not intersect
the inside ofV;.

These conditions provides a complete characterization
of the degenerate cases, and so we can use them to
analyze any given model. Below we analyze the cases
of objects composed of smooth bounded regions and
objects composed of polygons.

Suppose that botl; andV, have smooth bound-
aries. Then, due to condition'¥; andV, are degener-
ate under an affine transformation if and only if there
exist four collinear points on the boundaries of the re-
gions with parallel tangents. Consequently, two circles
are always deQenerate’.Smce the I.me cgnnectmg thelra vertex (as irp1) e11 andey; are the angles between the two sides
centers penetrates the circles at points with parallel tan- emanating fronp; and the positive direction of Whenl intersects
gents. (The tangents at these points are perpendicularthe boundary of a polygon at a side (agiy) a21 = a2 is the angle
tol, see Fig. 7.) In contrast, two ellipses in general between the side and the positive directiom.of
position are not degenerate.

Suppose that botk; andV, are two distinct poly-
gons. Then, the two conditions take the following 1- | could be a side of a triangle, andcould be be-
form: V; andV, are degenerate if and only if there exist tweena, anda, (Wherea; anda, denote the angles

Figure 8 Notation: when intersects the boundary of a polygon at

four collinear points on the boundarips B, € Vi and between the positive direction bland each of the
B3, Pa € Vo Which satisfy the following condition. Let two other sides of the triangle), or _

| be the line througlpy, . . ., Pa. Forevery 1< j < 4, 2. | could go through a vertex and a side of the triangle,
denote the angle betweérand the boundary of the andy could be in the direction of the side.

shape ap; by a1j < apj as in Fig. 8 15 < ayj if p; . . . _ o .

is a vertex andy; = a; otherwise). Then degeneracy From this analysis we obtain that a pair of distinct tri-
occurs ifﬂ?:l[alj A angles_ are degenerate only in the following three cases

As an example we analyze below the case of a model (Se€ Fig. 9):

consisting of two distinct triangles. Létdenote the

fixed line andv denote the direction of contraction. 1. If the triangles contain four collinear vertices. De-
For each triangle the theorem restrittand v to the note byl the straight line through the four vertices,
two following cases: by a1, o, B1, andB, the angles between the sides



Figure 9 Degenerate sets of distinctive triangle pairs. Two trian-
gles with four collinear vertices (left), with three collinear vertices
(middle) and parallel sides (right). The conditions that makes these
pairs of triangles degenerate are specified in the text.

of the triangles and the positive directionlgfand

by 6 the angle betweeti, the direction of con-
traction, and. Since for contraction to be possi-
ble the lines parallel t& through the four vertices
must not pierce the inside of the triangles we obtain
thatay < 6 < ap andp; < 6 < B,. Contrac-
tion in this case is therefore possible if the ranges
[oa, o] N[B1, Bo] # V.

. If three of the vertices are collinear, denotd liige
line connecting the three verticésnust pierce one
of the triangles in its side. This side determines
the direction of contraction. Denote Igythe angle
between this side and the positive direction lof
and, as before, denote by anda, the angles be-
tween the positive side dfind the sides of the other
triangle, now contraction is possibledfe [a1, ay].

. Contraction is possible also if two sides of the tri-
angles are parallel and the line connecting the two
opposing vertices goes through the two triangles. In
this casd is the line connecting the vertices and
is the direction of the parallel sides.

These are the only cases of degenerate triangles. N-
sided polygons produce essentially the same results.

The only difference is that a many-sided polygon can
also have two parallel sides, which leads to one more
type of case.

3.5. Summary

We have shown how to precisely formulate the one-way
constraints, and how to efficiently find transformations
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matched parts of an object without any more precise
correspondence between features of these parts, and
when we allow for arbitrary amounts of occlusion. The
uniqueness results are necessary to show that such a
weak, region-based correspondence can be sufficient
to determine pose. Note that although these results
are demonstrated for the occlusion-free case, they are
also significant when there is occlusion. Suppose, for
example, that we match five model parts to five im-
age regions, and solve for an affine transformation
that satisfies the backward constraints. Our unique-
ness results tell us that, in general, if two of the image
regions are unoccluded, and the other three contain
arbitrary amounts of occlusion, we will obtain the cor-
rect model pose. This is because occluded regions still
contribute only more correct backward constraints, and
cannot undermine the correctness of our pose. There-
fore, we have a solution method that can tolerate large
amounts of occlusion, and which does not need to know
which portions of the region boundary are due to occlu-
sion, and which parts represent the boundaries of the
object.

4. The 3-D Problem

In this section we extend the method to matching 3-D
model to 2-D image regions. This time we only con-
sider the set of affine transformations in 3-D followed
by either an orthographic or perspective projection. In
the formulation below we match 3-D model volumes to
2-D image regions. We later introduce uniqueness re-
sults which apply only to planar model regions that are
not necessarily coplanar. We begin by defining the one-
way constraints. Unlike in 2-D, we consider only the
forward constraints, since the back constraints cannot
be expressed linearly. We then analyze the solution
involving the application of the one-way constraints.
The solution is again obtained by applying a linear
program.

4.1. One-Way Constraints

We denote a point in model space By= (x,V, 2)

and in image space by = (u, v). If § = T(p) then
we denoteu = Ty(p) andv = T,(p). We begin by
defining the one-way constraints.

that satisfy these constraints. The backward constraintsForward Constraints. Let p = (X,y,2) € V be a
express our state of knowledge exactly when we have model point, and letAu + Bv + C > 0 be a half



158 Basri and Jacobs

space containin. Again, the forward constraints are  Affine + Perspective Projection. Consider now the

expressed by case of perspective projection. In this case
AT,(P) + BT, (B)+C >0 (19) U f (t1aX + tr2y + t13Z + ty)
t31X + tzoy + 1332+ 23)
The unknowns are the parameters of the transforma- f (taaX + to2y + tosz + ty)
. v =
tion, T. t31X 4 tapy 4 t3zz +- t,

Affine+ Orthographic Projection. Firstwe consider  where f is the focal length. The forward constraint
a projection model consisting of a 3-D affine transfor- Au+ Bv + C > 0 implies that
mation followed by an orthographic projection. We

will call this the orthographic case, to distinguish it f (t1aX + oy + t13z + ty)
from a 3-D affine transformation followed by perspec- ta1X + tapy + tagz + t,
tive projection. Denote the linear partbhby R, where f (tasX + toy + tosz + ty)

Ris a non-singular & 3 matrix with elements; , and

. > 31X+t t33z+t
the translation part by = (i, ty, t,). Then: 31X + T2y + 1332+ 1o

+C=>0 (24)

U =ty X + toy + t1zz + ty

v = taX + by + oz + 1. (20) Since we generally require the object to appear in front

of the camera the tertgiX + tzoy + t33z + t, must be

This projection model and its equivalent has been re- Positive. Thus, we obtain:

cently used by a number of researchers (Lamdan and

Wolfson, 1988; Ullman and Basri, 1991; Koenderink Af(t1aX + tiy + t13Z + ty)
and van Doorn, 1991; Tomasi and Kanade, 1992; + Bf(taaX + toay + toaz + ty)
Jacobs, 1992). Itis also equivalent to applying scaled
orthographic projection followed by a 2-D affine trans-
formation (Jacobs, 1992), that is, taking a picture of a
picture. Alternately, it is equivalent to a paraperspec-
tive projection followed by translation (Basri, 1996), .
where paraperspective is a first-order approximation W' = (tu1, t12, t13, tx, to1, T2, t23, 1y, 131, t32, 133, t2)
to perspective projection (Poelman and Kanade, 1994;

+C(tarX + tapy + tasz+t,) >0 (25)

Let

Sugimoto, 1996). contain the unknown transformation parameters, and
The forward constraint for the orthographic case be- let
comes

g’ = (Afx, Afy, Afz, Af, Bfx, Bfy, Bfz Bf,
A(t11X + tr2y + 132+ ty) Cx,Cy,CzC)
+ B(tarx +tooy + 123z +ty) + C > 0. (21)
contain the known positional parameters, we obtain

This constraint is linear in the transformation parame- that
ters. Denote

1 G'w=>0 (26)

w = (tllv t121 t139 tX’ tzls t227 t23’ ty)

_ In this case we obtain a homogeneous inequality and
the vector of unknown transformation parameters, and gq solutions can be obtained only up to a scale factor.

To consider the rigid case for either orthographic or

=T ) o .
g = (Ax, Ay, Az A, Bx, By, Bz B) perspective projection, we have to add non-linear con-
_ _ _ straints enforcing the orthonormality of the row vectors

we can again rewrite the forward constraints as of the rotation matrixR. In the discussion below we

o confine ourselves to affine transformations under or-
gw=>-C. (22) thographic projection.
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Backward Constraints. Forthe problem of matching  of corresponding image regiofs, ..., R € R2. We
3-D models to 2-D images the back constraints cannot will assume without loss of generality that the image
be specified in a straightforward way since the depth plane isz = 0. Denote the projection operator by,
component of points in the image is eliminated by the That is,IT transforms a 3-D object into a 2-D object by
projection. Consequently, in 3-D, only the forward setting itsz component to 0. In matrix form,
constraints generate a set of linear constraints. The dis-
cussion below is restricted to the forward constraints. 1
Mm=1|0
0

o O

0
0
Since we can only enforce the forward constraints 0
in 3-D recognition, it is important to ask under what
circumstances the forward constraints alone are valu- By saying that the regions correspond, we mean that
able. First, our regions may consist of planar or curved there exists some 3-D affine transformatidn,such
2-D portions on the “skin” of an object, such as sur- that, for alli, ITV = R. In matrix form, given a
face markings or facets of an object. Such 2-D regions model pointp = (X, y, z), we write:
may frequently project without self-occlusion. Sec-

ond, although a 3-D volume will always project with tir t ls X tx
self-occlusion, this self-occlusion does not invalidate Tp=|ta t2 tz yl+1t
the forward constraints, since we do want a projection ta1 t32 133 z t;

that takes all volume points inside the corresponding .

region. Third, the forward constraints may be used We label the rows off, ti. We wish to know under

when there is known occlusion in a region. If we can What circumstances is unique.

identify the boundary of a region as due to an occlu-  Obviously, the effect thal has on the model's

sion, we can eliminate it from the boundary, construct component cannot be uniquely recovered. Thatsis,

aregion that is the maximal convex set of points known andt; are never uniquely determined. We will say that

to belong to the region. The forward constraints will two 3-D affine transformations are equivalent if they

be correct when applied to such regions. differ only in their third row andz translation. We
would like to know if T is uniquely determined up to
this equivalence relation.

4.2.  Uniqueness Theorems Let us assume that there exists some affine transfor-

mationT’ such thafIT’V; € R;. We wish to discover
A system of forward constraints in the 3-D case can be whenT’ must be equivalent t6. DefineT” = T-1T".

solved in the same way such constraints are solved in

the 2-D case. As is explained in Section 3.2, the S0- | emma 2. T is uniquely determined for the set of re-
lution requires finding a linear discriminant function, gjons \ if and only if it is uniquely determined for the

and this can be done, in particular, by solving a linear set of regions Q) where Q is an-D affine transfor-
program. In this section we will consider under what mation.

circumstances enforcing the forward constraints will
produce a unique pose, when matching a 3-D model Proof: Clearly, if we show this assertion in one direc-
and a 2-D image under orthographic projection. The tion, it must be true in the other, since the affine trans-
case of fully 3-D volumes is relatively challenging to formations form a group. Suppo3eis not uniquely
analyze because such volumes always project to im- determined, i.e., that there exigtsnot equivalent ta
ages with some self-occlusion. So we shall confine such thatlIT'V, € R. Then, letW = TQ™ 1, W' =
ourselves to the simpler case of a model that consists T'Q~!. Clearly, W maps the region§V, to the re-
of planar regions that need not be mutually coplanar. gions R (ITW QV = R)), andW’ maps the regions
For such a model we will show that the transformation QV; within these regionsl[{W'QV, € R). We must
is determined uniquely from the forward constraints show thatW andW’ are not equivalent.
when the model consists of four regions in general po-  To see this, we suppose tdtandW’ are equivalent,
sition. We will derive a sufficient condition for unique-  and show that this implies th@&tandT’ are equivalent.
ness when the model consists of three regions. First, abbreviate the rows of the linear partsioand
We are given a set of regioNs, . .., Vi C R® such T’ as: t;, t/, abbreviate the columns of the linear part
that eachV; liesinside aplan® (1 <i <k)andaset of Q! asq;, and denote the translation 6! by
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ty = (Odx, Ay, 02). The linear parts oW andW’ are
given by:

11 t
bl & ), |G ]@ @ o)

t3 t;

Therefore W equivalent toV' implies:

tion = tith
t10p = t102
103 = t10s
to01 =ty
ta0p = ty02
203 = ty0s

This implies that(t; — t;) is orthogonal tay;, g2 and
gz. Since we assume th& is non-singularf; = t;.
Similarly, t; = t;. The translation components @f
andW’ are given by:

titg + te ity +t,
tatg +ty | | ttg + 1,
tatg + 1, titg +t

Thereforet; = t;, t; = t;, and the equivalence &
andW’ implies further thatt, = t;, t, = t§, and soTl
is equivalent tor’, contradicting our assumption.O

Note that while similar to Lemma 1, Lemma 2 is
much more limited. Lemma 1 says that in the planar
case, uniquenessisindependentoftheimage. Lemma?2 Sp
only states that in the 3-D case uniqueness is indepen-
dent of the model’s affine frame of reference. As we

transformation that map®;V, inside R;. Then, the
region QV; contains a fixed point under the transfor-
mation(IT Q1 ~X(MT'Q; ™), which mapsQV; onto
itself. So there exists some poigf, € Q;V; such that
T QG = NT'Q;'G. Letting fi = Q; ', then,
we can see thdliTf = 1T, and thatf; € V;. O

We may now use these lemmas to consider when
T is uniquely determined. First, we point out that
is not uniquely determined in the case where a single
line exists that intersects all regions. In this case, it is
possible to view the model so that all regions intersect.
As with the 2-D case, when all regions intersect, the
forward constraints are satisfied by any affine transfor-
mation that shrinks the regions to a small area, that fits
inside the intersection of the regions.

In particular, this tells us that when there are only two
regions, a non-unigue transformation is always possi-
ble. More generally, we may say that when the image
regions are such that there is a non-identity, 2-D affine
transformation mapping each region inside itself, that
no set of model regions may be mapped uniquely to
match these regions. That is, for regions such that
TV, = R, if there exists a 2-D affine transforma-
tion, S # | (wherel is the identity transformation)
suchthatSR C R for alli, thenT cannot be unique.
To see this, let:

[ S11 S12 Sx
Sp= <Szl Szz>p+<sy>

and let:
_ Si1 S12 O Sx
=1 S22 0|p+]s
0O 0 1 0

will discuss, in the 3-D case uniqueness is not indepen- Then:

dent of the image.

Lemma3. Given as usual model regions } image
regions R, and two affine transformations T and T
such thatlITV, = R andIIT'V, C R, there exists a
point B; in each region Ysuch thatlIT g = IIT' .

Proof: Choose the 3-D affine transformati@) so
that Q; P, equals thez = 0 plane. (Recall thaP, is

the plane containing;.) We can then consider the

transformationl1T Q! as a 2-D affine transforma-
tion when applied taQ; P, that mapsQ;V; into R.

Similarly, [IT'Q;* can be thought of as a 2-D affine

MSTVY =SITV,. € R

while atthe same tim& T# T. However, even though
any pair of regions may produce an image that leads
to non-unique solutions, it is still an open question
whether they may also produce images that lead to
unigque solutions.

We consider next the general case where there are
four regions that are not intersected by a plane. The
case in which a plane exists that intersects all four or
more regions is similar to the case in which there are
three regions, and will be discussed later.



Theorem 7. Assume the above definitiomngith four
regions such that no single plane intersects all four
regions. ThenIIT is unique.

Proof: By Lemma 3 there exists a poifit € V; such
thatIIT/(B) = NOT () for everyi =0,...,3. The
pointspo, ..., P3 are all non-coplanar. Consequently,
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this is true, the remainder &f is either entirely above
or below thez = 0 plane. Assume WLOG that it is
above it. TherTIT' maps any pointix, y, z) thatis on
the boundary oW, to (x, y) — z(k1, k2). SinceT is
the identity transform(x, y) is on the boundary oR; .
Hence, T’ displaces all points on the boundary \¢f

in the same direction relative to the position to which

since correspondences of four non-coplanar points de-TIT maps them. Clearly some of these points will be

termine a 3-D to 2-D affine transformation uniquely
thenIIT = IIT". U

mapped outside oR;. Therefore,T not equivalent to
T’ implies that thez = 0 plane must intersect each
region in two points, with opposite tangent directions.

We now consider the case where there are Only three We may now list some necessary conditionsdp
regions, or there are four or more regions intersected pe non-unique.

by a plane, but the regions may not be intersected by

any line. As before, lef; € V; be points such that
TR = IT'H;. Suppose this transformation is not
unique, i.e..T'V; € R andT’ not equivalent tar .

Using Lemma 2, we may assume WLOG that the
model has been transformed so tAgy = p;, for
1<i <3,and sothaff(0,0,1) = (0,0,1). This
implies thatT = I. This also implies that’p;, = f;,
forl <i < 3, so we may also assume, WLOG, that
pi is fixed undefT’, and hence that the= 0 plane is
fixed underT’. This tells us that we may write:

1 k1
2

3

= O

T =

o
=

o
o
=

Now definel; to be the line of intersection of the
planesP, andz = 0. Let R NI; be the pointsp?, p?
(we will later consider the case whelgintersects
R in a single point). Consider one of these inter-
section points,3. Let the tangent t&R at p be
W = (wy, wy, 0). Let the tangent &} at the pointp,’
have the directiow. Then the directions o), 1Ty
andIIT’v must all be the same. Sindeis the iden-
tity transformation, we must havé = (wx, wy, v)
for somev,. The pointsf)iJ are also fixed undef’,
since they lie in thez = 0 plane which is fixed
under T'. Therefore, the tangent tAT'V; at B’ is
(wx + K1vz, wy + kovz). The conditionthal’'V; € R;
implies thatl1T’v must have the same directionas
This implies that the directions ¢fvy, wy) and(ky, k2)
must be parallel. The alternative, tHat= k, = 0
would imply thatT is equivalent toT’. If the trans-

1. There exists a plari, which intersects each region
in two points.

2. For all points in the intersection & and a region,
the direction of tangency to the projections of the
region are parallel. Note that R does not have a
smooth boundary, the tangent directions at the point
of intersection may be undefined, but bounded, as in
the case discussed in Section 3.4 for planar regions
that are polygonal. In this case, the possible ranges
of the tangent vectors must intersect.

This result shows that in general, three planar model
regions will lead to a unique solution. To see this, note
that we have three degrees of freedom in selecting a
plane that intersects the model regions. The conditions
above indicate that a degeneracy will occur when six
tangent vectors are parallel after we project them onto
this plane, in the direction of the true viewing direction.
This leads to five constraints. Since we have more
independent constraints than degrees of freedom with
which to satisfy them, in general the conditions will
not be satisfied.

5. Experiments

To test the scheme we took pictures of a number
of roughly planar objects. We first processed these
images using Canny's edge detector (Canny, 1983).
We then constructed polygonal approximations to the
edges using Pavlidis and Horowitz’s (1974) split-and-
merge algorithm. The resulting polygons approximate
the original edges to within two pixels. Then, we ex-

formations are not equivalent, therefore, the tangents tracted the roughly convex structures using Jacobs’s

to each regiorR at a pointﬁiJ must all be parallel to

(k1, ko), and so they must all be parallel to each other.
We now consider the possibility that the= 0 plane

intersects some region¥; in only a single point. If

grouping system (Jacobs, 1996). The matching be-
tween the regions was specified manually. Finally, the
transformations relating these images were recovered
using either the forward or backward solutions. The
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Figure 12 Matching the diskette model to a novel image of the
diskette using two regions only (the left and the upper right, left
figure: similarity,, = —1.56, right: affine, = —0.69).

Figure 10 An image of a computer diskette used as a model.

Figure 13 Matching the diskette model to a novel image of the
diskette using two degenerate regions only (the left and the lower
right, left figure: similaritysr = —1.15, right: affinep = —0.55).

Figure 11 Matching the diskette model to a novel image of the
diskette under similarity (left figure, = —1.89) and affine (right,
A = —1.27) transformations.

figures below contain overlay images of the aligned
model and image. We also provide the value.afb-
tained in every experiment. In all of the experiments we
obtained negative values far This is because sensing
errors often cause slight violations of the one-way con-
straints. A near perfect alignment between the models
and the images is achieved nevertheless in accordancerigure 14 Matching the diskette model to a novel image that con-
to the theory developed in the paper. tains unkngwn occlusion underan aﬁinetransformation using the for-

Figure 10 shows an image of a diskette used as a"Va'd (eftfigure). = —1259) and the backward (right,= —1.51)

. . . constraints.

model. Figure 11 shows the result of matching this
model to another image of the diskette by solving for
a similarity and for an affine transformation using all Figures 14 and 15 demonstrate the performance of
five regions. In this case the amount of affine distor- the system in the presence of unknown partial occlu-
tion in the image is small, and so a good match was sion. When the forward constraints were used (left
obtained in both cases. Figure 12 shows the result of images) an over contraction of the model was obtained
matching the model to the same image using only two since these constraints are inconsistent with the pres-
regions. Figure 13 shows the result of matching when ence of unknown occlusion. To obtain better results
two degenerate (with respect to an affine transforma- one has to first eliminate the constraints which are due
tion) regions are used. These regions are degeneratdo the occlusion (by identifying the locations of oc-
because there exist four collinear points on their bound- clusion). When the backward constraints were used
aries such that their tangent vectors are parallel. Notice (right images) in both the similarity and affine cases a
the good match obtained in the similarity solution and good match was obtained. In this image, three of the
the contraction produced in the affine solution. five regions are occluded. Since in the affine case the
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Figure 15 Matching the diskette model to a novel image that con-
tains unknown occlusion under a similarity transformation using
the forward (left figurep = —15.60) and the the backward (right,
A = —3.08) constraints.

Figure 17. Matching a model of a magnet to a novel image: the
model (top left), the regions extracted from the model (top right), the
match (under affine transformation, bottom left= —3.46), and
the overlayed regions (bottom right).

Figure 16 Matching the diskette model to a novelimage containing
relatively large perspective distortions under projective (top figure, Figure 18 Two images of a book.
A = —2.25) and affine (bottom), = —5.38) transformations.

remaining two regions are degenerate by themselves,
the partial information obtained from the occluded re-
gions is essential to producing an accurate result.
Figure 16 shows the application of the projective
method to an image of the diskette containing large
perspective distortions. The match for this picture is

significantly better than that obtained under the affine Figure 19 Matching the two images of the book under a 2-D affine
solution transformation. The three regions extracted (left image, the regions

. . . are shaded) and the match obtained (right; —3.82).
Figure 17 shows the application of the method to ) (e )

images of a magnet. It can be seen that a good match ] )
was obtained for these images, although some of the 0 Sparse sampling, and recovers the transformation
regions in the picture are not well localized. successfully even in the presence of partial occlusion.

Finally, Fig. 18 shows two images of a book. Three
regions were extracted from these images and used to6. Conclusion
determine the 2-D affine transformation that relates the
two images. The results are shown in Fig. 19. We have presented a fundamentally new approach to
The experiments demonstrate that our method ob- the pose determination part of the object recognition
tains good results when applied to realistic objects. The problem. Perhaps what is most novel about our ap-
system overcomes reasonable noise, in particular dueproach is the weaker requirements that it makes on
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correspondence, compared to previous approaches. Lothat a correspondence between three points determines
cal methods explicitly require a correspondence be- a finite humber of poses, under scaled-orthographic
tween simple local features such as points and lines projection. Similarly, it is fundamental to our approach
before determining pose. Global methods implicitly to know that a correspondence between two coplanar
produce such a correspondence as well. Moment basedegions or three non-coplanar regions generally deter-
methods, for example, compute points (such as cen-mines a unique pose, under scaled-orthographic pro-
ter of mass) or lines (such as moments of inertia) jection. These results make precise the value of a loose
from regions, and determine pose based on such cor-correspondence between regions that is not based on
respondences. Our method, while still requiring a specific local feature correspondences. At the same
correspondence between regions, does not require artime, we also demonstrate that our basic approach ap-
explicit correspondence between local features before plies to a wide variety of viewing transformations (sim-
determining pose. ilarity, affine, perspective), and to both 2-D and 3-D
Itis well-known that past methods have some draw- objects.
backs associated with their need for correspondences Finally, we have demonstrated the potential appli-
between local image and model properties. The detec-cability of our method with experiments on real im-
tion of local features, such as corners and lines, can ages. These show that we can correctly determine
be highly sensitive to noise and viewpoint variation pose in spite of moderate amounts of occlusion, and
because these features do not reflect the overall shapaormal sensor error. Our algorithm’s performance on
of an object, but instead capture properties of a small images with high perspective distortion also demon-
portion of an object’s boundary. Global features of a strates the value of extending our method to perspective
region, such as its center of mass, can be much moreprojection.
resistant to noise, but may be highly sensitive to occlu-  In spite of the success of model-based recognition
sion. (Infact, depending on a region’s shape, its higher techniques in many application areas, they still have
order moments may also be sensitive to noise.) When significant weaknesses. Some of these weaknesses are
we have hypothesized a correspondence between twodue to the problem of representation. Most model-
regions, we would prefer not to have to further hy- based techniques rely on a representation of objects in
pothesize a correspondence between their momentsterms of local, precisely localizable features, or on al-
or to find and match local features of their boundaries. gebraic descriptions of more extended portions of con-
Rather, if possible we would like to make use of amore tours. While often quite valuable, these representations
minimal assumption; that the image region was pro- have the disadvantage that they describe the boundary
duced by the model region. Our one-way constraints of an object, not its internal shape. If one perturbs the
make use of only this minimal assumption. boundary of an object a bit, one can completely alter
Naturally, if we can infer more detail in a correspon- the local features or algebraic curves that describe it,
dence, and match specific points or lines of a model and without changing the internal structure much. Our ap-
region, itis useful to take advantage of this information, proach suggests a different way of representing objects
and our approach allows us to take full advantage of this for recognition. We represent and make use of the in-
knowledge when itis present. But it also shows how to ternal shape of objects, not just their boundary. And
find pose from a much weaker statement. If all that we we suggest a way of making use of hybrid represen-
really know is that some portion of the image, of what- tations of objects that capture internal shape and local
ever extent, was produced by some specific portion of boundary structure when available.
the model, our method allows us to make use of this in-
formationaswell. Ourmethod should therefore be seen acknowledgments
as an extension to past approaches to pose determina-

tion. It can fully apply all the information used by past  The authors thank Ovadya Menadeva for his assistance

methods, and at the same time use new, weaker con-n taking photographs and running the experiments.
straints on a possible match between image and model.
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