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Abstract. We approach recognition in the framework of deformable
shape matching, relying on a new algorithm for finding correspondences
between feature points. This algorithm sets up correspondence as an in-
teger quadratic programming problem, where the cost function has terms
based on similarity of corresponding geometric blur point descriptors as
well as the geometric distortion between pairs of corresponding feature
points. The algorithm handles outliers, and thus enables matching of ex-
emplars to query images in the presence of occlusion and clutter. Given
the correspondences, we estimate an aligning transform, typically a regu-
larized thin plate spline, resulting in a dense correspondence between the
two shapes. Object recognition is handled in a nearest neighbor frame-
work where the distance between exemplar and query is the matching
cost between corresponding points. We show results on two datasets.
One is the Caltech 101 dataset (Li, Fergus and Perona), a challenging
dataset with large intraclass variation. Our approach yields a 45% correct
classification rate in addition to localization. We also show results for lo-
calizing frontal and profile faces that are comparable to special purpose
approaches tuned to faces.

1 Introduction

The problem of visual object recognition is really a family of inter-related prob-
lems. If we consider spatial extent, the notion of “object” extends downwards to
parts (faces, eyes, propellers, wings), and upwards to scenes (kitchens, cityscapes,
beaches). On the generalization dimension, we have categorization at varying
levels all the way to identification of individuals (mammals,primates, humans,
“Fred”). Sometimes, even the term “object” is questionable, when we consider
visual recognition of materials such as sand or cornflakes.

What computational architecture would support a solution to all these prob-
lems in a common framework? In addition to the functional requirements above,
processing must be fast, a large number of categories need to be handled, and
the approach should be trainable with very few examples.

We propose a three stage architecture:

— Initial Retrieval: Retrieving a shortlist of potentially matching models for a
query image based on feature descriptors. At this stage the spatial config-
uration of the feature locations can be ignored in order to facilitate rapid
indexing.
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— Shape Matching: Aligning template views of stored exemplars to the support
of an unknown object in the query image. In face recognition this would be
the stage where the corners of eyes, nose, lips and other landmarks would
be “lined up”.

— Discriminative Classification: Given alignments of models to images we can
now compare corresponding features as well as their configurations. Dis-
criminative classifiers can give more weight to the characteristics that best
distinguish examples of one category from other related categories.

This chapter outlines a solution to the second of these stages, shape matching.
Since we wish to deal with intra-category variability, all shape matching is for us
necessarily deformable shape matching. Back in the 1970s, at least three different
research groups working in different communities initiated such an approach:
in computer vision, Fischler and Elschlager [12], in statistical image analysis,
Grenander ([I4]and earlier), and in neural networks, von der Malsburg ([I7] and
earlier). The core idea that related but not identical shapes can be deformed
into alignment using simple coordinate transformations dates even further back,
at least to D’Arcy Thompson, in the 1910’s with On Growth and Form [34].

The basic subroutine in deformable matching takes as input an image with
an unknown object (shape) and compares it to a model by first aligning the two
and then computing a similarity based on both the aligning transform and the
residual difference after applying the aligning transformation. Searching for an
alignment can be quite difficult. We show that the search can be approximated
by an easier discrete matching problem, the correspondence problem, between
key points on a model and a novel object.

Practically speaking, the basic difficult question for the correspondence prob-
lem is, “How do we algorithmically determine which points on two shapes cor-
respond?” The correspondence problem in this setting is more difficult than in
the setting of binocular stereopsis, for a number of reasons:

1. Intra-category variation: the aligning transform between instances of a cate-
gory is not a simple parameterized transform. It is reasonable to assume that
the mapping is smooth, but it may be difficult to characterize by a small
number of parameters as in a rigid or affine transform.

2. Occlusion and clutter: while we may assume that the stored prototype shapes
are present in a clean, isolated version, the shape that we have to recognize
in an image is in the context of multiple other objects, possibly occluding
each other.

3. 3D pose changes: since the stored exemplars represent multiple 2D views of
a 3D object, we could have variation in image appearance which is purely
pose-related, the 3D shapes could be identical

The principal contribution of this work is a novel algorithm for solving the
correspondence problem for shape matching.

We represent shape by a set of points sampled from contours on the shape.
Typically 50-100 pixel locations sampled from the output of an edge detector are
used; as we use more samples we get better approximations. Note that there is
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nothing special about these points — they are not required to be keypoints such
as those found using a Harris/Forstner type of operator or scale-space extrema
of a Laplacian of Gaussian operator, such as used by Lowe [21].

We exploit three kinds of constraints to solve the correspondence problem
between shapes:

1. Corresponding points on the two shapes should have similar local appear-
ance. For this purpose we develop geometric blur to measure rough shape
similarity.

2. Minimizing geometric distortion: If ¢ and j are points on the model corre-
sponding to ¢’ and j’ respectively, then the vector from ¢ to j, r;; should
be consistent with the vector from i’ to j', ry/;7. As examples: If the trans-
formation from one shape to another is a translation accompanied by pure
scaling, then these vectors must be scalar multiples. If the transformation is
a pure Euclidean motion, then the lengths must be preserved. etc.

3. Smoothness of the transformation from one shape to the other. This en-
ables us to interpolate the transformation to the entire shape, given just the
knowledge of the correspondences for a subset of the sample points. We use
regularized thin plate splines to characterize the transformations.

The similarity of point descriptors and the geometric distortion is encoded in a
cost function defined over the space of correspondences. We purposely construct
this to be an integer quadratic programming problem (cf. Maciel and Costeira
[22]) and solve it using fast-approximate techniques

We address two object recognition problems, multi-class recognition and face
detection. In the multiple object class recognition problem, given an image of an
object we must identify the class of the object and find a correspondence with an
exemplar. We use the Caltech 101 object class dataset consisting of images from
101 classes of objects: from accordion to kangaroo to yin-yang, available at [7].
This dataset includes significant intra class variation, a wide variety of classes,
and clutter. On average we achieve 45% accuracy on object classification with
quite good localization on the correctly classified objects.

It is important to point out that these results are achieved with a simple gen-
erative model based solely on coarse shape. Better recognition can be achieved
by building class specific discriminative models combining shape with other cues
such as color and texture. The point here is experimental evidence of simple
generative shape models proving useful for both localization and recognition.

We also consider face detection for large faces, suitable for face recognition
experiments. Here the task is to detect and localize a number of faces in an
image. The face dataset we use is sampled from the very large dataset used
in [6] consisting of news photographs. With only 20 exemplar faces our generic
system provides a ROC curve with slightly better generalization, and slightly
worse false detection rate than the quite effective specialized face detector of
Mikolajezyk [24] used in [6].

! It is worth noting that this formulation is amenable to various probabilistic models,
maximum likelihood estimation for a product of Gaussians among others, but we do
not address this further here.
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2 Shape Descriptor

A simple descriptor based on blurred edge maps is used to compare shapes
locally. These descriptors do not cover an entire object and so we refer to them
as local shape descriptors, nevertheless they have a broader spatial support than
typical local descriptors. The consequence of broad spatial support is variation
between views of similar local structures. We use a spatially varying geometric
blur over the positions of edges to provide the necessary robustness.

Descriptors are computed using geometric blur on edge maps. Oriented edge
maps are computed and then blurred. Keypoints are then located along edges
and sample points are drawn from the blurred edge maps. The vector of these
samples is the descriptor as shown in Figure Bl

Geometric blur is an average over geometric transformations of a signal rep-
resenting the spatial distribution of features in an image. The objective of the
averaging is to make comparison of signals robust to typical geometric distor-
tions within a bounded range. We will use a descriptor based on geometric blur
to evaluate similarity between shapes.

First we motivate basing local shape descriptors on edge maps and the need for
spatial uncertainty. This is followed by the mathematical definition of geometric
blur. Two motivations for using a simple family of blurs — linearly increasing
blur with distance from the center feature point — are presented, and a relatively
low dimensional descriptor based on geometric blur is defined. A brief comparison
to alternate descriptors concludes this section.

2.1 Motivation

The two helicopters shown in Figure[I] are easily recognizable as helicopters and
a young child could indicate positions for the nose and tail of each. The crops
below indicate the difficulty faced by a computer. Analogous structures in the
images are only very roughly similar. In order to find a correspondence and then
an alignment between the two objects it is necessary to find some way to get at
this rough similarity. We approach this problem by first representing the rough
spatial pattern of edges.

2.2 Simple Example

Before beginning the formal development of geometric blur a simple example of
comparing distorted signals is presented to make concrete some of the mathemat-
ics to follow. Here we begin to show how geometric blur can provide robustness
to spatial variation.

In Figure 2] which signal, A or C, is most similar to the signal B? The ques-
tion is ambiguous, and we need to take into consideration some type of accepted
variation, say small affine transformations. Note that here we mean spatial affine
transformations, not transforms in intensity. Making robust comparison of sig-
nals with variation in intensity is rather better studied than the variation in
signals due to distortions in geometry. Even with this added information, the
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Fig. 1. In the top row are two images showing similar objects, helicopters. The bottom
row shows that the local structure of the objects is only very roughly similar. Geometric
blur is motivated by the goal of identifying rough similarity between bits of shapes.

A ) B C

Fig. 2. Three similar signals composed of impulses. They represent the spatial location
of features in an image. The goal is to recognize that a small transformation brings A
and B into alignment, but not so for B and C.

correlation between either the left (4 & B) or right (B & C) pair of signals is
low and quite similar, providing no information about which are more similar.
This can be seen in the first row of Figure[3 where the insets show the point-wise
products of the signals on either side. Note that smoothing the signals with a
uniform Gaussian does not quite solve the problem, as can be seen in the sec-
ond row of the FigureBl After blurring the signals with a uniform Gaussian the
correlation between either pair of signals is similar, missing the clear differences.
The basic idea of geometric blur is to blur or average the signals over the range of
acceptable transformations (small affine transformations in this case), as shown
in the third row of Figure Bl This will turn out to be mathematically equiva-
lent to convolving the signal with a spatially varying kernel. Roughly speaking,
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Fig. 3. The top row shows three signals, A, B, and C. The top row insets show
the point-wise product of the signals on either side, each results in correlation 0.2. the
second row shows the result of applying a Gaussian blur to the signals. Note that more
context is now included, but the correlations are still equal (0.22). The third row shows
the result of applying geometric blur, a spatially varying blur replicating the effect of
averaging over small affine transforms of the signal. Now the insets indicate a difference
between the correlations: 0.63 for the correct match versus 0.4 for the incorrect match.

parts of the signal farther from the center are blurred more because they have
the opportunity to move more. After this type of blur, correlation can correctly
identify the more similar pair, as can be seen on the bottom row of Figure Bl

2.3 Definition

We define geometric blur and show that it can be written as a spatially varying
convolution.

The geometric blur GBj(x) of a signal I(z) over coordinate x is the integral
over a range of distorted versions of the signal:

GB;(z) = /T I(T(2))dp (1)
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Where T are spatial transforms and g is a measure on the space of transforms.
Under appropriate conditiondd there is a density p such that:

GEi(o) = [ 1@ (1) dp 2)

Where T}, is a transform specified by parameters p in RF and the integral is com-
puted with respect to the Lebesgue measure on R*. The density p is determined
by the measure on transforms. In order to reduce notational clutter we will usually
drop the subscript p and assume that the transform 7" is parameterized by p.
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Fig. 4. Correlation of signal B and rotated (A) or rotated and flipped (C) versions of
itself with no blur, uniform blur, or geometric blur. The far right end of the graph,
rotation by 0.34 radians, corresponds to the signals shown in Figure

Equation [l is an integration over warped versions of the signal. We rewrite
this to integrate over the range (spatial coordinates of I) of the transforms and
change variables:

GEBi() = [ 1) /T oD (3)
~ [t [ o () dpdy (4)

v Ti(e—T(x))==y

/I(x —y) K. (y)dy (5)

The geometric blur is then a convolution with a spatially varying kernel,

2 Additional details and derivations concerning geometric blur, including motivation
as an approximation to Bayesian estimation, can be found in [4].

3 In Equations Bl and @ dp indicates integration with respect to the measure on the
“slice”, {T': T'(z) == z} and {T : ¢ — T'(z) == y} respectively.
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An Example: Returning to the example signals in Figures 2l and Bl We now
consider comparing signal B to rotations of itself, and rotations of its vertical
mirror image. The green dashed lines in Figure[d show the correlation between B
and rotated versions of itself, and the red dashed line shows correlations between
B and rotated versions of its vertical mirror image. As a reference, the signals
shown in Figure [2] would correspond to the signals used for a rotation of 0.35
radians as shown on the far right of Figure @l

In this and all other examples in this section the kernel function is K, (y) =
flalz] + B)Gajz)4+5(y), where G is a Gaussian with the specified standard devi-
ation, and f is a normalization factor so that the K, is L? normalized.

2.4 Empirical Measurement for Blur

By construction geometric blur with the kernel used above is appropriate in the
case of signals undergoing small affine distortions. In general if we have enough
examples of patches that are known to correspond we can actually find an optimal
blur pattern. We illustrate this with an example using wide base-line stereo pairs.

alll A 171
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3 IS S P A
Fig.5. Rectified paired patches found by the Harris-Affine detector. Note that the

centers of the patches are usually on edges or at corners, and that the orientations and
scales of matched patches are often slightly different.

We use images from different camera positions looking at the same object
or scend]. The correspondence between images is known. A region of interest
operator is applied, and where it works correctly, producing corresponding re-
gions on images, the corresponding patches are used. Figure [§] shows pairs of
corresponding patches. The raw patches are replaced by edge maps and the co-
variance between corresponding patches of edge maps is shown in Figure[@l Each

4 Tmages are from work by Mikolajczyk and Schmid [25] on region of interest operators
and descriptors for wide-baseline matching.
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small block in the figure represents the covariance of all the pixels in one patch
of edge map with respect to a particular pixel in the corresponding patch of
edge map. The general structure shows a more concentrated covariance near the
center, and a more diffuse covariance near the periphery. Plotting this shows
the nearly linear pattern in Figure [l While these examples support the linearly
increasing blur kernel, they are restricted to images of the same object or scene.
Replicating this study on images of categories of objects it is necessary to find
correspondences in the face of intra-category variation.

2.5 Descriptor

Creating a descriptor using geometric blur involves design choices for the region
of interest operator, underlying features, blur kernel, and subsampling.

Region of Interest Operator. Descriptors and region of interest operators
are the head and tail respectively of a thorny beast indeed. The two are coupled
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Fig. 6. Covariance of edge response between corresponding patches using a Harris-
Affine detector. These have been reshaped so that each small block represents the
covariance of all the pixels in one patch of edge map with respect to a particular pixel
in the corresponding patch of edge map. The location of the small block specifies the
pixel in the corresponding patch of edge map. For example the block at the lower right
of the image shows the covariance of the all the pixels in a patch of edge map with the
pixel in the lower right of the corresponding patch of edge map.
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Fig. 7. Results of fitting Gaussians to the blur patterns shown in Figure [l of covariance
of edge response between corresponding patches. The estimated standard deviation is
plotted against the distance from the center. The amount of blur in the covariance
increases almost linearly.

because the choice of interest point operator effects the type of variation the
descriptor must tolerate [4].

One benefit of the spatially varying blur is that geometric blur can be used for
localization. The work by Berg & Malik [5] concentrates mainly on this aspect of
geometric blur. This is quite different from other contemporary descriptors such
as SIFT [20] that rely on an interest point operator to select similar locations for
potential matches. As a result a somewhat promiscuous interest point operator
can be used in conjunction with geometric blur, and the localization of the
best match can be left up to the descriptor itself. We will place interest points
anywhere in an image where there is a strong edge response, using sampling with
repulsion to spread interest points throughout the image.

Choosing the scale for the descriptor can also be a complex problem. In this
case we duck the issue by tying the scale of the descriptor to the scale of the object
model. This means that if the object scale varies, multiple sets of descriptors must
be used. Luckily geometric blur is designed to handle affine distortion including
scale, and tolerates scale variation relatively well. For instance the multi-category
recognition results shown later use a single scale of descriptor despite variation
in scale for some of the categories.

Feature Channels. Motivated by wide ranges of appearance we base the fea-
ture channels on a coarse scale edge detector. The best results are obtained using
the boundary detector of [23]. This boundary detector is constructed not to re-
spond to texture, and produces relatively consistent boundary maps. In addition
a simple and computationally less expensive edge detector based on elongated



Shape Matching and Object Recognition 493

sparse oriented edge channels

descriptor geometric blur idealized signal

Fig. 8. The steps to compute a geometric blur descriptor. Starting with a feature point
on an image (eg the point at the center of the circle in the upper left) and a region
of interest (the circle). The sparse feature channels are cropped out as shown in the
upper right. Geometric blur is applied to each channel (shown here with an idealized
signal for clarity) and the signal is sub-sampled. The final descriptor is the vector of
values indicated by dots with differing intensity at lower left.

derivative of Gaussian filters is used for comparison [27]. In both cases edge
detection results are split up by orientation and oriented non-max suppression
is applied producing multiple sparse channels as shown in Figure

Blur Kernel. As before we use a simple blur kernel based on a Gaussian. If
Go(z) is a Gaussian with standard deviation a then:

Ko (y) = Gajal+5(y)
is our blur kernel. The kernel is normalized with respect to the L? norm.

Sub-sampling. The geometric blur of a signal should be sub-sampled using
a pattern that matches the amount of blur introduced. In particular in the
periphery fewer samples are required. For the kernel we consider above this
implies a density of samples decreasing linearly with distance from the origin.
The sampling pattern used in these experiments is shown in Figure

A quick summary of steps for computing geometric blur descriptors for an
image follows:

1. Detect feature locations: oriented edge detectors.
2. Choose interest points: random sampling with repulsion on points with high
edge energy.
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3. Compute multiple blurred versions of the channels: using the spatially vary-
ing Gaussian kernel described above.

4. Around each interest point, for each channel, sample points according to the
dart-board pattern in Figure [fl These samples should be drawn from the
appropriate blurred version of the channel.

5. These samples form the geometric blur descriptors.

The descriptors are compared using normalized correlation.

2.6 Comparison to SIFT

The geometric blur descriptor in this work is used to measure rough similarity
in structure. There are currently a number of somewhat similar descriptors for
local structure. We will use SIFT as an example to illustrate the differences

The first difference is the region of interest operator. SIFT is usually used in
conjunction with a region of interest operator based on finding local maxima of a
scale space operator based on the difference of Gaussians applied to pixel values.
For views of the same object this works quite well, providing repeatable regions,
but in the presence of intra-category variation this is no longer the casely The
region of interest operator we use is based simply on edge response, which is
more repeatable across intra-category variation. The scale of the descriptor is
tied to the object scale as described section 28 Tt is worth noting that in general
the scale relative to the edge features is much larger that commonly found with
the SIFT region of interest operator. This larger scale allows more context to be
used.

The relatively large context of the geometric blur based descriptors requires
more tolerance of change in the signal, which is accomplished by the radially
increasing blur. One way to think of the SIFT descriptor is as constant blur
with a grid subsampling pattern (4x4) instead of the dart-board pattern used
for the geometric blur descriptor. As the relative size of the patch considered
increases the difference between constant blur and geometric blur increasing
linearly with distance becomes larger.

Finally the underlying features for the geometric blur based descriptor de-
scribed in this chapter and SIFT are both based on oriented edge maps, with
slightly different details in engineering. In particular the number of orientations,
non-max suppression, and sometimes use of the pb detector from Martin et al[23].

5 Shape contexts [3] are also quite similar in spirit to geometric blur based descriptors.
The main differences are the hard decision about feature presence and location with
shape contexts vs soft decision for both using geometric blur. Work on geometric
blur introduced the connection between blur increasing linearly with distance and
robustness to affine distortion, which was later used to justify the sampling pattern
in shape contexts.

It is important to note that some features will be reliably found even in the presence
of intra-category variation, in order to find good alignment we require more matches,
and so must tolerate more variation. The trick is to maintain discriminative infor-
mation while being tolerant of more variation.



Shape Matching and Object Recognition 495

It is the smoothing and subsampling of the edge maps along with the region of
interest operator where most differences arise.

Generally the SIFT type descriptors are suited to identifying parts of the same
object from multiple views, while the geometric blur based descriptor described
here is designed to evaluate potential similarity under intra-class variation ex-
ploiting larger support and spatially varying blur. There are many choices for
descriptors, the experiments later in the chapter indicate that a generic geomet-
ric blur based descriptor fares well as part of a correspondence algorithm for a
wide variety of object categories.

3 Geometric Distortion

Local shape similarity measurements are not sufficient to identify similar shapes.
In order to combine local shape similarity measurements using geometric blur
descriptors we need some way of measuring changes in the entire shape. This is
accomplished be measuring the distortion in the configuration of feature points
induced by a correspondence.

We consider correspondences between feature points {p;} in model image
P and {¢;} in image Q. A correspondence is a mapping o indicating that p;
corresponds to ¢q(;). To reduce notational clutter we will sometimes abbreviate
o(i) as 7', so 0 maps p; to g .

The quality of a correspondence is measured in two ways: how similar fea-
ture points are to their corresponding feature points, and how much the spatial
arrangement of the feature points is changed. We refer to the former as the
match quality, and the later as the distortion of a correspondence.

We express the problem of finding a good correspondence as minimization of a
cost function defined over correspondences. This cost function has a term for the
match quality and for the geometric distortion of a correspondence: cost(c) =
wmCyatch () + @4 Cistortion (7)

Where constants wm and wq weigh the two terms. The match cost for a
correspondence is:

Crnaten(0) = Y _ c(ii') (6)

(2
Where ¢(i,7) is the cost of matching ¢ to j in a correspondence. We use the
negative of the correlation between the feature descriptors at ¢ and j as (4, j).

We use a distortion measure computed over pairs of model points in an image.
This will allow the cost minimization to be expressed as an integer quadratic
programming problem.

Cistortion(9) = Z H(i,i',j,5") (7)
ij

Where H (i, j,k,1) is the distortion cost of mapping model points i and j to k
to [ respectively. While there are a wide variety of possible distortion measures,
including the possibility of using point descriptors and other features, in addition
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to location, we concentrate on geometric distortion and restrict ourselves to
measures based on the two offset vectors r;; = p; — p; and sy = g — qir.

CdiStOI'tiOl’l(U) = Z diStOI'tiOn(Tij7 si’j') (8)

ij

Our distortion cost is made up of two components:

Cdistortion(o) = ZW’da(U) + (1 =7)dy (o) 9)
ij
g . Sirjr X Tij
d, = arcsin 10
@ = (2 ) fresn ()| (10
dy(o) = [Isirje| = Iris]| (1)

|7i;| +

where d, penalizes the change in direction, and d; penalizes change in lengthE
A correspondence o resulting from pure scale and translation will result in
do(0) = 0, while o resulting from pure translation and rotation will result in
di(o) = 0. The constants g, B4, 4, are all terms allowing slightly more flexibil-
ity for nearby points in order to deal with local “noise” factors such as sampling,
localization, etc. They should be set relative to the scale of these local phe-
nomena. The constant v weighs the angle distortion term against the length
distortion term.

Outliers. Each point p;, in P, is mapped to a gy(;), in . This mapping auto-
matically allows outliers in @) as it is not necessarily surjective — points g; may
not be the image any point p; under o. We introduce an additional point g1
and use (i) = null to allow a point p; to be an outlier. We limit the number
of points p; which can be assigned to gy, ,,1], thus allowing for outliers in both P

and Q.

4 Correspondence Algorithm

Finding an assignment to minimize a cost function described by the terms in
Equations [ and [6] above can be written as an Integer Quadratic Programming
(IQP) problem.

cost(z) = Z H(a,b)x,xp + Z c(a)zq (12)
a,b a

Where the binary indicator variable « has entries z,, that if 1, indicate o(a;) =
a;. We then have H(a,b) = H(a;, aj,b;,b;), and c(a) = c(a;, aj) from Equations
[0 and

" It is possible to construct a pairwise distortion measure based on bending energy
which is compatible with the thin plate spline we use alter for interpolation [29],
however we are interested in more structured transformations such as rotation and
scaling, resulting in the simple distortion measure presented here.
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Fig. 9. An exemplar with a subset of feature points marked (left), the novel “probe”
image with all feature points in white, and the feature points found to correspond
with the exemplar feature points marked in corresponding colors (left center), the
exemplar with all its feature points marked in color, coded by location in the image
(right center), and the probe with the exemplar feature points mapped by a thin
plate spline transform based on the correspondences, again colored by position in the
exemplar (far right). See Figure [I0 for more examples.

We constrain z to represent an assignment. Write z;; in place of x4,q;. We
require ) x;; = 1 for each i. Furthermore if we allow outliers as discussed in
Section [, then we require » ;2.1 < k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost in our problems, so
this is equivalent to ), x,,,.,)] = k- Each of these linear constraints are encoded
in a row of A and an entry of b. Replacing H with a matrix having entries
H,, = H(a,b) and ¢ with a vector having entries ¢, = ¢(a). We can now write
the IQP in matrix form:

min cost(z) =z'Hx + 'z subject to, (13)
Az =b, z€{0,1}"

4.1 Approximation

Integer Quadratic Programming is NP-hard, however specific instances may be
easy to solve. We follow a two step process that results in good solutions to our
problem. We first find the minimum of a linear bounding problem, an approx-
imation to the quadratic problem, then follow local gradient descent to find a
locally minimal assignment. Although we do not necessarily find global minima
of the cost function in practice the results are quite good.

We define a linear objective function over assignments that is a lower bound
for our cost function in two steps. First compute ¢, = min Zb Hpxp. Note that
from here on we will omit writing the constraints Az = b and x € {0,1}" for
brevity.

If x, represents o(i) = j then ¢, is a lower bound for the cost contributed
to any assignment by using (i) = j. Now we have L(z) = ) (¢a + ca)Zq as a
lower bound for cost(z) from Equation[I3 This construction follows [22], and is
a standard bound for a quadratic program. Of note is the operational similarity
to geometric hashing.

The equations for g, and L are both integer linear programming problems, but
since the vertices of the constraint polytopes lie only on integer coordinates, they
can be relaxed to linear programming problems without changing the optima,
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and solved easily. In fact due to the structure of the problems in our setup they
can be solved explicitly by construction. If n is the length of x, each problem
takes O(n) operations with a very small constant. Computing ¢, fora=1...n
requires O(n?) time.

We then perform gradient descent changing up to two elements of the assign-
ment at each step. This takes O(n?) operations per step, and usually requires a
very small number of steps (we put an upper bound on the number of steps). In
practice we can solve problems with m = 50 and n = 2550, 50 possible matches
for each of 50 model points with outliers, in less than 5 seconds.

4.2 Example Correspondences

Given a model image P of an object, and a target image @, possibly containing
an instance of a similar object we find a correspondence between the images as
follows:

1. Extract sparse oriented edge maps from each image.

2. Compute features based on geometric blur descriptors at locations with high
edge energy.

3. Allow each of m feature points from P to potentially match any of the k
most similar points in Q) based on feature similarity and or proximity.

4. Construct cost matrices H and ¢ as in Section Bl

5. Approximate the resulting Binary Quadratic Optimization to obtain a cor-
respondence. Store the cost of the correspondence as well.

6. Extend the correspondence on m points to a smooth map using a regularized
thin plate spline [2§].

See Figures [@ and [0 for a number of examples. In the leftmost column of
the figures is the image, P, shown with m points marked in color. In the middle
left column is the target image @ with the corresponding points found using
our algorithm. A regularized thin plate spline is fit to this correspondence to
map the full set of feature points on the object in P, shown in the middle
right column, to the target, as shown on the far right column. Corresponding
points are colored the same and points are colored based on their position (or
corresponding position) in P — in P colors are assigned in uniform diagonal
stripes, the distortion of these striped in the far right column of the figure gives
some idea of the distortion in the correspondence.

5 Object Recognition

The Caltech 101 [I0] dataset consists of images from 101 categories of objects:
from accordion to kangaroo to yin—yanﬁ. Example images from 100 of the cat-
egories can be seen in Figure There are a wide variety of image categories:
man-made objects, animals, indoor images and outdoor images, drawings, etc.

8 Available from http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
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Y

Fig. 10. Each row shows an alignment found using our technique described in section
[l Leftmost is an exemplar with some feature points marked. Left center is a probe
image with the correspondences found indicated by matching colors (all possible feature
matches are shown with white dots). All of the feature points on the exemplar are shown
center right, and their image using a thin plate spline warp based on the correspondence
are shown in the right most image of the probe. Note the ability to deal with clutter
(1,6), scale variation(3), intraclass variation (all), also the whimsical shape matching
(2), and the semiotic difficulty of matching a bank note to the image of a bank note
painted on another object (5).

In addition many of the images have background clutter. There are up to 800
images in a category, although many categories contain 50 or fewer images. Some
categories offer more variation and clutter than others.
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6 Recognition Experiments

Our recognition framework is based on nearest neighbors.

Preprocessing: For each object class we store a number of exemplars, possibly
replicated at multiple scales, and compute features for all of the exemplars.
Features are only computed on the support of the objects. At this point object
supports are marked by hand. Section [@ shows how to find them automatically.

Indexing: Extract features from a query image. For each feature point in an ex-
emplar, find the best matching feature point in the query based on normalized
correlation of the geometric blur descriptors. The mean of these best correla-
tiond] is the similarity of the exemplar to the query. We form a shortlist of the
exemplars with highest similarity to the query image.

Correspondence: Find a correspondence from each exemplar in the shortlist
to the query as described above. Pick the exemplar with the least cost.

We address two object recognition problems, multi-class recognition and face
detection. In the multiple object class recognition problem, given an image of an
object we must identify the class of the object and find a correspondence with an
exemplar. We use the Caltech 101 object class dataset consisting of images from
101 classes of objects: from accordion to kangaroo to yin-yang, available at [7].
This dataset includes significant intra class variation, a wide variety of classes,
and clutter. On average we achieve 45% accuracy on object classification with
quite good localization on the correctly classified objects.

We also consider face detection for large faces, suitable for face recognition
experiments. Here the task is to detect and localize a number of faces in an
image. The face dataset we use is sampled from the very large dataset used
in [6] consisting of news photographs collected from yahoo.com. With only 20
exemplar faces our generic system provides a ROC curve with slightly better
generalization, and slightly worse false detection rate than the quite effective
specialized face detector of Mikolajczyk [24] used in [6].

For each image, edges are extracted at four orientations and a fixed scale.
For the Caltech dataset where significant texture and clutter are present, we use
the boundary detector of [23] at a scale of 2% of the image diagonal. With the
face dataset, a quadrature pair of even and odd symmetric Gaussian derivatives
suffices. We use a scale of o = 2 pixels and elongate the filter by a factor of 4 in
the direction of the putative edge orientation.

Geometric blur features are computed at 400 points sampled randomly on the
image with the blur pattern shown in Figure[8 We use a maximum radius of 50
pixels (40 for faces), and blur parameters a = 0.5 and 5 = 1.

For correspondence we use 50 (40 for faces) points, sampled randomly on edge
points, in the correspondence problem. Each point is allowed to match to any
of the most similar 40 points on the query image based on feature similarity. In
addition for the Caltech 101 dataset we use v = 0.9 allowing correspondences

9 Some normalization is necessary to deal with relatively smaller or larger objects with
fewer or more descriptors.
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Fig. 11. For a probe or query image exemplars are ranked according to feature simi-
larity. We plot the percentage of probes for which an exemplar of the correct class was
found in the shortlist. Here the first exemplar is correct 41% of the time. Left Full
curve. Right Curve up to shortlist length 100 for detail.

with significant variation in scale, while for the faces dataset we handle scale
variation partly by repeating exemplars at multiple scales and use v = 0.5.

7 Caltech 101 Results

Basic Setup: Fifteen exemplars were chosen randomly from each of the 101
object classes and the background class, yielding a total 1530 exemplars. For
each class, we select up to 50 testing images, or “probes” excluding those used
as exemplars. Results for each class are weighted evenly so there is no bias toward
classes with more images.

The spatial support of the objects in exemplars is acquired from human la-
beling. The top entry in the shortlist is correct 41% of the time. One of the top
20 entries is correct 75% of the time. (Figure [IT)).

Recognition and Localization. Using each of the top ten exemplars from
the shortlist we find a good correspondence in the probe image. We do this
by first sampling 50 locations on the exemplar object and allowing each to be
matched to its 50 best matching possibilities in the probe with up to 15% outliers.
This results in a quadratic programming problem of dimension 2550. We use a
distortion cost based mainly on the change in angle of edges between vertices
(v = 0.9). This allows matches with relatively different scales (Figure [0 line
3). The exemplar with the lowest distortion correspondence gives 45% correct
classification, at the same time providing localization. Note that this is using a
simple nearest neighbor classifier and generative models. A baseline experiment
comparing gray scale images using SSD and 1-nearest neighbor classification
gives 16%. At press, the best results from the Caltech group are 40% using
discriminative methods [15]. No other techniques have addressed correspondence
at the level of detail presented here.
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Fig. 12. Top ROC curves for our face detector using 20 exemplar images of faces (split
between frontal and profile) and the detector of Mikolajczyk. Mikolajczyk’s detector
has proven to be effective on this dataset. simply finding sets of feature points in an
image that have a good correspondence, based on distortion cost, to an exemplar. Good
correspondences allow detection and localization of faces using a simple generative
model, no negative examples were used. bottom Detections from our face detector
marked with rectangles.
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Fig. 13. Example images from 100 of the categories in the Caltech 101 dataset

Multiscale. We compute exemplar edge responses and features at a second scale
for each exemplar resulting in twice as many exemplars. This improves shortlist
performance by 1% or less, and does not change recognition performance. This
illustrates the general lack of scale variation in Caltech 101. The face dataset
exhibits a large range of scale variation.

8 Face Detection Results

We apply the same technique to detecting medium to large scale faces for use
in face recognition experiments. The face dataset is sampled from the very large
dataset in [6] consisting of A.P. news photographs. A set of 20 exemplar faces
split between front, left, and right facing, was chosen from the database by
hand, but without care. The test set was selected randomly from the remaining
images on which the face detector of [24] found at least one 86x86 pixels or
larger face. We use the generic object recognition framework described above,
but after finding the lowest cost correspondence we continue to look for others.
A comparison of the ROC curves for our detector and that of [24] is found in
Figure Our detector has an advantage in generalization, while producing
more false positives. While not up the the level of specialized face detectors,
these are remarkably good results for a face detector using 20 exemplars and a
generative model for classification, without any negative training examples.

9 Automatic Segmentation

In the recognition experiments above, exemplar objects were hand segmented
from their backgrounds. This can be automated by finding the repetitive aspects
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Retrieval Rate vs Shortlist Length
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Fig. 14. Illustrating automatic model segmentation: One training image (a.) the re-
maining 14 training images (b.) darkness of the central circle for each feature indicates
how well on average the area around the feature point matched after aligning transforms
to each of the other training images (c.) At lower right, the percentage of probes for which
an exemplar of the correct class was found in the shortlist. The darker curve shows per-
formance with hand segmented exemplars, the lighter curve shows performance with
automatically segmented exemplars. For hand segmented exemplars the first exemplar
is correct 41% of the time, for automatically segmented exemplars 45%. (d.)

of objects in the example images. Starting with a set of example images {I;}
from an object class find the support of the object in an image I;, as follows.
For each image I; where j # ig :

1. Find a correspondence from I;, to I j

2. Use a regularized thin plate spline to map all of the feature points in I;, to
1.

3. For each mapped feature from I;,, the quality of the match is the similarity
to the best matching nearby feature in I;.

10 Here we allow 40% outliers instead of 15% as used in the recognition experiments.
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The median quality of match for a feature is the measure of how common that
feature is in the training images.

Feature points with median quality within 90% of the best for that image are
considered part of the object. Repeating the recognition experiments in Section[7]
the shortlist accuracy improves by 1-4% (Fig. [[4]). While the estimated support
is usually not perfect, recognition performance is similar to that using hand
segmented images, 45%.

The learned models of support reflect a region of the image that is consistent
across training images, as opposed to individual discriminative features. For
instance the cheek on a face is not by itself discriminative for faces, but when
considering faces transformed into alignment the cheek is usually consistent.
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