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Abstract. Recognition systems attempt to recover information about the identity of observed objects and their
location in the environment. A fundamental problem in recognition ispose estimation. This is the problem of using
a correspondence between some portions of an object model and some portions of an image to determine whether
the image contains an instance of the object, and, in case it does, to determine the transformation that relates the
model to the image. The current approaches to this problem are divided into methods that use “global” properties
of the object (e.g., centroid and moments of inertia) and methods that use “local” properties of the object (e.g.,
corners and line segments). Global properties are sensitive to occlusion and, specifically, to self occlusion. Local
properties are difficult to locate reliably, and their matching involves intensive computation.

We present a novel method for recognition that uses region information. In our approach the model and the image
are divided into regions. Given a match between subsets of regions (without any explicit correspondence between
different pieces of the regions) the alignment transformation is computed. The method applies to planar objects
under similarity, affine, and projective transformations and to projections of 3-D objects undergoing affine and
projective transformations. The new approach combines many of the advantages of the previous two approaches,
while avoiding some of their pitfalls. Like the global methods, our approach makes use of region information that
reflects the true shape of the object. But like local methods, our approach can handle occlusion.

Keywords: object recognition, occlusion, affine, perspective, regions, pose estimation, uniqueness, two-
dimensional, three-dimensional, model

1. Introduction

One of the key problems of visual object recognition
is to determine how best to effectively represent our
knowledge of objects. In this paper we introduce a
new representation in which the regions (i.e., parts) of
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objects are expressed directly as sets of points avoiding
the need to compute more complex descriptions, (e.g.,
corners, or moments) which may be difficult to obtain
in the presence of noise and occlusion. Although our
representation is simple and flexible, it is not obvious
that we can use it effectively for recognition. How-
ever, we demonstrate the utility of our representation by
showing how to use it to solve one of the central prob-
lems of recognition, that ofpose estimation. Moreover,
our solution method is compatible with one based on
local geometric features (points and lines), allowing us
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Figure 1. An example of region-based pose determination. The two
matched regions determine the pose under an affine transformation.

to combine our representation with these, when they
are also applicable.

Pose estimation is the problem of determining the
transformation that relates the model to the image given
a correspondence between some portions of an object
model and some portions of an image. This is obvi-
ously essential if we wish to determine the position of
objects in the world from their appearance in an image.
Also, to recognize objects we frequently seek to elimi-
nate the effects of viewpoint by bringing the model and
the image into alignment.

We present a novel method for determining the pose
of a known object based on matching portions of a
known model, and some (possibly occluded) areas of
the image. Our method finds a model pose that will
project these portions of the model onto the corre-
sponding image areas, without requiring knowledge
of the correspondence between specific points in the
model and image. An example is shown in Fig. 1. We
show that in general a small number of region corre-
spondences determine the correct pose of the object
uniquely. We further analyze the degenerate cases and
present experiments that demonstrate the usefulness of
the method.

The novelty of our method lies in our use of a simple,
direct representation based on region information. We
assume that some part of the object model has been
matched to a possibly occluded region in the image.
This means that every point in the image region should

be matched to some, as yet unknown point in the model
part by the correct transformation. Previous methods
typically attempt to solve this problem by computing
and matching more distinctive features of the object and
image, whereas our method will determine the correct
transformation directly from a region correspondence.

For example, one set of previous methods represents
objects or their parts using “global” features. In one
example of a global method an object is represented in
some canonical coordinate frame obtained by normal-
izing certain properties of the object (e.g., the origin
is set at the object’s center of mass, and the axes are
aligned with its principal moments). Given an image,
the region that contains the object is first segmented
from the image. The corresponding properties of the
object in the image are then computed and used to
bring the object into the canonical description. Higher
order moments, or other global descriptors may also
be used to identify the object (Hu, 1962; Richard and
Hemami, 1974; Dudani et al., 1977; Persoon and Fu,
1977; Sadjadi and Hall, 1980; Reeves et al., 1988). The
advantage of this approach is that it is computationally
efficient, since processing the image can be carried out
independently of the model. The main difficulty with
this approach is that it requires a good segmentation
of the object, and it is sensitive to occlusion, and in
particular to self occlusion. This makes the method
unsuitable for recognizing 3-D objects from single 2-D
images, or to recognition in cluttered scenes.

In a second previous approach, local features are
extracted from the model and from the image. Sub-
sets of model features are matched to subsets of im-
age features, and this match is used to recover the
alignment transformation. This has been done using
point features (Fischler and Bolles, 1981; Horaud,
1987; Huttenlocher and Ullman, 1990; Ullman and
Basri, 1991; Alter and Grimson, 1993; Alter and
Jacobs, 1994), line segments (Lowe, 1985; Ayache
and Faugeras, 1986; Rothwell et al., 1992), ver-
tices (Thompson and Mundy, 1987), and distinguished
points on curves such as inflection points or bitangents
(Joshi et al., 1994, Rothwell et al., 1992). Other meth-
ods use algebraic descriptions of portions of contours
to compute alignments (Kriegman and Ponce, 1990;
Weiss, 1993; Forsyth et al., 1991; Subrahmonia et al.,
1996). These can contain rich information about shape
by describing larger portions of the object, although
such descriptions may also be more sensitive to occlu-
sion, and more difficult to compute reliably from an
image.
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By relying on local properties, these methods can
be more robust than global ones. Typically we must
isolate an entire shape to extract its global properties.
However, we can often find local features using only
fragments of contours of an object. This can make local
methods resistant to partial occlusion or to segmenta-
tion failures.

One disadvantage of local methods is that they can
be computationally expensive. For instance, for poly-
hedral objects all triplets of model points must be tried
against all triplets of image points to guarantee that a
solution is found (O(m3n3) matches).

We feel that the relative merits of local and region-
based methods will depend on which type of repre-
sentation can best capture the shape of the object. In
many situations, it has proven extremely difficult to re-
liably locate local features in images of 3-D objects.
The intensities produced by a portion of a 3-D object
will tend to vary significantly with changes in illumi-
nation and viewpoint. This leads to variations in the
edges produced by the object, or in the performance
of other intensity based approaches to local feature de-
tection. Also, even when the contour of an object is
accurately detected, it can be quite difficult to reliably
find local features on contours that are even slightly
curved. For this reason, most demonstrations of 3-D
recognition systems have been limited to objects that
are largely polyhedral. These problems can also oc-
cur in the recognition of planar objects, especially of
curved planar objects.

We believe that these difficulties arise due to a fun-
damental difficulty with representations that use local
features based on the contour of an object. As an exam-
ple, in Fig. 2 we show two different polygonal shapes.
The locations and number of the vertices of these poly-
gons differ considerably, while the overall shapes of
the objects are quite similar. In general, small changes
in the surface of an object can have a large effect on the
location of features derived from the object contour,
or on the algebraic description of the contour. This

Figure 2. Two polygons that differ in features yet share the same
overall structure. On the right, an alignment of the two figures using
our method.

explains why local features are an inherently unstable
way of describing many objects. It also explains why
local features are poorly suited for comparing different
objects that are instances of the same class of objects.
Two different chairs, for example, may be quite simi-
lar in having arms, legs, a seat and a back of roughly
similar shape and position, but still produce corners in
totally different positions.

Because of these difficulties, we have developed an
alternate representation based directly on the regions
that make up objects, rather than on the contours that
bound these regions. In our approach the model and
the image are divided into convex regions. (Convex-
ity is not a limitation, however, since concave entities
can be replaced by their convex hulls.) Each region is
described directly as a set of points, so that our repre-
sentation captures all available shape information with-
out extracting higher level descriptions. Given a match
between model regions and image regions that may
be partially occluded, the alignment transformation is
computed. Figure 2 shows that our approach achieves
a rough alignment of the two polygons by matching
the regions themselves, rather than local boundary fea-
tures. In this paper we will focus primarily on develop-
ing this method for the recognition of a planar model
in a 2-D image, taken from an arbitrary 3-D viewpoint.
We will also show that the method can be extended to
the recognition of a 3-D object in a 2-D image.

A number of previous recognition systems have also
focused on recognizing objects in terms of their compo-
nent parts (e.g., (Bajcsy and Solina, 1987; Biederman,
1985; Binford, 1971; Brooks, 1981; Hoffman and
Richards, 1985; Marr and Nishihara, 1978; Pentland,
1987). Most of these approaches are concerned with
determining the perceptual category of objects. They
further assume that the part structure of the object is
invariant under changes in viewing position and across
objects in the same perceptual category. Often, com-
plex descriptions of object parts are computed, based
on the shape of the parts’ bounding contours. Recog-
nition is performed by comparing two graphs repre-
senting the descriptions and spatial relations between
the parts of the object. In contrast, our method esti-
mates the pose of specific objects whose exact shape
is known. In addition, our method does not require
the spatial relations between the parts to be invariant
in different views. Also, the method can recognize ob-
jects when only a small subset of their parts (as few
as two) are available, and it allows for the use of local
features in addition to the parts. However, the primary
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difference between our work and previous approaches
to parts-based recognition is the simple representation
that we use, which does not rely on computing high-
level, contour based representations of parts.

Our method relies on two different sets of possible
constraints. We define these constraints precisely in
Section 2. Intuitively, the first constraints require the
transformation to project as much of each object re-
gion as possible so that it lies inside the corresponding
image region. The second set of constraints requires
that as much of each image region as possible is cov-
ered by the projection of each model region. In the
case of a 2-D object and a 2-D image, we are able to
present a very efficient algorithm that enforces either
set of constraint. The second set is especially useful
when the object is partially occluded, since it requires
the visible image regions to be explained by the object,
but does not require the object regions to be fully ex-
plained by the image. The algorithm is designed to find
poses that will match entire regions, without requiring
an explicit correspondence between a local feature in
the region. Thus a pose is found that matches portions
of the model and image well without requiring us to
isolate features in these regions, or to hypothesize a
correspondence between specific features. However,
if a correspondence between model and image point
features or line features should be available, this local
feature information can be fully used by the algorithm
as well. Because our algorithm is implemented by re-
ducing our problem to a linear program, it can be run
quite efficiently.

We describe the algorithm and its behavior more
thoroughly in Section 3. We then address a number
of questions concerning the algorithm’s performance.
First, in the error-free case, we determine exactly when
sufficient information exists to uniquely determine the
pose of an object. These results are analogous to results
for local features showing, for example, the minimal
number of point or line correspondences needed to de-
termine an object’s pose. We show that in the general
case of planar models, a correspondence between two
convex regions suffices to uniquely determine pose (or
three regions, when we allow for perspective effects).
Next, in Section 4 we show how to extend these ideas
to 3-D objects as well. We show that in this domain
we can solve the first set of constraints using linear
programming. And in the case of 3-D objects that have
planar regions (that are not necessarily coplanar), we
again show the minimum number of region correspon-
dences needed to solve uniquely for the object pose.

This demonstrates that to a significant extent, our al-
gorithms can be applied to the recognition of 3-D ob-
jects in 2-D images. Finally, in Section 5 we show ex-
periments on a number of real objects to demonstrate
the system’s performance. An abbreviated description
of these results has previously appeared in (Basri and
Jacobs, 1995).

In summary, our new approach has several practical
advantages over previous approaches.

• The new approach does not require an exact local-
ization of features. Good estimation of the align-
ment transformation can be obtained even when the
boundaries of the regions can only roughly be local-
ized. This makes the method particularly suitable as
a second stage for color and texture classifiers.
• The method is computationally efficient. This is due

to two reasons. (1) Unlike points and lines, regions
can often be identified by their properties (e.g., color
and texture). (2) In certain cases a match between
two model and image regions is already sufficient to
recover the alignment transformation. This reduces
significantly the combinatorics of the matching pro-
cess.
• The method handles objects with smooth curved sur-

faces. Predicting the position of the contours on the
object is not required for estimating the alignment
transformation.
• The method can handle certain kinds of occlusion.

When the model is planar, we can make use of im-
age regions that are an arbitrary, occluded subset of
the model region. For 3-D models we can handle
self-occlusion, and also we can make use of image
regions that are partially occluded, when the occlud-
ing lines have been identified.

These advantages indicate that the proposed method
has the potential to recognize objects in domains that
have proven difficult for existing systems to handle. In
particular, the system offers the potential to reliably
recognize curved 3-D objects, on which local features
and contours may be difficult to find. Also, by focusing
on region information, our algorithm has potential to
offer a better way of comparing the shape of different
objects that are instances of the same class of objects.

2. Problem Definition

Below we consider the following problem. Given a set
of model regionsV1, . . . ,Vk ⊂ Rd, d ∈ {2, 3}, and a



           P1: MVG

International Journal of Computer Vision KL495-03-Basri September 15, 1997 16:30

Recognition Using Region Correspondences 149

corresponding set of image regionsR1, . . . , Rk ⊂ R2

determine the transformationT ∈ T that maps every
model regionVi to its corresponding image regionRi

(1≤ i ≤ k).
Throughout the paper we assume that the regions

are all closed and convex. The solutions we propose
handle non-convex regions by replacing them with their
convex hulls. Points and line segments fall naturally
into this formulation as they form convex sets.

We consider a few variants of this problem. The
model may be 2-D or 3-D. If 2-D, the allowed trans-
formations, T , are either the similarity (rotation,
translation, and uniform scaling), affine (linear and
translation), or projective transformations. If 3-D, we
consider affine transformations followed by either an
orthographic or perspective projection.

It will be very useful to distinguish between two sets
of constraints on the transformation.

Forward constraints: every model pointEp ∈ Vi should
project inside the regionRi (that is,T Vi ⊆ Ri ).

Backward constraints: every image pointEq ∈ Ri is
the projection of some model pointEp ∈ Vi (that is,
T Vi ⊇ Ri ).

The backward constraints are particularly useful, since
they capture fully our knowledge of pose when we al-
low for the image regions to be arbitrarily occluded.

The problem of determining the transformation that
perfectly aligns a set of model regions to their corre-
sponding image regions can be described as finding a
transformation that satisfies both the forward and the
backward constraints. This is generally non-convex.
That is, the set of feasible transformations need not be
convex, or even connected. Consider for example the
case of a model square matched to an image contain-
ing an identical square. Matching the model exactly to
the image can be performed in four ways correspond-
ing to rotating the model square so as to bring any
of its four sides to the top. Obviously, no intermedi-
ate transformation provides a solution to this matching
problem.

Below we consider the problem of computing the
transformationT , of a family of transformationsT , that
is consistent with either just the forward constraints or
just the backward constraints. We see that individually
each set of constraints produces a convex set of feasible
transformations, although the combination of the two
does not. This leads to efficient solutions when we use
only one set of constraints.

3. The 2-D Problem

In this section we analyze the case of matching 2-D
model regions to 2-D image regions. We consider three
sets of allowed transformations, similarity, affine, and
projective. A similarity transformation is composed of
a rigid transformation and uniform scaling. An affine
transformation may include, in addition, stretch and
shear. 2-D affine transformations represent the set of
transformations relating two scaled-orthographic im-
ages of a plane. Projective transformations relate two
perspective images of a planar object.

We begin by defining the one-way constraints (either
forward or backward). We show that in all three cases
(similarity, affine, and projective) the one-way con-
straints can be formulated as a set of linear inequalities
with the transformation parameters as the unknowns.
Determining the transformation that relates the model
to the image is equivalent to finding a linear discrim-
inant function. In particular, the solution can be ob-
tained by applying a linear program. We show that
a unique solution to the one-way matching problem
generally exists for as few as two distinct regions.

Our method is based on Baird’s (1985) insight that
matching features to convex regions leads to linear con-
straints on the set of possible transformations relating
the two. Cass (1992) used this insight to produce the
first polynomial-time algorithm guaranteed to match
the maximum number of consistent features. Breuel
(1991) also uses these insights to make potentially
exponential constraint-based search into a worst-case
polynomial time algorithm. However, our work differs
significantly from these approaches, which focus on
matching simple, local features, and do not make use
of region-based information.

3.1. One-Way Constraints

We denote a point in model space byEp = (x, y) and in
image space byEq = (u, v). WhenEq = T( Ep)we denote
u = Tu( Ep) andv = Tv( Ep). We begin by defining the
one-way constraints. There are two possible sets of
one-way constraints, the forward constraints (where
model regions are required to project entirely inside
their corresponding image regions) and the backward
constraints (where image regions are required to lie
entirely inside the projection of the their corresponding
model regions).

We formulate the forward constraints as follows.
Given a convex model regionV and a corresponding
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convex image regionRwe want to find a transformation
T that mapsV insideR. Note that bothV andRmight
in particular be simply points or line segments. Since
R is convex, there exists a set of linesL R boundingR
from all directions such that for every pointEq ∈ R and
for every linel ∈ L R we can write

l (Eq) ≥ 0 (1)

The constraintT V⊆ R can be written as follows. Ev-
ery point Ep ∈ V should be mapped byT to some point
Eq ∈ R, and so

l (T Ep) ≥ 0 (2)

The set of forward constraints consists of all such con-
straints obtained for all pairs of bounding linesl ∈ L R

and model pointsEp ∈ V . (Therefore, the set of for-
ward constraints is homomorphic toL R × V .) When
several model regionsV1, . . . ,Vk and corresponding
image regionsR1, . . . , Rk are given the set of forward
constraints is the union of sets of constraints for each
pair of corresponding modelVi and regionRi . The
back constraints are obtained in the same way by inter-
changing model with image regions. Below we derive
the constraints (2) explicitly for both the forward and
backward cases allowing either similarity, affine, or
projective transformations.

Forward Constraints. Let Ep = (x, y) ∈ V be a
model point, and letAu + Bv + C ≥ 0 be a half
space containingR. The forward constraints take the
form

ATu( Ep)+ BTv( Ep)+ C ≥ 0. (3)

Note that given the model regionV and its correspond-
ing image regionR the model pointEp is known (it may
be any of the points inV), and so is the constraint line
Au+ Bv + C ≥ 0 (which may be any of the tangent
lines to R). The unknowns are the parameters of the
transformationT .

Similarity Transformation. SupposeT is a similarity
transformation, we can writeT in the following form(

u
v

)
=
(

a b
−b a

)(
x
y

)
+
(

c
d

)
. (4)

The forward constraint in this case is given by

A(ax+ by+ c)+ B(−bx+ ay+ d)+ C ≥ 0. (5)

This constraint is linear in the transformation param-
eters. (This parameterization is used and explained,
for example, in Baird (1985). Baird pointed out that
a linear bound on the location of a transformed model
point leads to a linear constraint on the feasible trans-
formations.) Denote

EwT = (a, b, c, d),
and

EgT = (Ax+ By, Ay− Bx, A, B),

we can rewrite the forward constraint (4) as

EgT Ew ≥ −C. (6)

WhenT is restricted to be a Euclidean transformation
(with no scaling) an additional non-linear constraint is
obtained:

a2+ b2 = 1. (7)

This constraint is not used in our scheme.

Affine Transformation. SupposeT is an affine trans-
formation,T is given in the form(

u
v

)
=
(

a b
c d

)(
x
y

)
+
(

e
f

)
. (8)

We can now write the forward constraint for the affine
case in the following form

A(ax+ by+ e)+ B(cx+ dy+ f )+ C ≥ 0. (9)

This constraint is linear in the transformation parame-
ters. Denote

EwT = (a, b, c, d, e, f )

the vector of unknown transformation parameters, and

EgT = (Ax, Ay, Bx, By, A, B)

we can rewrite the forward constraint (8) as

EgT Ew ≥ −C (10)

Projective Transformation. In order to extend our
formulation of the forward constraints to handle pro-
jective transformations we should first overcome one
inherent difficulty. Our formulation relies on match-
ing convex model regions to convex image regions.
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Projective transformations, however, may transform a
convex region to a non-convex one. This difficulty is
circumvented by noticing that under projectivity con-
vex shapes are mapped to non-convex ones only when
the object crosses the image plane (or, in other words,
when the vanishing line intersects the object). Since
under perspective projection the image plane always
lies between the object and the focal point it is guar-
anteed that convex regions on the object will produce
convex regions in the image. The subset of projective
transformations relevant to recognition therefore pre-
serves convexity.

We now show how to formulate the one-way con-
straints in the projective case.T can be expressed in
the form

α

u
v

1

 =
a b e

c d f
g h 1

 x
y
1

 (11)

for some arbitrary scalar factorα. (Note that, WLOG,
we setT33 to be 1.) Thus,

u = ax+ by+ e

gx+ hy+ 1
v = cx+ dy+ f

gx+ hy+ 1
. (12)

As we require the image plane to separate the object
from the center of projection we can assume WLOG
that the depth coordinate,gx+ hy+ 1, is positive for
all points. Imposing the constraint (3) we obtain

A(ax+ by+ e)+ B(cx+ dy+ f )

+C(gx+ hy+ 1) ≥ 0 (13)

Again, this constraint is linear in the transformation
parameters. Denote

EwT = (a, b, c, d, e, f, g, h)

the vector of unknown transformation parameters, and

EgT = (Ax, Ay, Bx, By, A, B,Cx,Cy)

we can rewrite the forward constraint (12) as

EgT Ew ≥ −C (14)

Backward Constraints. In the 2-D case models and
images are interchangeable, and so the backward con-
straints can be defined in the same way as the forward
constraints. Again, for affine, similarity, and projective

transformations the constraints are linear and they take
the form

EgT Ew ≥ −C, (15)

but this time the vector of unknowns,Ew, represents the
image-to-model transformation, which is the inverse
of the transformation solved for by the forward con-
straints.

Solving for the transformation using the backward
constraints alone is particularly useful in the case of oc-
clusion. Image regions that are partly occluded lie in-
side the corresponding model regions (after the model
and the image are brought into alignment), but the in-
clusion may be strict due to the occlusion.

3.2. Solving a System of One-Way Constraints

The one-way problem under affine, similarity, or
projective transformations introduces a set of linear
constraints in the transformation parameters. In the
forward problem the set of constraints contains one
constraint for every point in the model regions and for
every tangent line to the image regions. In the back-
ward problem the model and image change roles. The
number of constraints for a curved object is therefore
infinite. For polygonal regions the number of indepen-
dent constraints is finite. The system of constraints in
this case is completely defined by the vertices of the
model regions and the sides of the image regions, and
the rest of the constraints are redundant. In the curved
case we will want to sample the set of constraints. The
issue of sampling is addressed in (Basri and Jacobs,
1994).

Given a finite set of constraints

EgT
i Ew ≥ ci , i = 1, . . . ,n (16)

we seek a vector of parametersEw that is consistent with
the constraints. Denote byG the matrix of rowsEgi , and
by Ec the vector ofci ’s. We may write

G Ew ≥ Ec (17)

where the≥ sign applies separately to each of the com-
ponents.

Solving the one-way problem (17) involves finding
a linear discriminant function. One method of finding
a linear discriminant is by using linear programming.
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Figure 3. The dark circles are positioned by the similarity transfor-
mation that maximizesλ relative to the larger, shaded circles.

To generate a linear program a linear objective func-
tion should be specified. A common way of defining
such a linear program is by introducing an additional
unknown,λ, in the following way.

maxλ
s.t. G Ew≥ Ec+ λE1 (18)

A solution to (17) exists if and only if a solution to (18)
with λ ≥ 0 exists. (Note that other objective functions,
e.g., the perceptron function, can be used for recovering
Ew, see e.g., (Duda and Hart, 1973) for a discussion of
solutions to the linear discriminant functions problem.)

Whenλ ≥ 0 its value represents the minimal dis-
tance of a point to any line bounding the region (Fig. 3).
Maximizing λ amounts to attempting to contract the
model region inside the image region as much as pos-
sible. Whenλ < 0 this attempt fails. In this case any
model point that violates the constraints is mapped to
a distance of no more than|λ| from its target regions.
Therefore, when sensing error prevents us from fully
satisfying the constraints we will find an approximate
solution. (|λ| in this case represents a maximum norm,
and so it is related to the Hausdorff metric. For work on
Hausdorff matching, see (Huttenlocher et al., 1993a,
1993b). Also, Amenta (1994) specifically discusses
the efficient Hausdorff matching of convex shapes un-
dergoing translation and scaling.)

Solving the system (18) may result in over-con-
traction. Consider, for example, the case of matching a
single model regionV to a single image regionR. The
forward constraints restrict the set of possible transfor-
mations to those that map every pointEp ∈ V inside
the regionR. AssumeT is a feasible transformation,
that isT V ⊆ R, then applying any contracting factor
0 ≤ s ≤ 1 to V would also generate a valid solution;
namely,T(sV) ⊆ R. (We assume here without the loss
of generality that the origin of the model and the image
are set at the centroid ofV andR respectively.) Con-
sequently, the case of matching one region necessarily
introduces multiple solutions. The solution picked by

Eq. (18) is the one withs= 0. This will contractV to
a point, which is then translated to the point insideR
furthest from any of its bounding tangent lines. This
solution produces the largest value ofλ. Clearly, the
case of matching one region cannot be solved by the
forward constraints alone.

In what follows we prove that generally if the model
contains two or more non-overlapping regions the so-
lution is unique. We specify the degenerate cases and
show that they can be predicted from the model alone.

3.3. Uniqueness Theorems

In this section we establish the conditions under which
a one-way region matching problem has a unique so-
lution. We state the problem as follows:

Problem Statement. We are given a set of convex
model regions and corresponding convex image re-
gions. The image regions are produced by applying
either a similarity, affine or projective transformation to
the model regions. If we consider the similarity (affine,
projective) transformations that will project the model
regions entirely inside the corresponding image re-
gions, under what circumstances is the transformation
that does this uniquely determined? Note that clearly,
in the absence of occlusion, whenever this transfor-
mation is unique, the inverse transformation found by
the backward constraints will also be unique, since the
forward and backward matching problems are identical
when we are considering invertible transformations.

We begin this section by proving a basic lemma
(Lemma 1) which establishes that the uniqueness of a
one-way matching problem is determined by the model
alone. If a model is non-degenerate a unique solution
will be obtained when the model is matched to any
of its images, while if the model is degenerate, multi-
ple solutions will exist when the model is matched to
any image of the object. The lemma states the follow-
ing claim. The solution to a one-way matching prob-
lem under a certain group of transformation (similarity,
affine, or projective) is unique if and only if there exists
no transformation of that group (other than the trivial
one) which projects the model regions entirely inside
themselves.

Using Lemma 1 we show that in the similarity case
two distinct (non-intersecting) model regions and their
corresponding image regions determine the transfor-
mation uniquely. In both the affine and the projective
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cases we show that three regions positioned such that
no straight line passes through all three regions de-
termine the transformation uniquely. Then, we derive
necessary and sufficient conditions for two regions to
determine a unique solution. In the affine case these
conditions imply that for most pairs of regions the trans-
formation is determined uniquely. Degenerate cases
are analyzed in Section 3.4. In the projective case,
however, we show in (Basri and Jacobs, 1994) that for
example, due to these conditions, the transformation
is never determined uniquely for any pair of triangles
or ellipses. The analysis of the three transformation
groups appears later in this section. Section 3.3 dis-
cusses the conditions for uniqueness in the similarity
case. Section 3.3 discusses the conditions for unique-
ness in the affine case, and Section 4 discusses the
conditions for uniqueness in the projective case. We
conclude (Section 5) with a discussion of the unique-
ness of the one-way matching problem when points and
line segments are used as regions.

We now turn to showing that uniqueness is dependent
on the model alone.

Lemma 1. Let V1,V2, . . . ,Vk ⊆ R2 be k distinct
(non-intersecting) regions. LetT be the group of
similarity, affine, or projective transformations. Let
Ri = T(Vi ) ⊆ R2, 1 ≤ i ≤ k be k regions
obtained from V1, . . . ,Vk by applying an invertible
transformation T ∈ T . Then, there exists a trans-
formation T′ 6= T, T ′ ∈ T such that T′(Vi ) ⊆ Ri ,
1 ≤ i ≤ k, if and only if there exists a transformation
T̃ 6= I , T̃ ∈ T (I denotes the identity transformation)
such thatT̃(Vi ) ⊆ Vi for all 1≤ i ≤ k.

Proof: Suppose there exists a transformationT̃ 6= I
such thatT̃(Vi ) ⊆ Vi for all 1≤ i ≤ k. Let T ′ = TT̃ .
Clearly, T ′ 6= T and T ′(Vi ) ⊆ Ri . Conversely, as-
sume there exists a transformationT ′ 6= T such that
T ′(Vi ) ⊆ Ri . Let T̃ = T−1T ′. Then T̃ 6= I and
T̃(Vi ) ⊆ Vi . Furthermore, sinceT̃ = T−1T ′ the
transformationT̃ belongs to the same group asT
andT ′. 2

Similarity Transformations. In this section we show
that a similarity transformation is determined uniquely
by two distinct regions.

Theorem 1. Let V1,V2 ⊆ R2 be two distinct convex
closed regions(V1 ∩ V2 = ∅). Then, the solution to
the one-way matching problem with these regions as a
model under a similarity transformation is unique.

Proof: According to Lemma 1 the solution to the one-
way matching problem is unique if and only if there ex-
ists no similarity transformation other than the trivial
one that mapsV1 andV2 to inside themselves. LetT be
a similarity transformation such thatT(V1) ⊆ V1 and
T(V2) ⊆ V2. SinceV1 andV2 are both closed and con-
vex, and sinceT is a continuous transformation map-
ping these two regions to inside themselves then, by
Brouwer’s fixed point theorem (Conway, 1990), there
exist two pointsEp1 ∈ V1 and Ep2 ∈ V2 that are fixed
with respect toT , that is,

T( Epi ) = Epi i = 1, 2.

(Note thatEp1 6= Ep2 sinceV1 andV2 are distinct.) Two
points determine a similarity transformation uniquely.
Therefore, the identity transformation is the only sim-
ilarity transformation that maps the two regions to
within themselves, and soT must be the identity trans-
formation. 2

Notice that Theorem 1 requires that the two regions
will be completely disjoint. If the two regions intersect
in a curve, or share even only a single point, then it will
always be possible to contract the model to a single
point and map it to the common intersection. In con-
trast, if the two regions are disjoint the solution to the
one way constraints will be unique even if the regions
contain symmetries or isomorphisms of any kind.

Affine Transformations. In this section we handle the
affine case. We first show that an affine transformation
is uniquely determined by three regions that cannot
be traversed by any straight line. Later we derive a
necessary and sufficient condition for two regions to
determine a unique solution.

Theorem 2. Let V1,V2,V3 ⊆ R2 be three distinct
closed regions such that there exists no straight line
passing through all three regions. Then, the solution
to the one-way matching problem with these regions as
a model under an affine transformation is unique.

Proof: Similar to Theorem 1, assumeT is an affine
transformation that maps the regions to inside them-
selves. Then there exist three points that are fixed with
respect toT . Since no straight line pass through all
three regions the three fixed points are non-collinear,
and so they determine the identity as the only affine
transformation that maps the regions to inside them-
selves. ThereforeT = I . 2
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We now turn to showing that the number of re-
gions required to determine the affine transformation
uniquely is in general two. Theorem 4 below estab-
lishes that two distinct regions determine the transfor-
mation uniquely unless the regions can be contracted
such that both regions shrink entirely inside them-
selves. This property is used further in Section 3.4
to characterize the degenerate cases.

Theorem 3. Let V1,V2 ⊆ R2 be two distinct closed
regions. Then, the solution to the one-way matching
problem with these regions as a model under an affine
transformation is not unique if and only if there exists
a line l through V1 and V2 and a directionEv such that
contracting V1,V2 in the directionEv toward l (denoted
by Tl ,Ev) implies

Tl ,Ev(Vi ) ⊂ Vi i = 1, 2.

(see Fig.4).

Proof: One direction is straightforward. AssumeTl ,Ev
contracts the regions within themselves.T = Tl ,Ev is
itself an affine transformation (different from the iden-
tity transformation). To see this, letl be thex-axis,
without loss of generality, and letEv = (vx, vy). Then
this affine transformation is given by:

Tl ,Ev =
(

1 vx

0 1+ vy

)
+
(

0
0

)
.

Conversely, assume the solution to the one-way match-
ing problem is not unique. According to Lemma 1
there exists an affine transformationT 6= I such that
T(Vi ) ⊆ Vi (i = 1, 2). We next show thatT is Tl ,Ev.
SinceT maps the two regions to within themselves
there exist two pointsEp1 ∈ V1 and Ep2 ∈ V2 that are
fixed with respect toT ,

T( Epi ) = Epi i = 1, 2.

Figure 4. Two model regions lead to non-unique affine transforma-
tions when a linel , exists such that the tangents at all intersection
points are parallel. In this case, the regions can contract towardsl in
the directionEv.

SinceV1 ∩ V2 = ∅, Ep1 6= Ep2 and the points determine
a line. This line is pointwise-fixed with respect toT ,

T( Ep1+ α( Ep2− Ep1)) = Ep1+ α( Ep2− Ep1)

for any scalarα. Denoting the fixed line byl , we now
show thatT represents a contraction in some direction
Ev towardl . Assume without the loss of generality that
Ep1 = E0 and thatl coincides with theX-axis, thenT
must have the form:

T =
(

1 a
0 b

)
+
(

0
0

)
.

(So that every point(x, 0)T is mapped to itself.) Denote
the angle betweenEv andl by ψ , then contraction in a
directionEv towardl is expressed by

(x, y)→ (x + (s− 1)y cotψ, sy)

for some scalars< 1. T represents such a contraction
since we can sets= b andψ = cot−1 a

b−1. 2

Theorem 4 above shows that any two non-inter-
secting regions provide a unique affine solution unless
one can draw a line through the regions and contract
the regions toward that line so that the regions would
lie entirely inside themselves. In general, such a line
will not exist. An analysis of the degenerate cases is
given in Section 3.4.

Projective Transformations.Similar results extend to
the projective case. Using the same techniques as in the
similarity and the affine cases it is straightforward to
show that four regions such that no straight line passes
through any three of the regions determine the projec-
tive transformation uniquely. (Simply, the four regions
induce four fixed points, and four points such that no
three are collinear determine the projective transfor-
mation.) Four, however, is not the minimal number of
regions that determine a unique solution. We are able
to show:

Theorem 4. Let V1,V2,V3 ⊆ R2 be three closed
regions with non-zero areas such that there exists no
straight line passing through all three regions. Then,

the solution to the one-way matching problem with
these regions as a model under a projective transfor-
mation is unique.
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Figure 5. Two model regions lead to non-unique projective trans-
formations when a linel , exists such that the tangents at all inter-
section points meet at a single pointq. In this case, the regions can
contract towardsl in the directions emanating fromq.

And, we can show:

Theorem 5. Let V1,V2 ⊆ R2 be two distinct closed
regions with non-zero areas. Then, the solution to the
one-way matching problem with these regions as a
model under a projective transformation is non-unique
if and only if there exists a line l through V1 and V2 and
a point q outside V1,V2 and l such that the following
condition is met. Let pi be any point at the intersection
of Vi and l. Then the tangent line to Vi at the point
pi includes q. More informally, this will imply that
contracting V1 and V2 in directions emanating from q
toward l (denoted by Tl ,q) implies

Tl ,q(Vi ) ⊂ Vi i = 1, 2.

(see Fig.5).

This theorem is the natural generalization of the two
region case under affine transformations. In that case,
a degeneracy occurs when the tangent lines are parallel
(i.e., intersect at a point at infinity). In the projective
case, a degeneracy occurs when the tangent lines inter-
sect at any point in the plane.

The proof of these theorems is somewhat complex,
and is given in (Basri and Jacobs, 1994).

Points and Line Segments.When applying our
method we may wish to use points or line segments
in addition to regions. By applying the results intro-
duced in this section we can analyze what combina-
tions of points and lines determine the transformation
uniquely under a one-way matching problem. These
combinations are specified below.

Figure 6. Cases when solution is non-unique: when there exists
four collinear points on the boundaries of the two regions with parallel
tangents (left), or when either of these points is a vertex and the line
connecting the four points pierces the region (right).

Theorem 6. Using just the one-way constraints:

• A similarity transformation is determined uniquely
from two points, from two line segments, or from a
combination of a point and a line segment.
• An affine transformation is determined uniquely from

any three points or line segments, provided that no
line intersects all three features.
• An affine transformation is determined uniquely from

two or more line segments and any number of points
even when a line does intersect all features, provided
that there are at least two line segments not contained
in the intersecting line that are parallel.
• An affine transformation is not uniquely determined

when all points and line segments lie on a single line,

or when line segments that do not lie on this line are
parallel.
• A projective transformation is determined uniquely

from four points such that no three are collinear, and
by three line segments in general position, that are
not all intersected by a single line.

The proof of this theorem follows directly from the
proofs of previous theorems.

An important advantage of the proposed formulation
is that it can handle combinations of feature points, line
segments, and regions in the same framework.

3.4. Degeneracies

In the previous section we showed that in general two
distinct regions determine the alignment transforma-
tion uniquely. No degenerate cases exist if the align-
ment transformation is restricted to be a similarity
transformation. The affine case, however, introduces
degeneracies, and a third region may be required to



                P1: MVG

International Journal of Computer Vision KL495-03-Basri September 15, 1997 16:30

156 Basri and Jacobs

disambiguate a solution. In this section we analyze
the conditions for the occurance of degeneracies. We
introduce necessary and sufficient conditions for the
existence of degeneracies and complete the analysis
with several examples.

Suppose thatV1,V2 ⊆ R2 are two distinct regions
(V1∩V2 = ∅). Let l denote a line passing through both
regions, and letEv denote a direction, different from the
direction ofl . Denote the entry (or exit) points ofl into
V1 by Ep1, Ep2 and intoV2 by Ep3, Ep4. Using Theorem 4
it can be shown that this regions are degenerate under
an affine transformation if and only if there existl and
Ev, such that each pointEpj satisfies either one of the two
conditions:

1. The tangent to the boundary ofVi at pj is parallel
to Ev, or

2. pj is a vertex,l intersects the interior ofVi , and the
line throughpj with directionEv does not intersect
the inside ofVi .

These conditions provides a complete characterization
of the degenerate cases, and so we can use them to
analyze any given model. Below we analyze the cases
of objects composed of smooth bounded regions and
objects composed of polygons.

Suppose that bothV1 and V2 have smooth bound-
aries. Then, due to condition 1,V1 andV2 are degener-
ate under an affine transformation if and only if there
exist four collinear points on the boundaries of the re-
gions with parallel tangents. Consequently, two circles
are always degenerate, since the line connecting their
centers penetrates the circles at points with parallel tan-
gents. (The tangents at these points are perpendicular
to l , see Fig. 7.) In contrast, two ellipses in general
position are not degenerate.

Suppose that bothV1 andV2 are two distinct poly-
gons. Then, the two conditions take the following
form: V1 andV2 are degenerate if and only if there exist
four collinear points on the boundariesEp1, Ep2 ∈ V1 and
Ep3, Ep4 ∈ V2 which satisfy the following condition. Let
l be the line throughEp1, . . . , Ep4. For every 1≤ j ≤ 4,
denote the angle betweenl and the boundary of the
shape atpj by α1 j ≤ α2 j as in Fig. 8 (α1 j < α2 j if pj

is a vertex andα1 j = α2 j otherwise). Then degeneracy
occurs if

⋂4
j=1[α1 j , α2 j ] 6= ∅.

As an example we analyze below the case of a model
consisting of two distinct triangles. Letl denote the
fixed line andEv denote the direction of contraction.
For each triangle the theorem restrictsl and Ev to the
two following cases:

Figure 7. Two circles always lead to degenerate solutions under
an affine transformation, as shown in the figure. A line through their
centers intersects them at points with parallel tangents, allowing con-
traction in the direction perpendicular to this line.

Figure 8. Notation: whenl intersects the boundary of a polygon at
a vertex (as inEp1) α11 andα21 are the angles between the two sides
emanating fromEp1 and the positive direction ofl . Whenl intersects
the boundary of a polygon at a side (as inEp2) α21 = α22 is the angle
between the side and the positive direction ofl .

1. l could be a side of a triangle, andEv could be be-
tweenα1 andα2 (whereα1 andα2 denote the angles
between the positive direction ofl and each of the
two other sides of the triangle), or

2. l could go through a vertex and a side of the triangle,
andEv could be in the direction of the side.

From this analysis we obtain that a pair of distinct tri-
angles are degenerate only in the following three cases
(see Fig. 9):

1. If the triangles contain four collinear vertices. De-
note byl the straight line through the four vertices,
by α1, α2, β1, andβ2 the angles between the sides
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Figure 9. Degenerate sets of distinctive triangle pairs. Two trian-
gles with four collinear vertices (left), with three collinear vertices
(middle) and parallel sides (right). The conditions that makes these
pairs of triangles degenerate are specified in the text.

of the triangles and the positive direction ofl , and
by θ the angle betweenEv, the direction of con-
traction, andl . Since for contraction to be possi-
ble the lines parallel toEv through the four vertices
must not pierce the inside of the triangles we obtain
that α1 ≤ θ ≤ α2 andβ1 ≤ θ ≤ β2. Contrac-
tion in this case is therefore possible if the ranges
[α1, α2] ∩ [β1, β2] 6= ∅.

2. If three of the vertices are collinear, denote byl the
line connecting the three vertices,l must pierce one
of the triangles in its side. This side determines
the direction of contraction. Denote byβ the angle
between this side and the positive direction ofl ,
and, as before, denote byα1 andα2 the angles be-
tween the positive side ofl and the sides of the other
triangle, now contraction is possible ifβ ∈ [α1, α2].

3. Contraction is possible also if two sides of the tri-
angles are parallel and the line connecting the two
opposing vertices goes through the two triangles. In
this casel is the line connecting the vertices andEv
is the direction of the parallel sides.

These are the only cases of degenerate triangles. N-
sided polygons produce essentially the same results.
The only difference is that a many-sided polygon can
also have two parallel sides, which leads to one more
type of case.

3.5. Summary

We have shown how to precisely formulate the one-way
constraints, and how to efficiently find transformations
that satisfy these constraints. The backward constraints
express our state of knowledge exactly when we have

matched parts of an object without any more precise
correspondence between features of these parts, and
when we allow for arbitrary amounts of occlusion. The
uniqueness results are necessary to show that such a
weak, region-based correspondence can be sufficient
to determine pose. Note that although these results
are demonstrated for the occlusion-free case, they are
also significant when there is occlusion. Suppose, for
example, that we match five model parts to five im-
age regions, and solve for an affine transformation
that satisfies the backward constraints. Our unique-
ness results tell us that, in general, if two of the image
regions are unoccluded, and the other three contain
arbitrary amounts of occlusion, we will obtain the cor-
rect model pose. This is because occluded regions still
contribute only more correct backward constraints, and
cannot undermine the correctness of our pose. There-
fore, we have a solution method that can tolerate large
amounts of occlusion, and which does not need to know
which portions of the region boundary are due to occlu-
sion, and which parts represent the boundaries of the
object.

4. The 3-D Problem

In this section we extend the method to matching 3-D
model to 2-D image regions. This time we only con-
sider the set of affine transformations in 3-D followed
by either an orthographic or perspective projection. In
the formulation below we match 3-D model volumes to
2-D image regions. We later introduce uniqueness re-
sults which apply only to planar model regions that are
not necessarily coplanar. We begin by defining the one-
way constraints. Unlike in 2-D, we consider only the
forward constraints, since the back constraints cannot
be expressed linearly. We then analyze the solution
involving the application of the one-way constraints.
The solution is again obtained by applying a linear
program.

4.1. One-Way Constraints

We denote a point in model space byEp = (x, y, z)
and in image space byEq = (u, v). If Eq = T( Ep) then
we denoteu = Tu( Ep) andv = Tv( Ep). We begin by
defining the one-way constraints.

Forward Constraints. Let Ep = (x, y, z) ∈ V be a
model point, and letAu + Bv + C ≥ 0 be a half
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space containingR. Again, the forward constraints are
expressed by

ATu( Ep)+ BTv( Ep)+ C ≥ 0 (19)

The unknowns are the parameters of the transforma-
tion, T .

Affine+ Orthographic Projection. First we consider
a projection model consisting of a 3-D affine transfor-
mation followed by an orthographic projection. We
will call this the orthographic case, to distinguish it
from a 3-D affine transformation followed by perspec-
tive projection. Denote the linear part ofT by R, where
R is a non-singular 3× 3 matrix with elementsti j , and
the translation part byEt = (tx, ty, tz). Then:

u = t11x + t12y+ t13z+ tx
v = t21x + t22y+ t23z+ ty.

(20)

This projection model and its equivalent has been re-
cently used by a number of researchers (Lamdan and
Wolfson, 1988; Ullman and Basri, 1991; Koenderink
and van Doorn, 1991; Tomasi and Kanade, 1992;
Jacobs, 1992). It is also equivalent to applying scaled
orthographic projection followed by a 2-D affine trans-
formation (Jacobs, 1992), that is, taking a picture of a
picture. Alternately, it is equivalent to a paraperspec-
tive projection followed by translation (Basri, 1996),
where paraperspective is a first-order approximation
to perspective projection (Poelman and Kanade, 1994;
Sugimoto, 1996).

The forward constraint for the orthographic case be-
comes

A(t11x + t12y+ t13z+ tx)

+ B(t21x + t22y+ t23z+ ty)+ C ≥ 0. (21)

This constraint is linear in the transformation parame-
ters. Denote

EwT = (t11, t12, t13, tx, t21, t22, t23, ty)

the vector of unknown transformation parameters, and

EgT = (Ax, Ay, Az, A, Bx, By, Bz, B)

we can again rewrite the forward constraints as

EgT Ew ≥ −C. (22)

Affine+ Perspective Projection. Consider now the
case of perspective projection. In this case

u = f (t11x + t12y+ t13z+ tx)

t31x + t32y+ t33z+ tz (23)
v = f (t21x + t22y+ t23z+ ty)

t31x + t32y+ t33z+ tz

where f is the focal length. The forward constraint
Au+ Bv + C ≥ 0 implies that

A
f (t11x + t12y+ t13z+ tx)

t31x + t32y+ t33z+ tz

+ B
f (t21x + t22y+ t23z+ ty)

t31x + t32y+ t33z+ tz
+C ≥ 0 (24)

Since we generally require the object to appear in front
of the camera the termt31x + t32y+ t33z+ tz must be
positive. Thus, we obtain:

A f (t11x + t12y+ t13z+ tx)

+ B f (t21x + t22y+ t23z+ ty)

+C(t31x + t32y+ t33z+ tz) ≥ 0 (25)

Let

EwT = (t11, t12, t13, tx, t21, t22, t23, ty, t31, t32, t33, tz)

contain the unknown transformation parameters, and
let

EgT = (A f x, A f y, A f z, A f, B f x, B f y, B f z, B f,

Cx,Cy,Cz,C)

contain the known positional parameters, we obtain
that

EgT Ew ≥ 0 (26)

In this case we obtain a homogeneous inequality and
so solutions can be obtained only up to a scale factor.

To consider the rigid case for either orthographic or
perspective projection, we have to add non-linear con-
straints enforcing the orthonormality of the row vectors
of the rotation matrix,R. In the discussion below we
confine ourselves to affine transformations under or-
thographic projection.
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Backward Constraints. For the problem of matching
3-D models to 2-D images the back constraints cannot
be specified in a straightforward way since the depth
component of points in the image is eliminated by the
projection. Consequently, in 3-D, only the forward
constraints generate a set of linear constraints. The dis-
cussion below is restricted to the forward constraints.

Since we can only enforce the forward constraints
in 3-D recognition, it is important to ask under what
circumstances the forward constraints alone are valu-
able. First, our regions may consist of planar or curved
2-D portions on the “skin” of an object, such as sur-
face markings or facets of an object. Such 2-D regions
may frequently project without self-occlusion. Sec-
ond, although a 3-D volume will always project with
self-occlusion, this self-occlusion does not invalidate
the forward constraints, since we do want a projection
that takes all volume points inside the corresponding
region. Third, the forward constraints may be used
when there is known occlusion in a region. If we can
identify the boundary of a region as due to an occlu-
sion, we can eliminate it from the boundary, construct
a region that is the maximal convex set of points known
to belong to the region. The forward constraints will
be correct when applied to such regions.

4.2. Uniqueness Theorems

A system of forward constraints in the 3-D case can be
solved in the same way such constraints are solved in
the 2-D case. As is explained in Section 3.2, the so-
lution requires finding a linear discriminant function,
and this can be done, in particular, by solving a linear
program. In this section we will consider under what
circumstances enforcing the forward constraints will
produce a unique pose, when matching a 3-D model
and a 2-D image under orthographic projection. The
case of fully 3-D volumes is relatively challenging to
analyze because such volumes always project to im-
ages with some self-occlusion. So we shall confine
ourselves to the simpler case of a model that consists
of planar regions that need not be mutually coplanar.
For such a model we will show that the transformation
is determined uniquely from the forward constraints
when the model consists of four regions in general po-
sition. We will derive a sufficient condition for unique-
ness when the model consists of three regions.

We are given a set of regionsV1, . . . ,Vk ⊂ R3 such
that eachVi lies inside a planePi (1≤ i ≤ k) and a set

of corresponding image regionsR1, . . . , Rk ⊂ R2. We
will assume without loss of generality that the image
plane isz = 0. Denote the projection operator by5.
That is,5 transforms a 3-D object into a 2-D object by
setting itsz component to 0. In matrix form,

5 =
1 0 0

0 1 0
0 0 0


By saying that the regions correspond, we mean that

there exists some 3-D affine transformation,T , such
that, for all i , 5T Vi = Ri . In matrix form, given a
model pointEp = (x, y, z), we write:

T Ep =
 t11 t12 t13

t21 t22 t23

t31 t32 t33

 x
y
z

+
 tx

ty

tz


We label the rows ofT , Eti . We wish to know under
what circumstancesT is unique.

Obviously, the effect thatT has on the model’sz
component cannot be uniquely recovered. That is,Et3
andtz are never uniquely determined. We will say that
two 3-D affine transformations are equivalent if they
differ only in their third row andz translation. We
would like to know ifT is uniquely determined up to
this equivalence relation.

Let us assume that there exists some affine transfor-
mationT ′ such that5T ′Vi ⊆ Ri . We wish to discover
whenT ′must be equivalent toT . DefineT ′′ = T−1T ′.

Lemma 2. T is uniquely determined for the set of re-
gions Vi if and only if it is uniquely determined for the
set of regions QVi ,where Q is any3-D affine transfor-
mation.

Proof: Clearly, if we show this assertion in one direc-
tion, it must be true in the other, since the affine trans-
formations form a group. SupposeT is not uniquely
determined, i.e., that there existsT ′ not equivalent toT
such that5T ′Vi ⊆ Ri . Then, letW = T Q−1,W′ =
T ′Q−1. Clearly, W maps the regionsQVi to the re-
gions Ri (5W QVi = Ri ), andW′ maps the regions
QVi within these regions (5W′QVi ⊆ Ri ). We must
show thatW andW′ are not equivalent.

To see this, we suppose thatW andW′ are equivalent,
and show that this implies thatT andT ′ are equivalent.
First, abbreviate the rows of the linear parts ofT and
T ′ as: ti , t ′i , abbreviate the columns of the linear part
of Q−1 as qi , and denote the translation ofQ−1 by
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tq = (qx,qy,qz). The linear parts ofW and W′ are
given by: t1

t2
t3

 (q1 q2 q3),

 t ′1
t ′2
t ′3

 (q1 q2 q3)

Therefore,W equivalent toW′ implies:

t1q1 = t ′1q1

t1q2 = t ′1q2

t1q3 = t ′1q3

t2q1 = t ′2q1

t2q2 = t ′2q2

t2q3 = t ′2q3

This implies that(t1 − t ′1) is orthogonal toq1,q2 and
q3. Since we assume thatQ is non-singular,t1 = t ′1.
Similarly, t2 = t ′2. The translation components ofW
andW′ are given by: t1tq + tx

t2tq + ty

t3tq + tz

 ,
 t ′1tq + t ′x

t ′2tq + t ′y
t ′3tq + t ′z


Therefore,t1 = t ′1, t2 = t ′2, and the equivalence ofW
andW′ implies further that:tx = t ′x, ty = t ′y, and soT
is equivalent toT ′, contradicting our assumption.2

Note that while similar to Lemma 1, Lemma 2 is
much more limited. Lemma 1 says that in the planar
case, uniqueness is independent of the image. Lemma 2
only states that in the 3-D case uniqueness is indepen-
dent of the model’s affine frame of reference. As we
will discuss, in the 3-D case uniqueness is not indepen-
dent of the image.

Lemma 3. Given, as usual,model regions Vi , image
regions Ri , and two affine transformations T and T′

such that5T Vi = Ri and5T ′Vi ⊆ Ri , there exists a
point Epi in each region Vi such that5T Epi = 5T ′ Epi .

Proof: Choose the 3-D affine transformationQi so
that Qi Pi equals thez = 0 plane. (Recall thatPi is
the plane containingVi .) We can then consider the
transformation5T Q−1

i as a 2-D affine transforma-
tion when applied toQi Pi , that mapsQi Vi into Ri .
Similarly,5T ′Q−1

i can be thought of as a 2-D affine

transformation that mapsQi Vi inside Ri . Then, the
region QVi contains a fixed point under the transfor-
mation(5T Q−1

i )−1(5T ′Q−1
i ), which mapsQVi onto

itself. So there exists some point,Eqi ∈ Qi Vi such that
5T Q−1

i Eqi = 5T ′Q−1
i Eqi . Letting Epi = Q−1

i Eqi , then,
we can see that5T Epi = 5T ′ Epi , and thatEpi ∈ Vi . 2

We may now use these lemmas to consider when
T is uniquely determined. First, we point out thatT
is not uniquely determined in the case where a single
line exists that intersects all regions. In this case, it is
possible to view the model so that all regions intersect.
As with the 2-D case, when all regions intersect, the
forward constraints are satisfied by any affine transfor-
mation that shrinks the regions to a small area, that fits
inside the intersection of the regions.

In particular, this tells us that when there are only two
regions, a non-unique transformation is always possi-
ble. More generally, we may say that when the image
regions are such that there is a non-identity, 2-D affine
transformation mapping each region inside itself, that
no set of model regions may be mapped uniquely to
match these regions. That is, for regions such that
5T Vi = Ri , if there exists a 2-D affine transforma-
tion, S 6= I (where I is the identity transformation)
such thatSRi ⊆ Ri for all i , thenT cannot be unique.
To see this, let:

Sp=
(

s11 s12

s21 s22

)
p+

(
sx

sy

)
and let:

S̄ p=
s11 s12 0

s21 s22 0
0 0 1

 p+
sx

sy

0

 .
Then:

5S̄T Vi = S5T Vi ⊆ Ri

while at the same time,̄ST 6= T . However, even though
any pair of regions may produce an image that leads
to non-unique solutions, it is still an open question
whether they may also produce images that lead to
unique solutions.

We consider next the general case where there are
four regions that are not intersected by a plane. The
case in which a plane exists that intersects all four or
more regions is similar to the case in which there are
three regions, and will be discussed later.
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Theorem 7. Assume the above definitions, with four
regions, such that no single plane intersects all four
regions. Then, 5T is unique.

Proof: By Lemma 3 there exists a pointEpi ∈ Vi such
that5T ′( Epi ) = 5T( Epi ) for everyi = 0, . . . ,3. The
points Ep0, . . . , Ep3 are all non-coplanar. Consequently,
since correspondences of four non-coplanar points de-
termine a 3-D to 2-D affine transformation uniquely
then5T = 5T ′. 2

We now consider the case where there are only three
regions, or there are four or more regions intersected
by a plane, but the regions may not be intersected by
any line. As before, letEpi ∈ Vi be points such that
5T Epi = 5T ′ Epi . Suppose this transformation is not
unique, i.e.,T ′Vi ⊆ Ri andT ′ not equivalent toT .

Using Lemma 2, we may assume WLOG that the
model has been transformed so thatT pi = pi , for
1 ≤ i ≤ 3, and so thatT(0, 0, 1) = (0, 0, 1). This
implies thatT = I . This also implies thatT ′ Epi = Epi ,
for 1 ≤ i ≤ 3, so we may also assume, WLOG, that
Epi is fixed underT ′, and hence that thez= 0 plane is
fixed underT ′. This tells us that we may write:

T ′ =
1 0 k1

0 1 k2

0 0 k3


Now definel i to be the line of intersection of the

planesPi andz = 0. Let Ri ∩ l i be the pointsEp1
i , Ep2

i
(we will later consider the case wherel i intersects
Ri in a single point). Consider one of these inter-
section points,Ep j

i . Let the tangent toRi at Ep j
i be

Ew = (wx, wy, 0). Let the tangent toVi at the pointEp j
i

have the directionEv. Then the directions ofEw,5T Ev
and5T ′ Ev must all be the same. SinceT is the iden-
tity transformation, we must haveEv = (wx, wy, vz)

for somevz. The points Ep j
i are also fixed underT ′,

since they lie in thez = 0 plane which is fixed
under T ′. Therefore, the tangent to5T ′Vi at Ep j

i is
(wx + k1vz, wy+ k2vz). The condition thatT ′Vi ⊆ Ri

implies that5T ′ Ev must have the same direction asEw.
This implies that the directions of(wx, wy) and(k1, k2)

must be parallel. The alternative, thatk1 = k2 = 0
would imply thatT is equivalent toT ′. If the trans-
formations are not equivalent, therefore, the tangents
to each regionRi at a pointEp j

i must all be parallel to
(k1, k2), and so they must all be parallel to each other.

We now consider the possibility that thez= 0 plane
intersects some regions,Vi in only a single point. If

this is true, the remainder ofVi is either entirely above
or below thez = 0 plane. Assume WLOG that it is
above it. Then5T ′ maps any point,(x, y, z) that is on
the boundary ofVi , to (x, y) − z(k1, k2). SinceT is
the identity transform,(x, y) is on the boundary ofRi .
Hence,T ′ displaces all points on the boundary ofVi

in the same direction relative to the position to which
5T maps them. Clearly some of these points will be
mapped outside ofRi . Therefore,T not equivalent to
T ′ implies that thez = 0 plane must intersect each
region in two points, with opposite tangent directions.

We may now list some necessary conditions forT to
be non-unique.

1. There exists a planeP, which intersects each region
in two points.

2. For all points in the intersection ofP and a region,
the direction of tangency to the projections of the
region are parallel. Note that ifRi does not have a
smooth boundary, the tangent directions at the point
of intersection may be undefined, but bounded, as in
the case discussed in Section 3.4 for planar regions
that are polygonal. In this case, the possible ranges
of the tangent vectors must intersect.

This result shows that in general, three planar model
regions will lead to a unique solution. To see this, note
that we have three degrees of freedom in selecting a
plane that intersects the model regions. The conditions
above indicate that a degeneracy will occur when six
tangent vectors are parallel after we project them onto
this plane, in the direction of the true viewing direction.
This leads to five constraints. Since we have more
independent constraints than degrees of freedom with
which to satisfy them, in general the conditions will
not be satisfied.

5. Experiments

To test the scheme we took pictures of a number
of roughly planar objects. We first processed these
images using Canny’s edge detector (Canny, 1983).
We then constructed polygonal approximations to the
edges using Pavlidis and Horowitz’s (1974) split-and-
merge algorithm. The resulting polygons approximate
the original edges to within two pixels. Then, we ex-
tracted the roughly convex structures using Jacobs’s
grouping system (Jacobs, 1996). The matching be-
tween the regions was specified manually. Finally, the
transformations relating these images were recovered
using either the forward or backward solutions. The
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Figure 10. An image of a computer diskette used as a model.

Figure 11. Matching the diskette model to a novel image of the
diskette under similarity (left figure,λ = −1.89) and affine (right,
λ = −1.27) transformations.

figures below contain overlay images of the aligned
model and image. We also provide the value ofλ ob-
tained in every experiment. In all of the experiments we
obtained negative values forλ. This is because sensing
errors often cause slight violations of the one-way con-
straints. A near perfect alignment between the models
and the images is achieved nevertheless in accordance
to the theory developed in the paper.

Figure 10 shows an image of a diskette used as a
model. Figure 11 shows the result of matching this
model to another image of the diskette by solving for
a similarity and for an affine transformation using all
five regions. In this case the amount of affine distor-
tion in the image is small, and so a good match was
obtained in both cases. Figure 12 shows the result of
matching the model to the same image using only two
regions. Figure 13 shows the result of matching when
two degenerate (with respect to an affine transforma-
tion) regions are used. These regions are degenerate
because there exist four collinear points on their bound-
aries such that their tangent vectors are parallel. Notice
the good match obtained in the similarity solution and
the contraction produced in the affine solution.

Figure 12. Matching the diskette model to a novel image of the
diskette using two regions only (the left and the upper right, left
figure: similarity,λ = −1.56, right: affine,λ = −0.69).

Figure 13. Matching the diskette model to a novel image of the
diskette using two degenerate regions only (the left and the lower
right, left figure: similarity,λ = −1.15, right: affine,λ = −0.55).

Figure 14. Matching the diskette model to a novel image that con-
tains unknown occlusion under an affine transformation using the for-
ward (left figure,λ = −12.59) and the backward (right,λ = −1.51)
constraints.

Figures 14 and 15 demonstrate the performance of
the system in the presence of unknown partial occlu-
sion. When the forward constraints were used (left
images) an over contraction of the model was obtained
since these constraints are inconsistent with the pres-
ence of unknown occlusion. To obtain better results
one has to first eliminate the constraints which are due
to the occlusion (by identifying the locations of oc-
clusion). When the backward constraints were used
(right images) in both the similarity and affine cases a
good match was obtained. In this image, three of the
five regions are occluded. Since in the affine case the
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Figure 15. Matching the diskette model to a novel image that con-
tains unknown occlusion under a similarity transformation using
the forward (left figure,λ = −15.60) and the the backward (right,
λ = −3.08) constraints.

Figure 16. Matching the diskette model to a novel image containing
relatively large perspective distortions under projective (top figure,
λ = −2.25) and affine (bottom,λ = −5.38) transformations.

remaining two regions are degenerate by themselves,
the partial information obtained from the occluded re-
gions is essential to producing an accurate result.

Figure 16 shows the application of the projective
method to an image of the diskette containing large
perspective distortions. The match for this picture is
significantly better than that obtained under the affine
solution.

Figure 17 shows the application of the method to
images of a magnet. It can be seen that a good match
was obtained for these images, although some of the
regions in the picture are not well localized.

Finally, Fig. 18 shows two images of a book. Three
regions were extracted from these images and used to
determine the 2-D affine transformation that relates the
two images. The results are shown in Fig. 19.

The experiments demonstrate that our method ob-
tains good results when applied to realistic objects. The
system overcomes reasonable noise, in particular due

Figure 17. Matching a model of a magnet to a novel image: the
model (top left), the regions extracted from the model (top right), the
match (under affine transformation, bottom left,λ = −3.46), and
the overlayed regions (bottom right).

Figure 18. Two images of a book.

Figure 19. Matching the two images of the book under a 2-D affine
transformation. The three regions extracted (left image, the regions
are shaded) and the match obtained (right,λ = −3.82).

to sparse sampling, and recovers the transformation
successfully even in the presence of partial occlusion.

6. Conclusion

We have presented a fundamentally new approach to
the pose determination part of the object recognition
problem. Perhaps what is most novel about our ap-
proach is the weaker requirements that it makes on
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correspondence, compared to previous approaches. Lo-
cal methods explicitly require a correspondence be-
tween simple local features such as points and lines
before determining pose. Global methods implicitly
produce such a correspondence as well. Moment based
methods, for example, compute points (such as cen-
ter of mass) or lines (such as moments of inertia)
from regions, and determine pose based on such cor-
respondences. Our method, while still requiring a
correspondence between regions, does not require an
explicit correspondence between local features before
determining pose.

It is well-known that past methods have some draw-
backs associated with their need for correspondences
between local image and model properties. The detec-
tion of local features, such as corners and lines, can
be highly sensitive to noise and viewpoint variation
because these features do not reflect the overall shape
of an object, but instead capture properties of a small
portion of an object’s boundary. Global features of a
region, such as its center of mass, can be much more
resistant to noise, but may be highly sensitive to occlu-
sion. (In fact, depending on a region’s shape, its higher
order moments may also be sensitive to noise.) When
we have hypothesized a correspondence between two
regions, we would prefer not to have to further hy-
pothesize a correspondence between their moments,
or to find and match local features of their boundaries.
Rather, if possible we would like to make use of a more
minimal assumption; that the image region was pro-
duced by the model region. Our one-way constraints
make use of only this minimal assumption.

Naturally, if we can infer more detail in a correspon-
dence, and match specific points or lines of a model and
region, it is useful to take advantage of this information,
and our approach allows us to take full advantage of this
knowledge when it is present. But it also shows how to
find pose from a much weaker statement. If all that we
really know is that some portion of the image, of what-
ever extent, was produced by some specific portion of
the model, our method allows us to make use of this in-
formation as well. Our method should therefore be seen
as an extension to past approaches to pose determina-
tion. It can fully apply all the information used by past
methods, and at the same time use new, weaker con-
straints on a possible match between image and model.

Our primary achievement in developing this ap-
proach has been a set of uniqueness results, analogous
to the most basic uniqueness results for other ap-
proaches to pose determination. For example, it is fun-
damental to point-based pose determination to know

that a correspondence between three points determines
a finite number of poses, under scaled-orthographic
projection. Similarly, it is fundamental to our approach
to know that a correspondence between two coplanar
regions or three non-coplanar regions generally deter-
mines a unique pose, under scaled-orthographic pro-
jection. These results make precise the value of a loose
correspondence between regions that is not based on
specific local feature correspondences. At the same
time, we also demonstrate that our basic approach ap-
plies to a wide variety of viewing transformations (sim-
ilarity, affine, perspective), and to both 2-D and 3-D
objects.

Finally, we have demonstrated the potential appli-
cability of our method with experiments on real im-
ages. These show that we can correctly determine
pose in spite of moderate amounts of occlusion, and
normal sensor error. Our algorithm’s performance on
images with high perspective distortion also demon-
strates the value of extending our method to perspective
projection.

In spite of the success of model-based recognition
techniques in many application areas, they still have
significant weaknesses. Some of these weaknesses are
due to the problem of representation. Most model-
based techniques rely on a representation of objects in
terms of local, precisely localizable features, or on al-
gebraic descriptions of more extended portions of con-
tours. While often quite valuable, these representations
have the disadvantage that they describe the boundary
of an object, not its internal shape. If one perturbs the
boundary of an object a bit, one can completely alter
the local features or algebraic curves that describe it,
without changing the internal structure much. Our ap-
proach suggests a different way of representing objects
for recognition. We represent and make use of the in-
ternal shape of objects, not just their boundary. And
we suggest a way of making use of hybrid represen-
tations of objects that capture internal shape and local
boundary structure when available.

Acknowledgments

The authors thank Ovadya Menadeva for his assistance
in taking photographs and running the experiments.

References

Alter, T.D. and Grimson, W.E.L. 1993. Fast and robust 3D recogni-
tion by alignment. InProc. Fourth Inter. Conf. Computer Vision,
pp. 113–120.



    P1: MVG

International Journal of Computer Vision KL495-03-Basri September 15, 1997 16:30

Recognition Using Region Correspondences 165

Alter, T.D. and Jacobs, D. 1994. Error propagation in full 3D-from-
2D object recognition.IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 892–898.

Amenta, N. 1994. Bounded boxes, Hausdorff distance, and a new
proof of an interesting Helly-type theorem.Proceedings of the 10th
Annual ACM Symposium on Computational Geometry, pp. 340–
347.

Ayache, N. and Faugeras, O. 1986. HYPER: A new approach for
the recognition and positioning of two-dimensional objects.IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(1):44–54.

Baird, H. 1985.Model-Based Image Matching Using Location. MIT
Press: Cambridge.

Bajcsy, R. and Solina, F. 1987. Three dimensional object represen-
tation revisited.Proc. of The First Int. Conf. on Computer Vision,
London, pp. 231–240.

Basri, R. 1996. Paraperspective≡ Affine. Int. J. of Comp. Vis.,
19(2):169–179.

Basri, R. and Ullman, S. 1993. The alignment of objects with smooth
surfaces.Computer Vision, Graphics, and Image Processing: Im-
age Understanding, 57(3):331–345.

Basri, R. and Jacobs, D.W. 1994. Recognition using region corre-
spondences.The Weizmann Institute of Science, T.R. CS95-33.

Basri, R. and Jacobs, D.W. 1995. Recognition using region corre-
spondences.IEEE Int. Conf. on Computer Vision, pp. 8–15.

Biederman, I. 1985. Human image understanding: Recent research
and a theory.Computer Graphics, Vision, and Image Processing,
32:29–73.

Binford, T. 1971. Visual perception by computer.IEEE Conf. on
Systems and Control.

Breuel, T. 1991. Model based recognition using pruned correspon-
dence search.IEEE Conf. on Computer Vision and Pattern Recog-
nition, pp. 257–268.

Brooks, R. 1981. Symbolic reasoning among 3-D models and 2-D
images.Artificial Intelligence, 17:285–348.

Canny, J. 1983. A computational approach to edge detection.Trans.
on Pattern Recognition and Machine Intelligence, 8(6):679–698.

Cass, T. 1992. Polynomial time object recognition in the presence
of clutter, occlusion and uncertainty.Second European Conf. on
Computer Vision, pp. 834–842.

Conway, J.B. 1990.A Course in Functional Analysis. Springer-
Verlag.

Coxeter, H.S.M. 1993.The Real Projective Plane. Springer-Verlag.
Darrell, T., Sclaroff, S., and Pentland, A. 1990. Segmentation by

minimal description.IEEE Int. Conf. on Computer Vision, Japan,
pp. 112–116.

Duda, R.O. and Hart, P.E. 1973.Pattern Classification and Scene
Analysis. Wiley-Interscience Publication, John Wiley and Sons,
Inc.

Dudani, S.A., Breeding, K.J., and McGhee, R.B. 1977. Aircraft iden-
tification by moments invariants.IEEE Trans. on Computations,
C-26(1):39–46.

Fischler, M.A. and Bolles, R.C. 1981. Random sample consensus:
A paradigm for model fitting with application to image analysis
and automated cartography.Com. of the A.C.M., 24(6):381–395.

Forsyth, D., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A.,
and Rothwell, C. 1991. Invariant descriptors for 3-D object recog-
nition and pose.IEEE Trans. on Pattern Analysis and Machine
Intelligence, 13(10):971–991.

Hoffman, D.D. and Richards, W. 1985. Parts of recognition.Cogni-
tion, 18:65–96.

Horaud, R. 1987. New methods for matching 3-D objects with sin-
gle perspective views.IEEE Trans. Pattern Anal. Machine Intell.,
9(3):401–412.

Hu, M.K. 1962. Visual pattern recognition by moment invariants.
IRE Trans. on Information Theory, IT-8:169–187.

Huttenlocher, D.P. and Ullman, S. 1990. Recognizing solid objects
by alignment with an image.Int. J. Computer Vision, 5(2):195–
212.

Huttenlocher, D., Klanderman, G., and Rucklidge, W. 1993a. Com-
paring images using the Hausdorff distance.IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 15(9):850–863.

Huttenlocher, D., Noh, J., and Rucklidge, W. 1993b. Tracking non-
rigid objects in complex scenes.4th Int. Conf. on Computer Vision,
pp. 93–101.

Jacobs, D. 1992. Space efficient 3D model indexing.IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 439–444.

Jacobs, D. 1996. Robust and efficient detection of convex groups.
IEEE Trans. PAMI(18)1:23–37.

Joshi, T., Ponce, J., Vijayakumar, B., and Kriegman, D. 1994. Hot
curves for modelling and recognition of smooth curved 3D objects.
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 876–
880.

Koenderink, J. and van Doorn, A. 1991. Affine structure from motion.
Journal of the Optical Society of America, 8(2):377–385.

Kriegman, D. and Ponce, J. 1990. On recognizing and positioning
curved 3-D objects from image contours.IEEE Trans. Pattern
Anal. Machine Intell., 12(12):1127–1137.

Lamdan, Y. and Wolfson, H.J. 1988. Geometric hashing: A general
and efficient model-based recognition scheme.Second Interna-
tional Conf. Computer Vision, pp. 238–249.

Lamdan, Y., Schwartz, J.T., and Wolfson, H.J. 1990. Affine invari-
ant model-based object recognition.IEEE Trans. Robotics and
Automation, 6:578–589.

Lowe, D. 1985.Perceptual Organization and Visual Recognition.
Kluwer Academic Publishers: The Netherlands.

Marr, D. and Nishihara, H. 1978. Representation and recognition of
the spatial organization of three dimensional structure.Proceed-
ings of the Royal Society of London B, 200:269–294.

Pavlidis, T. and Horowitz, S. 1974. Segmentation of plane curves.
IEEE Trans. on Computers, TC-23:860–870.

Pentland, A. 1987. Recognition by parts.Proceedings of the First
International Conf. on Computer Vision, pp. 612–620.

Persoon, E. and Fu, K.S. 1977. Shape descimination using Fourier de-
scriptors.IEEE Trans. on Systems, Man and Cybernetics, 7:534–
541.

Poelman, C.J. and Kanade, T. 1994. A paraperspective factorization
method for shape and motion recovery.Proc. of European Conf.
on Computer Vision.

Reeves, A.P., Prokop, R.J., Andrews, S.E., and Kuhl, F.P. 1988.
Three-dimensional shape analysis using moments and Fourier de-
scriptors.Trans. on Pattern Recognition and Machine Intelligence,
10(6):937–943.

Richard, C.W. and Hemami, H. 1974. Identification of three di-
mensional objects using Fourier descriptors of the boundry
curve.IEEE Trans. on Systems, Man and Cybernetics, 4(4):371–
378.

Rothwell, C., Zisserman, A., Mundy, J., and Forsyth, D. 1992. Effi-
cient model library access by projectively invariant indexing func-
tions. IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 109–114.



    P1: MVG

International Journal of Computer Vision KL495-03-Basri September 15, 1997 16:30

166 Basri and Jacobs

Rothwell, C.A., Zisserman, A., Forsyth, D.A., and Mundy, J.L. 1992.
Canonical frames for planar object recognition.Proc. of 2nd Eur.
Conf. on Computer Vision, pp. 757–772.

Sadjadi, F.A. and Hall, E.L. 1980. Three-dimensional moment invari-
ants.IEEE Trans. on Pattern Analysis and Machine Intelligence,
2(2):127–136.

Subrahmonia, J., Cooper, D., and Keren, D. 1996. Practical reliable
Bayesian recognition of 2D and 3D objects using implicit poly-
nomials and algebraic invariants.IEEE Trans. on Pattern Analysis
and Machine Intelligence, 18(5):505–519.

Sugimoto, A. 1996. Object recognition by combining paraperspec-
tive images.Int. J. of Comp. Vis., 19(2):181–201.

Thompson, D.W. and Mundy, J.L. 1987. Three dimensional model
matching from an unconstrained viewpoint.Proc. of IEEE Int.
Conf. on Robotics and Automation, pp. 208–220.

Tomasi, C. and Kanade, T. 1992. Shape and motion from image
streams under orthography: A factorization method.International
Journal of Computer Vision, 9(2):137–154.

Ullman, S. and Basri, R. 1991. Recognition by linear com-
binations of models.IEEE Trans. on PAMI, 13(10):992–
1006.

Weiss, I. 1993. Geometric invariants and object recogni-
tion. International Journal of Computer Vision, 10(3):207–
231.


