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Abstract. We present a new class of statistical models for part-based
object recognition. These models are explicitly parametrized according
to the degree of spatial structure that they can represent. This provides
a way of relating different spatial priors that have been used in the past
such as joint Gaussian models and tree-structured models. By providing
explicit control over the degree of spatial structure, our models make
it possible to study questions such as the extent to which additional
spatial constraints among parts are helpful in detection and localization,
and the tradeoff between representational power and computational cost.
We consider these questions for object classes that have substantial geo-
metric structure, such as airplanes, faces and motorbikes, using datasets
employed by other researchers to facilitate evaluation. We find that for
these classes of objects, a relatively small amount of spatial structure in
the model can provide statistically indistinguishable recognition perfor-
mance from more powerful models, and at a substantially lower compu-
tational cost.

1 Introduction

Since the 1970’s it has been observed that many objects can be represented
in terms of a small number of parts arranged in a deformable configuration
(e.g., [1, 2, 4, 5, 10–12, 14, 15, 17]). In such models, the appearance of each part is
usually captured by a template, and the spatial relationships between parts are
represented by spring-like connections between pairs of parts. Recently there has
been a considerable resurgence in the use of these models for object recognition
– both for detection and localization – and in learning models from example
images. Particular emphasis has been on the recognition of generic classes of
objects using models that are learned from specific examples.

The models that have been used to capture geometric relationships between
the parts of an object differ substantially in their representational power and
computational complexity. On one hand, joint Gaussian models (e.g., [4, 5, 11])
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have been used to explicitly capture spatial dependencies between all pairs of
object parts, but the detection and localization algorithms that use these mod-
els rely on search heuristics in order to be computationally tractable. On the
other hand, tree-structured graphical models (e.g., [10, 14]) have been used to
efficiently detect and localize certain kinds of objects such as humans and faces,
but are only able to explicitly capture a small fraction of the spatial depen-
dencies between the parts of an object. An important goal of this paper is to
improve our understanding of such tradeoffs between representational power and
computational complexity for part-based recognition. We do this by introducing
a family of spatial priors that provide explicit control over the degree of spatial
structure that can be represented.

We use a problem formulation similar to the one in [10, 12], where for de-
tection or localization a single overall problem is solved that takes into account
both how well individual parts match the image data at each location and also
the global spatial arrangement of parts. This framework is different from most
other object recognition approaches (e.g. [4, 11]) that first perform feature de-
tection to find possible locations for each part in an image and then use the
detected feature locations to search for good object configurations. These meth-
ods have been popular because the explicit feature detection step reduces the
number of object configurations that must be considered, but they have the dis-
advantage that false-negatives in the feature detection step can prevent parts
from being properly localized. In [10] an efficient method was developed for tree-
structured models that did not use feature detection, instead considering both
part appearance and global spatial configuration at once. That method is able
to provably compute the optimal object configuration in an image without ex-
plicitly searching the entire configuration space. A disadvantage to that method
is that tree-structured models may not always be appropriate because of the
relatively weak spatial structure that trees can capture.

In this paper we extend the implicit search techniques of [10] in order to
efficiently perform object recognition without feature detection using a class of
spatial priors defined by graphs that we call k-fans. Models defined by k-fans
provide a natural family of priors for part-based recognition. The parameter k

controls both the representational power of the models and the computational
cost of doing inference with them. When k = 0, the locations of the object parts
are independent. As k increases the spatial prior captures more information.
When k = 1 the graphical structure of the prior is a star graph. For k = n − 1
(where n is the number of parts in the model) there are no conditional inde-
pendencies among the part locations as in the case of a joint Gaussian model.
This family of models gives us a natural way of investigating the degree to which
additional spatial constraints improve recognition and affect computational cost.
Using more powerful (higher-k) models does not necessarily improve classifica-
tion, as it can lead to over-fitting during learning.

Besides providing an explicit balance between representational power and
computational cost, k-fan models have a strong geometrical foundation. In a
k-fan model the locations of k distinguished parts can be used to define the pose
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of an object. With this view recognition using k-fans is related to geometric
alignment [13]. From a different perspective k-fans can be used to define con-
straints on sets of k + 1 parts in the model. With this view recognition using
k-fans is related to geometric invariants [6]. In both cases k-fan models general-
ize the geometric methods by explicitly modeling uncertainty and replacing hard
constraints with soft constraints based on statistical models.

As our experimental results demonstrate, for certain object classes that have
been used recently in the literature, such as motorbikes, faces and airplanes, a
relatively small amount of spatial structure provides almost the same recognition
accuracy that is obtained using more powerful models. For small values of k,
recognition with k-fans is highly practical without relying on search heuristics
or feature detection.

2 Part-based Statistical Models

The central principle underlying part-based modeling is the observation that
many objects can be represented by a small number of parts arranged in a
characteristic configuration. The spatial relationships between parts in such a
model are captured by a set of parameters S, while the appearance of each part
is characterized by a set of parameters A. The model for an object is defined by
the pair M = (S,A).

Consider an object model with n parts V = (v1, . . . , vn). The location of the
object in an image is given by a configuration of its parts L = (l1, . . . , ln), where
li is the location of the ith part. Throughout this paper we assume that the
location of a part is given by a point in the image, li = (xi, yi). Using Bayes’
law, the probability that the object is at a particular location given an image
and a fixed set of model parameters can be written as,

pM (L|I) ∝ pM (I|L)pM (L). (1)

Here, pM (I|L) is the likelihood of observing image I given that a particular
configuration of the object occurs in the scene, and pM (L) is the prior probability
that the object configuration is L. In this paper we consider three fundamental
problems that can be formulated in terms of these distributions:

1. Detection The detection problem is to decide if the image has an instance
of the object (hypothesis w1) or if the image is background-only (hypothesis
w0). It is natural to consider the ratio of the two likelihoods,

q =
pM (I|w1)

pM (I|w0)
, (2)

and compare it to a threshold to make the classification decision. The nu-
merator is usually computed by summing over all possible configurations L

as described in Section 3.4.
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2. Localization Assuming the object is present in the scene, the configura-
tion that most likely corresponds to its true position is one with maximum
posterior probability,

L∗ = arg max
L

pM (L|I).

3. Supervised learning The maximum-likelihood estimate of the model pa-
rameters given a set of labeled training images {(I1, L1), . . . , (IT , LT )} is,

S∗ = arg max
S

∏

i

pM (Li),

A∗ = arg max
A

∏

i

pM (Ii|Li).

The algorithmic complexity of solving these three problems is highly depen-
dent on the form of the likelihood model pM (I|L) and the spatial prior pM (L).
In the next section we discuss a particular likelihood model which has important
structural properties, while the focus of the rest of the paper is primarily on the
form of the spatial prior.

2.1 Appearance

For computational purposes, the most important property of the appearance
model is that pM (I|L) factors into two parts: a term which does not depend on
the object configuration, and a product of functions each of which depends on
the location of a single part. Because of this factorization, any independence as-
sumption that is present in the spatial prior will also be present in the posterior.
The majority of the recent work on part-based recognition has used a similar
factorization. A notable exception is the patchwork of parts model in [2] which
does not make this assumption in order to better capture overlapping parts.

In our work we use a simple template-based appearance model that operates
on oriented edge maps in order to be relatively invariant to changes in image
intensity. Let I be the output of an oriented edge detector, so that for each pixel
p, I(p) is either 0 indicating that there is no edge at p or a value in {1, . . . , r}
indicating that there is an edge in one of r possible quantized orientations at p.
We assume that the values of each pixel in the image are independent given the
object configuration. The appearance of the ith part is given by a template Ti.
The probability that a pixel p ∈ Ti has value u is defined by a foreground model
for that part, fi(p)[u]. We further assume that each pixel in the background has
value u with probability b[u]. The model parameters A = ((Ti, fi), ..., (Tn, fn), b)
encode the foreground model for each part and the background model.

Let w0 be the hypothesis that the object is not present in the image. By our
independence assumption we have,

pM (I|w0) =
∏

p

b[I(p)].
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We say that parts i and j do not overlap if (Ti ⊕ li) ∩ (Tj ⊕ lj) = ∅. Here ⊕
denotes Minkowsky addition, which is used to translate the templates according
the locations of the parts. For a configuration L without overlap we have,

pM (I|L) = pM (I|w0)
∏

vi∈V

gi(I, li), (3)

where

gi(I, li) =
∏

p∈T

fi(p)[I(p + li)]

b[I(p + li)]
. (4)

Each term in gi is the ratio of the foreground and background probabilities for
a pixel that is covered by template Ti. In equation (3) the denominator of gi

cancels out the contribution of pM (I|w0) for those pixels that are under some
part. As long as we only consider configurations L without overlapping parts the
likelihood function defined above is a true probability distribution over images,
in that it integrates to one. When parts overlap this is an approximation. Note
that for many objects the spatial prior pM (L) strongly encourages parts in the
model to not overlap, thus making this a reasonable appearance model.

2.2 Spatial Prior

The spatial prior pM (L) represents geometric relationships between the parts
of an object. The simplest form of the prior assumes that there are no spatial
dependencies between parts, so that the part locations are independent of one
another (the naive Bayes assumption). Under this assumption, pM (L) can be
written as:

pM (L) =
∏

vi∈V

pM (li).

The detection and localization problems are particularly easy with this spatial
prior. For localization it is only necessary to maximize gi(I, li)pM (li) indepen-
dently for each li. This can be done in O(nh) time for a model with n parts
and h possible locations for each part. But while this model yields computa-
tionally tractable recognition and learning procedures, it is unable to accurately
represent multi-part objects since it captures no relative spatial information.

Another option is to make no independence assumptions on the locations
of different parts by, for example, using a joint Gaussian model for the spatial
distribution pM (L) (e.g. as in [5]). Learning a maximum-likelihood distribution
from labeled images in this case is easy, by simply computing the sample mean
and covariance of the labeled part locations. However it is not known how to
perform exact inference using this spatial prior efficiently. To make inference
tractable, various heuristics have been employed to reduce the search space. For
example, feature detection is normally used to constrain the possible locations
of each part.

Spatial models between the two extremes just described can be defined by
making certain conditional independence assumptions. These assumptions are
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commonly represented using an undirected graphical model (or Markov random
field). Let G = (V,E) be an undirected graph. The graph is used to define a
distribution for the random variables (l1, . . . , ln) in the following way. The value
for the location of vi is independent of the values of all other nodes, conditioned
on the values of the neighbors of vi in the graph. The independence assumptions
of the naive Bayes model are represented by a graph with no edges while a model
with no independence assumptions such as the joint Gaussian corresponds to a
complete graph.

Efficient learning and inference procedures for models with tree-structured
spatial priors are known. The detection and localization problems can be solved
in O(nh2) time using dynamic programming. Moreover, in many cases one can
solve these problems in O(nh) time – the same asymptotic time as the naive
Bayes case where there are no dependencies between part locations (see [10]).

To summarize, we can imagine a spectrum of spatial priors, arranged ac-
cording to the degree of spatial independence assumptions they make. On one
end of the spectrum, we assume that all parts are spatially independent, so that
the location of a given part does not constrain the location of any other part.
Inference in this case is efficient but the object model is weak. At the other end
are models that make no independence assumptions. This form of spatial prior
can capture arbitrarily complex spatial relationships between part locations, but
even for restricted cases it is not known how to perform exact inference efficiently.
Tree-structured spatial priors fall in between the two extremes. In the following
section, we introduce a family of spatial priors, called k-fans, which are explicitly
parametrized according to where they fall along this spectrum.

3 k-fans

Now we consider a class of spatial priors that lie between the two extremes of the
naive Bayes assumption and a fully-connected spatial model. Our goal is to find
models with recognition performance comparable to a fully-connected model but
that support fast procedures for exact (discrete) inference and learning. We start
by considering a restricted form of tree model, the star graph, and then extend
that model. A star graph is a tree with a central node that is connected to all
other nodes. Let G = (V,E) be a star graph with central node vr. Undirected
graphical models with a star structure have a particularly simple interpretation
in terms of conditional distributions. The values of random variables associated
with nodes vi 6= vr are independent when conditioned on the value of vr. This
leads to the following factorization of the prior distribution,

pM (L) = pM (lr)
∏

vi 6=vr

pM (li|lr).

We can think of the central node vr as a reference part. The position of other
parts in the model are evaluated relative to the position of this reference part.

k-fans extend the star graph model to include more than one reference part.
Let R ⊆ V be a set of reference parts, and R = V −R be the remaining parts in a
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model. Then a graph can be constructed which consists of a complete subgraph
over the nodes in R, while each node in R is connected to every node in R (but
to no other nodes). We call this graph a k-fan for k = |R|. Some examples of
k-fans on six nodes are shown in Figure 1.

A clique in an undirected graph is a set of vertices for which there is an edge
connecting every pair of nodes in the set. A k-fan can be seen as a collection of
cliques of size k + 1 connected together along a common clique of size k. The k

nodes in the common clique are the reference parts R.
A k-fan can be constructed by starting with a k-clique corresponding to the

reference nodes and sequentially adding new nodes by connecting each of them
to the reference nodes and nothing else. With this view it is clear that k-fans
are a special class of k-trees [16]. In particular k-fans are decomposable (also
known as triangulated or chordal) graphs. Because k-fans are k-trees there are
standard algorithms that can perform inference with these models in time that
is polynomial in n and exponential in k, where n is the number of nodes in the
graph [3]. An important difference between k-fans and arbitrary k-trees is that
k-fan models can be learned in time polynomial in n and exponential in k while
learning a k-tree is NP-hard even for small k.

As k grows from 0 to n−1 we get a set of graphs which intuitively interpolate
between the empty graph and the complete graph on n nodes. Thus k-fans define
a class of graphical models of increasing expressive power.

1-fan 2-fan 3-fan

Fig. 1. Some k-fans on six nodes. The reference nodes are shown in black while the
regular nodes are shown in gray.

We claim that k-fans form an important class of graphical models for part-
based recognition. These are exactly the models where the locations of the non-
reference parts are conditionally independent given the locations of the reference
parts. Let R = {v1, . . . , vk} be the reference parts in a k-fan. We denote by
lR = (l1, . . . , lk) a particular configuration of the reference parts. The spatial
prior defined by a k-fan can be written in conditional form as,

pM (L) = pM (lR)
∏

vi∈R

pM (li|lR). (5)

In general both the localization and detection problems for models with spatial
priors based on k-fans can be solved in O(nhk+1) time, where n is the number
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of parts in the model and h is the number of locations in the image. Thus k

controls the computational complexity of inference with these models. With the
additional assumption that pM (L) is Gaussian we can use distance transforms
and convolutions to solve the inference problems in O(nhk), as described below.
In practice the running time can be further improved using conservative pruning
heuristics that eliminate low-probability configurations.

For learning k-fan models it will be useful to write the spatial prior in terms
of marginal distributions,

pM (L) =

∏

vi∈R pM (li, lR)

pM (lR)n−(k+1)
. (6)

The numerator is the product of marginal probabilities for the n − k maximal
cliques and the denominator involves the marginal probability for the nodes
shared by all maximal cliques (the so-called separator set which in this case is
R). This is a special form of the factorization for a triangulated graph, which is
the ratio of a product over maximal cliques and a product over separators [7].

3.1 Geometric Interpretation

As mentioned in the introduction there is a natural connection between k-fan
models and geometric alignment [13]. In a k-fan model the locations of the
reference parts can be used to compute a global transformation aligning a geo-
metrical model and the image. This alignment defines an ideal location for each
non-reference part, and deviations from these ideal locations can be measured
by the conditional distributions pM (li|lR).

There is a also a close connection between k-fan models and object recog-
nition using geometric invariants. Each maximal clique in a k-fan consists of
exactly k + 1 parts, and the location of these parts can be used to define shape
constraints that are invariant to certain geometric transformations (see [6]). The
number of reference parts controls the type of geometric invariants that can be
represented.

In a k-fan the location of a non-reference part can be described in a reference
frame defined by the locations of the k reference parts. For example, when k = 1
the location of a non-reference part can be described relative to the location of
the single reference part. The values l′i = li − lr are invariant under translations,
so 1-fans can be used to define translation invariant models. For the case of
k = 2 the two reference parts can be used to define models that are invariant
to rigid motions and global scaling. When k = 3 we can use the three reference
parts to define an affine basis in the image plane; if the location of every non-
reference part is described in this basis we obtain affine invariant models. These
models are important because they capture arbitrary views of planar objects
under orthographic projection.

To enforce geometric invariants over k + 1 parts one could define pM (li|lR)
to be one if the k+1 locations satisfy a geometric constraint and zero otherwise.
In general our models capture soft geometric constraints, giving preference to
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configurations that satisfy relationships on k + 1 features as much as possible.
The distribution over the reference part locations pM (lR) could be uniform in
the case where all geometric constrains are defined in terms of k +1 parts. Non-
uniform distributions can be used to represent interesting classes of non-rigid
objects.

3.2 Gaussian k-fans

We now consider k-fan models with the additional constraint that pM (L) is a
Gaussian distribution. For a Gaussian model the marginal distribution of any
subset of variables is itself Gaussian. Let µR and ΣR be the mean and covariance
for the locations of the reference parts. The marginal distribution of the reference
parts together with one non-reference part is given by a Gaussian with mean and
covariance,

µi,R =

[

µi

µR

]

, Σi,R =

[

Σi ΣiR

ΣRi ΣR

]

. (7)

These can be used to define the spatial prior in terms of equation (6). We will
use this for learning Gaussian k-fans. For inference we use the conditional form
of the prior in equation (5). For a Gaussian distribution, conditioning on a
set of variables preserves the Gaussian property. In particular, the conditional
distribution of a non-reference part location given particular locations for the
reference parts pM (li|lR) has mean and covariance,

µi|R(lR) = µi + ΣiRΣR
−1(lR − µR), (8)

Σi|R = Σi − ΣiRΣR
−1ΣRi, (9)

Note how the covariance Σi|R is independent of the location of the reference
parts. This is a non-trivial property that enables the use of distance transforms
and convolutions to obtain faster inference algorithms than is possible with non-
Gaussian models, as we will show in Sections 3.4 and 3.5.

3.3 Learning

We can learn the spatial prior for Gaussian k-fan models from labeled images
using a maximum likelihood criterion. For a fixed set of reference parts, estimat-
ing the maximum likelihood parameters S∗ involves estimating the mean and
covariances in (7). These can be obtained from the sample mean and covariance
of the labeled configurations.

The more interesting case is when the reference parts are not fixed. In this
situation all possible reference sets of size k can be considered to find the set R

that yields the best possible model. There are
(

n
k

)

possible reference sets, which
is not very large for small values of k. For each reference set we compute the
maximum likelihood model parameters using the sample mean and covariance,
as described above. We select the best reference set by choosing the set R that
maximizes the likelihood of observing the training data given the model.
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Learning the appearance parameters A∗ for the models described in Sec-
tion 2.1 using labeled training data is also simple. To estimate fi, the position
of the ith part in each training example is used to align the training images.
The maximum likelihood estimate for fi(p)[v] is simply the frequency that pixel
p has value v on the aligned data. The only parameter that is not learned from
the data is the size and shape of the template Ti. For the experiments shown in
this paper we used square windows of a fixed size.

3.4 Detection

For detection we consider the likelihood ratio in (2). The numerator of this ratio,
which is the probability of an image given that it contains the object, can be
expressed as a sum over all possible object configurations,

pM (I|w1) =
∑

L

pM (L)pM (I|L).

Using the likelihood function (3) we see that

pM (I|w1)

pM (I|w0)
=

∑

L

pM (L)
∏

vi∈V

gi(I, li).

For a k-fan model the sum over all configurations L can be factored using
the conditional form of the spatial prior in (5). For each vi ∈ R we define

αi(lR) =
∑

li

pM (li|lR)gi(I, li).

Now the likelihood ratio can be computed as,

pM (I|w1)

pM (I|w0)
=

∑

lR

pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

αi(lR).

Note that each αi can be computed by brute force in O(hk+1) time, while the
likelihood ratio can be computed using the αi in O(nhk) time. This procedure
gives an O(nhk+1) algorithm for computing the likelihood ratio.

For the case of a Gaussian k-fan we can compute the likelihood ratio even
faster, using convolutions. For each non-reference part vi we have,

pM (li|lR) = N (li, µi|R(lR), Σi|R),

a Gaussian distribution with mean and covariance given by equations (8) and
(9). Let α′

i(li) be the convolution of gi(I, li) with a Gaussian kernel of covariance
Σi|R. It is not hard to see that,

αi(lR) = α′
i(µi|R(lR)).
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So each αi can be implicitly computed by a convolution in the space of possible
part locations. This can be done in O(h log h) time instead of O(hk+1).

The overall running time of the likelihood ratio computation for the case
of a Gaussian k-fan model is O(nhk + nh log h). Note that for a 1-fan model
this is almost the same as O(nh), the time that it would take to compute the
likelihood ratio if the locations of the parts were completely independent. The
log h dependency can be removed by using linear time methods that approximate
Gaussian convolutions, such as the box-filter technique in [18].

3.5 Localization

For localization we look for an object configuration L∗ with maximum posterior
probability. Using Bayes law the posterior distribution for a k-fan model can
be written in terms of the likelihood function (3) and the spatial prior (5). By
manipulating the terms we get,

pM (L|I) ∝ pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

pM (li|lR)gi(I, li).

For any vi ∈ R the quality of an optimal location for the ith part can be
expressed as a function of the reference locations,

α∗
i (lR) = max

li
pM (li|lR)gi(I, li). (10)

Using the α∗
i we can express the posterior probability of an optimal configuration

for the object with particular reference locations lR as,

β∗(lR) = pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

α∗
i (lR). (11)

These functions can be used to compute an optimal configuration for the ob-
ject in time polynomial in the number of parts n and the number of locations
for each part h (but exponential in k). Each α∗

i can be computed by brute
force in O(hk+1) time, while β∗ can be computed in O(nhk) time. An optimal
configuration for the reference parts l∗R is one maximizing β∗. Finally, for each
non-reference part we select l∗i maximizing pM (li|l

∗
R)gi(I, li). This can be done

in O(h) time. The overall running time of this procedure is O(nhk+1), which is
reasonable for very small k.

As in the case of detection we can speed up the localization procedure for
Gaussian k-fans. For localization the role of convolutions is played by generalized
distance transforms [9]. In this case the running time is reduced to O(nhk).

4 Inference with Gaussian k-fans

We have shown that in theory it is possible to perform exact inference (detection
and localization) with Gaussian k-fan models efficiently without relying on fea-
ture detection. It turns out that the inference algorithms are also intuitive and



12 Crandall et al.

straightforward to implement. In this section we describe how the localization
algorithm works using generalized distance transforms, with a running example
to illustrate each step of the process.

Figure 2(a) shows a diagram of a 1-fan model with six parts for detecting mo-
torbikes. A simplified representation of the appearance model template of each
part is shown, giving the probability of an edge at each location (disregarding
orientation). Bright spots in the templates correspond to locations with higher
edge probabilities. In this model the reference part is the back wheel and each
non-reference part is positioned according to its mean location µi|R with respect
to the reference. The figure also shows the conditional covariance Σi|R of each
non-reference part location, represented by an ellipse plotted at two standard
deviations away from the mean. We will describe how the localization proce-
dure works using this motorbike model on the sample input image shown in
Figure 2(b). There are three steps to the procedure which are outlined below.

50 100 150 200 250 300
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140

160

180
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220

(a) (b)

Fig. 2. A six part 1-fan model for motorbikes, with the back wheel as the reference
part and a sample input image.

4.1 Step 1: Apply part appearance operators

The first step in performing localization is to evaluate gi(I, li) as defined in
equation (4) for each part at each possible location. This produces a quality
map for each part, indicating how well the part appearance model matches the
local image information at each location. In practice we compute

Ci(li) = − log gi(I, li)

and think of Ci(li) as the cost of placing part i at location li. While these costs
have a particular form defined by the statistical model one can think of this step
as essentially doing template matching with an edge template for each part.
We can use the fact that edge images are sparse to compute the quality maps
quickly.

Figure 3(a) shows the quality maps that were generated by the motorbike
model on the sample input image, with good locations (low costs) represented
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(a)

(b)

(c) (d)

Fig. 3. Illustration of the localization procedure: (a) quality maps indicating the cost of
placing each part at each location, with brighter intensity indicating better locations,
(b) result of the distance transform applied to the quality maps of the non-reference
parts, (c) final quality map showing the cost of placing the reference part at each
location, and (d) final result, showing the localized part locations.
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by brighter intensities. Note that the individual quality maps are quite noisy, so
that simply choosing the best location for each part without taking into account
their relative positions (as in the naive Bayes method) would generate poor
localization results. For example, the front and back wheel appearance models
are similar and there are peaks at the location of the front wheel in the back
wheel quality map, and vice-versa.

4.2 Step 2: Apply distance transforms

The next step takes into account the spatial dependencies in the model as en-
coded by the conditional covariances of each non-reference part with respect to
the references. This is done by computing the generalized distance transform of
the quality map for each non-reference part to allow for variations in its posi-
tion relative to the references. The output is a new quality map Di(li) for each
non-reference part. The results of this step on the running example are shown
in Figure 3(b). The transformation “spreads” the quality maps produced by the
appearance models. Intuitively the resulting cost Di(li) is low near locations
where the original cost is low. The size and shape of this spreading operation is
controlled by the conditional covariances Σi|R for each part.

The new costs are defined by,

Di(x) = min
y

Ci(y) +
(x − y)Σ−1

i|R(x − y)

2
.

The algorithm in [9] can be used to compute these distance transforms in time
linear in the number of possible locations for each part.

4.3 Step 3: Combine evidence

The last step in the localization procedure is to combine the distance transformed
quality maps for the non-reference parts with the quality maps of the reference
parts. The result is a cost for every configuration of the reference parts that takes
into account the placement of the whole model. More specifically the cost for each
placement of the reference parts encorporates the cost of the best placements
of all the other parts. This is preciselly the negative logarithms of β∗(lR) in
equation (11), up to an additive constant.

The procedure is particularly simple for the case of a translation invariant
1-fan model. In this case the computation of − log(β∗(lR)) up to an additive
constant can be done as follows. We shift the distance transformed quality maps
Di(li) by the ideal position of part i relative to the reference part and sum
these shifted quality maps together with the quality map for the reference part
Cr(lr). The resulting map for the sample input image is shown in Figure 3(c).
An optimal location for the reference part (the back wheel) l∗r is determined by
picking a lowest cost location in this map. After that the locations of the other
parts can be found by selecting l∗i for each non-reference part so as to maximize
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pM (li|l
∗
r)gi(I, li). The final localization results in the sample image are shown in

Figure 3(f).
Performing localization using a k-fan model with k > 1 can be done in a

similar way. In general equation (11) can be rewritten as

− log(β∗(lR)) = − log(pM (lR)) +
∑

vi∈R

Ci(li) +
∑

vi∈R

Di(µi|R(lR)) + Z.

For a 1-fan − log(β∗(lR)) is a two-dimensional quality map but for general k it
is a 2k dimensional map. To compute − log(β∗(lR)) we iterate over all possible
reference locations and evaluate the sum above.

5 Experiments

This section presents results from experiments we have conducted to character-
ize the detection and localization performance of k-fans as k is varied. Since the
running time varies exponentially with k, it is clear that in practice it is best
to choose the lowest value of k that still provides adequate detection and local-
ization performance. We also compare our results to those of Fergus et al [11]
who used full multivariate Gaussians (i.e. n − 1-fans, where n is the number of
parts) as the spatial priors. However, since inference with this spatial model is
intractable, they performed approximate inference using feature detection and
various search heuristics. One of the goals of our experiments was to compare
the performance of the exact (discrete) inference method for k-fans with small
k to their approximate inference method for full Gaussian prior models.

To facilitate comparison of results with previous work we used some of the
datasets from [11]: airplanes (800 images), faces (435 images), motorbikes (800
images), and background scenes (800 images). To further facilitate evaluation,
we considered only the case of Gaussian k-fans (that is, we did not use the
reference parts to define a geometric basis as described in Section 3.1). We tried
to reproduce the experimental protocol of [11] as closely as possible, including
using the same partitioning of the data into training and test images. We also
pre-scaled all images so that object width was roughly uniform, using the same
ground truth bounding boxes used in their experiments. To prevent biases related
to image size, we padded out all images to a large, uniform size.

5.1 Learning the Models

As in [11], six parts were used to model each object. For airplanes we used the
front and back landing gear, nose, wing tip, tail, and vertical stabilizer. For faces
we used the two eyes, nose, two corners of the mouth, and chin. For motorbikes,
the front and back wheel, headlight and tail light, and the front and back of
the seat were used. Ground truth was collected by hand-labeling the training
images. Note that [11] used an unsupervised training method but we should not
expect supervised learning to necessarily give better results than unsupervised
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learning – a supervised approach is limited by the quality of the parts chosen
and the accuracy of the hand-labeled ground truth.

The models were learned from labeled examples using the procedure de-
scribed in Section 3.3. To learn the appearance model for a given part, a fixed-
size patch surrounding the labeled part location was extracted from each training
image. Canny edge detection was used to generate edge maps. Edge orientation
was quantized into four directions (north/south, east/west, northeast/southwest,
northwest/southeast) and represented as four separate binary edge maps. Note
that opposing directions were quantized into the same bin. This prevents edge
directions from changing when an object is moved from a light background to
a dark background or vice-versa. Morphological dilation was applied on each
map independently. Finally, foreground model probabilities were estimated by
computing the frequency of each of the 16 possible combinations of edge orienta-
tions at each position in the template across all training images. The background
model probabilities were estimated from the observed density of edges in back-
ground images.

Figure 4 illustrates some of the models we learned. Note that in each case the
configuration of parts is readily recognizable as a prototype of the object. It is
particularly interesting to compare the 1-fan and 2-fan models for the airplanes.
Note that as k increases, the variability in the non-reference part locations (as
shown by the ellipses) decreases substantially. Figure 5 illustrates the appearance
model for the front wheel of the motorbike model in detail.

5.2 Detection Results

For detection we found an optimal configuration for the object in each test image,
using the procedure described in Sections 3.5 and 4, and then used that location
to approximate the likelihood ratio in equation (2). With this approach each
positive detection comes with a particular localization. We kept all parameters
exactly the same across the different object classes (template size = 50 × 50,
dilation radius = 2.5 pixels).

Figure 6 shows ROC curves generated from these experiments. For each ob-
ject class, the figure compares ROC curves for k-fans with k ranging from 0 (no
structure) to 2. We observe that for motorbikes, high accuracy is achieved using
0-fans, and adding spatial constraints gives little improvement. On the other
hand, for airplanes, 1-fans perform significantly better than 0-fans, and 2-fans
perform significantly better than 1-fans, indicating that increasing degrees of
spatial constraints give better performance. We conclude that the appropriate
amount of spatial structure in the model varies from object to object.

Table 1 summarizes the recognition accuracy at the equal ROC points (point
at which the true positive rate equals one minus the false positive rate). We
note that our equal ROC results compare favorably with those obtained using
full multivariate Gaussian structural models (with heuristics that make inference
sub-optimal but computationally tractable) in [11]. They report 90.2%, 92.5%
and 96.4% for airplanes, motorbikes and faces respectively, under the same ex-
perimental conditions.
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(a) Airplane, 1-fan (b) Airplane, 2-fan

(c) Airplane, 3-fan

(d) Motorbike, 1-fan (e) Motorbike, 2-fan

(f) Motorbike, 3-fan

Fig. 4. Illustration of some of the learned models. Images (a) through (f) show part
appearance models positioned at their mean configuration. The reference parts have
a black border around them. The ellipses illustrate the conditional covariances for a
non-reference part given the locations of the references. High intensity pixels represent
high edge probabilities. For clarity, just the probability of an edge is shown, although
the actual models capture probabilities of each individual edge orientation. Note how
the locations of parts are more constrained as k increases.
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Fig. 5. The appearance model for the front wheel of the motorbike model.
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Fig. 6. Detection results for (a) motorbiks and (b) airplanes. Note that the ROC curves
are truncated at a false positive rate of 0.7 and a true positive rate of 0.3.

Planes Bikes Faces

0-fans 90.5% 96.5% 98.2%

1-fans 91.3% 97.0% 98.2%

2-fans 93.3% 97.0% 98.2%

Table 1. Equal ROC performance for the detection experiments. A boldface number
for a k-fan indicates a statistically significant difference between the areas under the
ROC curves of the k − 1 and k-fan models (with 95% confidence).

We applied the statistical test in [8] to judge the differences in areas under
the ROC curves of the various models. These results are also shown in Table 1.
For each object class we computed the probability that the area under the ROC
curve for the k-fan model is significantly different from the area under the ROC
curve for the model with one less reference part. Differences significant at a
greater than 95% confidence level are shown in boldface.

We also conducted multi-class detection experiments to test the ability of
the models to differentiate between the three different object classes and the
background images. For each test image, the three object detectors were applied,
and the object class with the highest likelihood was chosen. That likelihood
was compared to the threshold at the equal ROC point to decide between that
object class and the background class. The results are shown in Table 2. The
performance of multi-class recognition is similar to the single class case. The use
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0-fan 1-fan 2-fan
Planes Bikes Faces BG Planes Bikes Faces BG Planes Bikes Faces BG

Planes 357 10 0 33 362 5 0 33 370 8 0 22

Bikes 4 382 0 14 4 384 0 12 4 384 0 12

Faces 3 9 205 0 3 8 206 0 1 9 207 0

Background 72 28 0 700 68 24 0 708 53 23 0 724

Table 2. Confusion matrices for the multi-class detection experiments. Rows corre-
spond to actual classes, while columns correspond to predicted classes.

of relatively accurate probabilistic models allows for direct comparison between
the scores of each object class without tuning weighting parameters.

As in [11], we also tested the detectors in a setting where the object scale
was not known (i.e. images were not pre-scaled to a uniform object width). The
object widths varied between about 200 and 700 pixels for the motorbike and
plane categories, while the face dataset had very little scale variation. We applied
the detectors at four different scales to each image and chose the scale having
the highest-likelihood detection. Recognition performance in this experiment was
comparable to the case of pre-scaled images.

The average running time per image of the detection algorithm on these
datasets on a 3GHz Pentium 4 is approximately 0.1 seconds for a 1-fan model,
3.3 seconds for a 2-fan model, and 37.6 seconds for a 3-fan model.

5.3 Localization Accuracy

Figure 7 illustrates some localization results produced by our system on the
motorbike dataset, showing precise localization of the parts despite substantial
variability in their appearances and configurations. Recent work has generally
focused on evaluating detection performance but we believe it is also important
to evaluate the accuracy of localization. For example, some applications may
benefit from knowing the exact locations of each part individually. Also, exam-
ining localization performance helps to reveal the evidence that the detection
algorithm is using to perform its classification decisions, and to ensure that it is
not exploiting “unfair” biases in the image data, such as image size or patterns in
the image backgrounds. For each object class, for the subset of images that were
correctly classified during the detection task at the equal ROC point, the part
locations produced by our system were compared to hand-labeled ground truth.
We computed the trimmed means (at 75% and 90%) of the Euclidean distances
(in pixels) between estimated locations and the ground truth. For the motorbike
models the localization errors are reasonably small (less than 10 pixels) for most
parts when k > 0, while the errors for faces are less than 2 pixels. Table 3 summa-
rizes the results for the motorbikes models. In this case the localization accuracy
is high for most parts when using a model without spatial structure. The accu-
racy increases as we add spatial constraints even when recognition performance
does not increase.
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Fig. 7. Some localization results. In each of these cases all parts were localized correctly.

Model rear wheel front wheel headlight tail light back of seat front of seat
75% 90% 75% 90% 75% 90% 75% 90% 75% 90% 75% 90%

No structure 15.6 34.4 1.9 2.3 10.9 18.8 12.0 19.3 21.6 33.9 6.3 12.2

1-fan 2.1 12.5 1.9 2.3 10.9 18.6 11.4 18.7 20.6 32.9 6.3 12.0

2-fan 1.9 2.4 1.9 2.3 10.1 16.6 11.0 18.3 17.2 28.5 5.4 9.3

Table 3. Part localization errors for the correctly detected motorbike images, showing
75% and 90% trimmed means of Euclidean distance between estimated part locations
and ground truth.
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