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Abstract. Appropriate datasets are required at all stages of object
recognition research, including learning visual models of object and scene
categories, detecting and localizing instances of these models in im-
ages, and evaluating the performance of recognition algorithms. Current
datasets are lacking in several respects, and this paper discusses some
of the lessons learned from existing efforts, as well as innovative ways to
obtain very large and diverse annotated datasets. It also suggests a few
criteria for gathering future datasets.

1 Introduction

Image databases are an essential element of object recognition research. They
are required for learning visual object models and for testing the performance of
classification, detection, and localization algorithms. In fact, publicly available
image collections such as UIUC [1], Caltech 4 [10], and Caltech 101 [9] have
played a key role in the recent resurgence of category-level recognition research,
driving the field by providing a common ground for algorithm development and
evaluation. Current datasets, however, offer a somewhat limited range of image
variability: Although the appearance (and to some extent, the shape) of objects
does indeed vary within each class (e.g., among the airplanes, cars, faces, and
motorbikes of Caltech 4), the viewpoints and orientations of different instances
in each category tend to be similar (e.g., side views of cars taken by a horizontal
camera in UIUC); their sizes and image positions are normalized (e.g., the objects
of interest take up most of the image and are approximately centered in Caltech
101); there is only one instance of an object per image; finally, there is little or
no occlusion and background clutter. This is illustrated by Figures 1 and 3 for
the Caltech 101 database, but remains true of most datasets available today.

The problems with such restrictions are two fold: (i) some algorithms may
exploit them (for example near-global descriptors with no scale or rotation in-
variance may perform well on such images), yet will fail when the restrictions
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Fig. 1. Sample images from the Caltech 101 dataset [9], courtesy of Fei-Fei Li
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Fig. 2. Image examples with ground truth object annotation for different cat-
egories of the PASCAL 2005 challenge. The dataset may be obtained from
http://www.pascal-network.org/challenges/VOC.

do not apply; and, related to this, (ii) the images are not sufficiently challeng-
ing for the benefits of more sophisticated algorithms (e.g., scale invariance) to
make a difference. This means that progress in algorithm capability cannot be
assessed. For example, multiple algorithms currently achieve close to 100% ob-
ject vs. background classification accuracy on Caltech 4. There is a clear need
for new datasets with more realistic and less restrictive image conditions: mul-
tiple object class instances within a single image, with partial occlusion (e.g.,
by other objects) and truncation (e.g., by the image edge), with size and ori-
entation variations, etc. A first step in that direction has been taken with the
datasets gathered for the PASCAL challenge, as illustrated by Figure 2. The rest
of this chapter discusses some of the lessons learned from existing datasets such
as Caltech 101 and those available under the PASCAL challenge. It also presents
innovative ways to gather very large, annotated datasets from the World Wide
Web, and concludes with some recommendations for future datasets, including
a brief discussion of evaluation procedures.

2 Lessons Learned from Existing Datasets

2.1 The Caltech 101 Dataset

Most of the currently available datasets only contain a small number of classes,
such as faces, pedestrians, and cars. A notable exception is the Caltech 101 data-
base [9], with 101 object classes (Figure 1), which has become a de facto standard
for evaluating algorithms for multi-class category-level recognition, and can be
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Fig. 3. The Caltech 101 average image

credited for a recent increase in efforts in this fundamental area of computer
vision. Even though Caltech 101 is one of the most diverse datasets available
today in terms of the amount of inter-class variability that it encompasses, it
is unfortunately lacking in several important sources of intra-class variability.
Namely, most Caltech 101 objects are of uniform size and orientation within
their class, and lack rich backgrounds: This is demonstrated by the composite
image shown in Figure 3, which was constructed by A. Torralba by averaging
the RGB values of all the images for 100 of the object classes in the Caltech 101
dataset. The averaged images are computed by first resizing all the images to be
150 × 128 pixels and the intensity values of the final average are scaled to cover
the range [0, 255]. They reveal regularities in the intensity patterns among all
the images for each object category. If the images had a wide range of variations
in object pose and object location, the resulting averages (before scaling the in-
tensity values) would result in a (roughly) homogeneous field. This is clearly not
the case, and many of the object classes are still easily recognizable by a human.
Some of the characteristics of the dataset that are revealed by this experiment
are that most images have little or no clutter, the objects tend to be centered in
each image, and most objects are presented in a stereotypical pose.
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Fig. 4. A comparison of several algorithms on the Caltech 101 dataset [33], courtesy
of H. Zhang

As noted earlier, despite its limitations, the Caltech 101 dataset has essentially
become a de facto standard for multi-class recognition algorithms. Figure 4 shows
the results of a comparative evaluation of several recent recognition algorithms on
the Caltech 101 dataset [33], including those proposed by Fei-Fei et al. [9], Berg
et al. [4], Grauman and Darrell [14], Holub et al. [17], Serre et al. [26] in 2005, and
Berg [5], Lazebnik et al. [18], Mutch and Lowe [21], Ommer and Buhmann [22],
Wang et al. [31], H. Zhang et al. [33] in 2006. The comparison also includes a
baseline method comparing size-normalized greyscale images using correlation
and nearest-neighbor classification [4].

We will not try to assess the merits of the different algorithms here. Instead,
it is worth discussing what this comparison reveals about Caltech 101 as an
evaluation tool. There are three clear trends: First, performance improves, as
expected, with the number of training samples. Second, algorithms using SVMs
as classifiers tend to do well, and include the two top performers [18,33]. Third,
the classification rate steadily improves with time, from 17% in 2004 [9]1 to
about 60% in 2006 [18,31,33]. None of these conclusions is very surprising, nor
very telling about object recognition technology: The three methods achieving
the best (and very close) performances for 30 training sample use totally different

1 Very close to the 16% achieved by the baseline method — a reminder of the constant
need for baseline comparisons.
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models for image categories: a bag of features [33], a spatial pyramid [18], and
a Bayesian model encoding both the appearance of individual features and the
co-occurrence of feature pairs [31].

The steady improvement of classification rates over time apparent in this
study is probably a sign that computer vision researchers are more and more
adept at using and perhaps improving upon methods borrowed from statistical
machine learning. It is not quite clear, however, that this performance increase
by itself is a sign of progress toward better models for object categories and
the recognition process. The (relatively) long-time public availability of image
databases makes it possible for researchers to fine-tune the parameters of their
recognition algorithms to improve their performance. Caltech 101 may, like any
other dataset, be reaching the end of its useful shelf life.

2.2 The PASCAL Visual Object Classes Challenge

The first PASCAL2 VOC (visual object classes) challenge ran from February to
March 2005. The goal of the challenge was to recognize objects from a number
of visual object classes in realistic scenes (i.e., not pre-segmented objects). Four
object classes were selected: motorbikes, bicycles, cars, and people.

Both classification (where for each of the classes, the presence or absence of
an object is predicted in the test image) and localization (where the algorithm
must predict the bounding box and class of each object in the test image) were
evaluated. A particular feature of the challenge was that two test sets were
provided. For the first, images were assembled from a number of standard sources
(e.g., the Caltech sets) and split randomly into training and test subsets with
the same distribution of variability. Many algorithms already achieve very good
performance on images of this difficulty; they have almost reached their peak
performance. The second test set was designed to address this problem. It was
assembled from new sources (Google image search, local photographs, etc.) with
the intention of providing a harder test set with greater variability of scale, pose,
background clutter and degree of occlusion, and assess the generalization ability
of current algorithms. Needless to say, performance was inferior on the second
test set. Twelve teams entered the challenge. Participants were provided with a
development kit consisting of training and validation images, baseline algorithms,
and evaluation software.3 Figure 5 shows ROC curves for classification on the
first and second test sets. The difference in performance is evident.

For the classification task, most participants used “global” methods in which
a descriptor of the overall image content is extracted (such as a bag of words
representation and a SVM classifier), which leaves the task of deciding which
elements of the descriptor are relevant to the object of interest to the classifier.

2 PASCAL stands for pattern analysis, statistical modelling and computational learn-
ing. It is the name of an EU Network of Excellence funded under the IST Program
of the European Union.

3 The development kit and test images are available from http://www.pascal-
network.org/challenges/VOC/
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Fig. 5. PASCAL 2005 results. Top: ROC curves for classifying motorbikes images for
test set 1 (where images taken from the same distribution of images as the training
data). The best result in terms of EER (equal error rate) from each participant is
shown, with curves ranked by decreasing EER. The axes cover a range equal to two
times the maximum EER of the submitted results. Bottom: ROC curves for classifying
motorbikes images for test set 2 (where images had more variability than the training
data). The performance is inferior to that for test set 1.

All of these participants used only the class label attached to an image for
training, ignoring additional annotation such as the bounding boxes of objects
in the image. One possible advantage of “global” methods is that the image
description captures information not only about the object of interest, e.g.,
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a car, but also its context, e.g., the road. This contextual information might
prove useful in recognizing some object classes; however, the risk is that the
system may fail to distinguish the object from the context and thus show poor
generalization to other environments, for example recognizing a car in a street
vs. in a field. We return to this issue in the next section. In contrast, one partic-
ipant (Technical University of Darmstadt) used a “classification by detection”
approach which explicitly ignores all but the object, using bounding boxes or
segmentation masks for training, and looking at local evidence for testing; this
ensures that the method is modelling the object class of interest rather than sta-
tistical regularities in the image background, but may also fail to take advantage
of contextual information.

Further details on the challenge, the tested algorithms, and the results of
the evaluation can be found in [8].4 The challenge is running again in 2006
with more classes (10) and a greater number and variability (in pose, partial
occlusion) of images for each class. In the 2006 challenge, the classes are: bicycle,
bus, car, motorbike cat, cow, dog, horse, sheep and people.5 Figure 6 shows an
average image for the 10 classes constructed in a similar manner to that shown
for the Caltech 101 database in Figure 3. The color patterns are much more
homogeneous in this case and the categories barely visible – providing some
evidence of a greater image variability within each category of this set.

Images are obtained from three main sources: flickr.com, Microsoft Research
Cambridge, and personal photographs. In the case of the flickr images the exam-
ples for each class are obtained by text search on the annotations, followed by
manual inspection and annotation. In total there are 5,304 images, containing
9,507 annotated objects – each image may contain multiple objects from multiple
classes, but all instances of the 10 classes are annotated. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. However, the level of difficulty is closer to that of test set 2 in the 2005
challenge.

2.3 The Importance of Context in Object Recognition Databases

In the PASCAL VOC challenge, several of the competing teams did quite well on
full-image classification tasks. On the other hand, localization results were poor.
As noted earlier, this suggests that background and contextual information may
have played an important role in detection results. In other words, is it the object,
or its background, which is recognized? J. Zhang et al. [34] have conducted a
detailed study of this issue on the PASCAL dataset. We present in the rest of
this section a summary of their findings.

A bag-of-features algorithm is used in the study. Like most modern approaches
to category-level object detection, this algorithm does not attempt segmentation,
4 Available at http://www.pascal-network.org/challenges/VOC/voc2005/chapter.
pdf

5 See http://www.pascal-network.org/challenges/VOC/voc2006/ for additional
details.
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Fig. 6. The PASCAL 2006 average image. Each cell is an average over all images
containing a particular object category (of 10). Figure courtesy of T. Malisiewicz and
A. Efros. Other averages are available at http://www.cs.cmu.edu/~tmalisie/pascal/
means trainval.html

and uses both foreground and background features as input in both training
and testing tasks. Briefly, an image is characterized by its scale-invariant Harris
and Laplacian regions, along with their SIFT descriptors. Clustering is used
to construct the image’s signature formed by the centers of its clusters and
their relative sizes. Support vector machines (SVMs) using the Earth Mover’s
Distance [24] as a kernel are then trained on each object category, and used for
image classification [34].

PASCAL images are annotated with ground truth object regions, as shown
in Figure 2. Foreground features (FF) can thus be identified as those located
within the object region, while background features (BF) are those located out-
side. Many object categories have fairly characteristic backgrounds. For example,
most of the car images contain a street, a parking lot, or a building. To deter-
mine whether this information provides additional cues for classification, let us
examine the change in classification performance when the original background
features from an image are replaced by two specially constructed alternative sets:
random and constant natural scene backgrounds (referred to as BF-RAND and
BF-CONST, respectively). BF-RAND samples are obtained by randomly shuf-
fling background features among all of the images in the PASCAL dataset. For
example, the background of a face image may be replaced by the background of
a car image. Note that the total number of features and the relative amount of
clutter in an image may be altered as a result of this procedure. BF-CONST ex-
amples consist of background features extracted from images captured by a fixed
camera observing a natural scene over an extended period of time, so they include
continuous lighting changes and the movement of trees and clouds (Figure 7).

Figure 8 (a)–(b) shows ROC curves obtained by training and testing on only
the background features (BF) for test sets 1 and 2. In the case of test 1, it is clear
that background features alone are often sufficient to determine the category of
the image. This is not quite the case for test set 2. For example, BF features
perform close to chance level for bicycles. Thus, one of the reasons why test set
2 is considered more difficult than test set 1, is the fact that its background
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Fig. 7. Image examples of the constant natural scene background. They are captured
with lighting changes and the movement of clouds and trees.

features are much less correlated with the foreground. The performance of the
BF-RAND and BF-CONST feature sets (not shown on the figure) is at chance
level as one would expect, since they do not contain any information about the
foreground object class by construction.

Figure 8 (c)–(e) evaluates combinations of foreground features with different
types of background features. Due to space limitations only results for the people
test set 1 are presented. Results for the other test sets are similar. AF denotes
all the features extracted from the original image, AF-RAND denotes the com-
bination of FF and BF-RAND and AF-CONST denotes the combination of FF
and BF-CONST. Figure 8 (c) shows ROC curves for a situation where train-
ing and testing are performed on the same feature combination. FF gives the
highest results, indicating that object features play the key role for recognition,
and recognition with segmented images achieves better performance than with-
out segmentation. Mixing background features with foreground features does not
give higher recognition rates than FF alone. For images with roughly constant
backgrounds (AF-CONST), the performance is almost the same as for images
with foreground features only. It is intuitively obvious that classifying images
with fixed backgrounds is as easy as classifying images with no background clut-
ter at all. Finally, the ROC curves for AF-RAND are the lowest, which shows
that objects with uncorrelated backgrounds are harder to recognize.

Figure 8 (d) shows ROC curves for a setup where the training set has different
types of backgrounds and the test set has its original background (AF). We can
observe that training on AF or AF-RAND while testing on AF gives the highest
results. Thus, even under randomly changed training backgrounds, the SVM
can find decision boundaries that generalize well to the original training set.
Training on FF or AF-CONST and testing on AF gives lower results, most
likely because the lack of clutter in FF set and the monotonous backgrounds in
AF-CONST cause the SVM to overfit the training set. By contrast, varying the
object background during training, even by random shuffling, tends to increase
the robustness of the learned classifier.

Finally, Figure 8 (e) shows ROC curves for a situation where the training set
has the original backgrounds and the test set has different types of backgrounds.
When the test set is “easier” than the training one, performance improves, and
when it is “harder,” the performance drastically drops. This is consistent with
the results of Figure 8 (d), where training on the “harder” sets AF or AF-RAND
gave much better results than training on the “easier” sets FF and AF-CONST.
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Fig. 8. ROC curves for the bag-of-features method of Zhang et al. [34] trained and
tested on the PASCAL 2005 challenge dataset for different combinations of foreground
and background features. (a)–(b): Training and testing on background features only.
The left part of the figure corresponds to test set 1, and the right one to test set 2. (c)–
(e): Training and testing using four combinations of foreground features with different
types of background.
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In conclusion, the evaluation of the role of background features in bag-of-
keypoints classification highlights two important facts: First, while the back-
grounds in most available datasets have non-negligible correlations with the
foreground objects, using both foreground and background features for learn-
ing and recognition does not result in better performance, at least for the basic
bag-of-features method evaluated by J. Zhang et al. This illustrates the limi-
tations as evaluation platforms of datasets with simple backgrounds, such as
CogVis [35], COIL-100 [36], and to some extent, Caltech 101 [9]: Based on the
evaluation presented in this section, high performance on these datasets do not
necessarily mean high performance on real images with varying backgrounds.
Second, when the training set has different image statistics than the test set, it
is usually beneficial to train on the most difficult dataset available, since the pres-
ence of varied backgrounds during training improves the generalization ability
of the classifier. Note that these conclusions have been reached for the particular
classifier used in the experiments, but similar trends are expected to hold for
other bag-of-features methods that do not explicitly separate foreground from
background features but use both for recognition at the same time. However, it
is probable that such methods do not make the most effective use of the context
provided by background features. The presence of background correlations may
well improve the performance of methods that use contextual information to
prime subsequent object detection and recognition stages [16,28].

3 Innovative Methods for Acquiring New Datasets

3.1 Web-Based Annotation

Web-based annotation tools provide a new way of building large annotated
databases by relying on the collaborative effort of a large population of users
[25,27,29,37]. Two examples are the ESP and Peekaboom internet games. ESP
is an online game in which players enter labels describing the content of im-
ages [29]. ESP has been used with over 10 million labels for images collected
from the Web. In a similar vein, the Internet game Peekaboom is designed to
use “bored human intelligence” to label large image datasets with object, mater-
ial, and geometry labels [30]. Peekaboom has been released to a general audience
and it has already collected millions of data points. Its first task will be to label
entire databases, such as Corel, which will be an enormous help to the object
recognition community.

LabelMe is another online annotation tool that allows sharing of images and
annotations [25]. The tool provides many functionalities such as drawing poly-
gons, querying images, and browsing the database. Both the image database
and all of the annotations are freely available. The tool runs on almost any Web
browser, and includes a standard Javascript drawing interface that is easy to
use (see Figure 9 for a screenshot). The resulting labels are stored in XML file
format, which makes the annotations portable and easy to extend. A Matlab
toolbox is available that provides functionalities for manipulating the database
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Fig. 9. Screenshot from the LabelMe labeling tool in use [25]. The user is presented
with an image, possibly with one or more existing annotations in the image. The user
has the option of annotating a new object, by clicking around the boundary of the
object, or editing an existing annotation. The user can annotate an arbitrary number
of objects in the image. Once finished, the user then clicks the “Show New Image”
button to see a new image.

(database queries, communication with the online tool, image transformations,
etc.). The database is also searchable online.

Currently the database contains more than 36,000 objects labeled within 6,000
images covering a large range of environments and several hundred object cate-
gories (Figure 10, left). The images are high resolution and cover a wide field of
view, providing rich contextual information. Pose information is also available
for a large number of objects. Since the annotation tool has been made available
online there has been a constant increase in the size of the database, with about
5,000 new labels added every month, on average.

One important concern when data is collected using Web-based tools is quality
control. Currently quality control is provided by the users themselves. Polygons
can be deleted and object names can be corrected using the annotation tool
online. Despite the lack of a more direct mechanism of control, the annotations
are of quite good quality (Figure 10). Another issue is the complexity of the
polygons provided by the users – do users provide simple or complex polygon
boundaries? Figure 10 (right) illustrates the average number of points used to
define each polygon for four object classes that were introduced using the Web
annotation tool. These object classes are among the most complicated. These
polygons provide a good idea of the outline of the object, which is sufficient for
most object detection and segmentation algorithms.
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Fig. 10. Left: Examples of annotated images in the LabelMe database. The images
cover a large range of scenes and object categories. Right: These polygons correspond
to the average quality of the annotations for four object categories.

Another issue is what to label. For example, should you label a whole pedes-
trian, just the head, or just the face? What about a crowd of people – should you
label all of them? Currently such decisions are left to each user, with the hope
that the annotations will reflect what various people think are “natural” ways
to segment an image. A third issue is the label itself. For example, should you
call this object a “person”, “pedestrian”, or “man/woman”? An obvious solution
is to provide a drop-down menu of standard object category names. Currently,
however, people use their own descriptions, since these may capture some nu-
ances that will be useful in the future. The Matlab toolbox allows querying the
database using a list of possible synonyms.

3.2 Data Collection as Recognition

There is a plentiful supply of images available at the typing of a single word
using Internet image search engines such as Google, and we discuss now two
methods for obtaining object class images from this source. The first method
uses Google image search as its source, the second uses web pages directly.

Starting from Image Search. Internet image search engines currently do not
search directly on image visual content but instead use the image name and
surrounding text. Consequently, this is not a source of pure images without fil-
tering: for example, a Google image search for “monkey” yields only 30 actual
monkey pictures in the first 100 results. Many of the returned images are visually
unrelated to the intended category, perhaps arising from polysemes (e.g. “kite”
can be kite-bird or kite-flying-toy). Even the small proportion of retrieved im-
ages that do correspond to the category are substantially more demanding than
images in typical training sets (such as Caltech) – the number of objects in
each image is unknown and variable, and the pose (visual aspect) and scale are
uncontrolled.
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Fergus et al [12] have proposed an unsupervised clustering method for extract-
ing the “good” images from raw Google output. Each image is first described by a
bag of keypoints/visual words. The clustering into visually coherent components
is then achieved by applying probabilistic Latent Semantic Analysis (pLSA) [15]
– a technique from the field of textual analysis originally developed for topic
discovery in text corpus.

There then remains the problem of determining which of the clusters cor-
responds to the true object images. This problem could be solved by manual
intervention, but Fergus et al [12] instead build a validation set automatically
by noting that the first few images returned by Google tend to contain more
good images than those returned later on. Using Google’s automatic transla-
tion, the user’s keyword is translated into a number of languages; the first few
images are automatically downloaded, and combined to give a validation set of
a reasonable size without degradation in quality.

In this manner, starting with Google image search, followed by clustering of vi-
sual words and automatic selection of the correct cluster using a generated valida-
tion set, image datasets can be generated using just the object’s name. The main
limitation of this approach is the effectiveness of the original image search engine.
This limitation can be overcome by a semi-automatic method, as presented next.

Starting from Text Search. There are currently more than 8,168,684,336 Web
pages on the Internet.6 A search for the term “monkey” yields 36,800,000 results
using Google text search. There must be a large number of images portraying
“monkeys” within these pages, but retrieving them using Google image search
is not successful, as described above. It has been known for a while that textual
and visual information could effectively be combined in tasks such as clustering
art [2], labeling images [3,13,19], or identifying faces in news photographs [6].
In these cases, an explicit relationship between words and pictures is given by
image annotations, or photograph and video captions. On Web pages, however,
the link between words and pictures is less clear. Berg and Forsyth consider
in [7] the problem of combining the text and image information stored on Web
pages to re-rank Google search results for a set of queries (see [11,32] for related
work). They focus on animal categories because these provide rich and difficult
data, often taking on a wide variety of appearances, depictions, and aspects,
thus providing a good yardstick for demonstrating the benefits of exploiting the
visual and textual information contained in Web pages.

In the method described in [7], a set of images is first obtained by text search.
For example, 9,320 Web pages are collected using Google text search on 13 queries
related to monkeys. From these pages, 12,866 distinct images of sufficiently large
size (at least 120× 120 pixels) are selected for further consideration. Of these im-
ages 2,569 are actual monkey images. The algorithm proceeds in two stages: first
a set of visual exemplars (exemplars for short) is selected using only text-based
information. Then, in the second stage, visual and textual cues are combined to
rank the downloaded images, with monkey images being highly ranked.

6 Google’s last released number of indexed Web pages.
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In the first stage Latent Dirichlet Allocation (LDA) is applied to the words
contained in the Web pages to discover a set of latent topics for each category.
These latent topics provide a distribution over words and are used to select highly
likely words for each topic. Images are ranked according to their nearby word
likelihoods and a set of 30 exemplars selected for each topic. As mentioned earlier,
words and images can be ambiguous (e.g. “alligator” could refer to “alligator
boots” or “alligator clips” as well as the animal). Currently there is no known
method for breaking this polysemy-like phenomenon automatically. Therefore,
at this point the user is asked to label each topic as relevant or background,
depending on whether the associated images and words illustrate the category
well. Using this labeling all selected topics are merged into a relevant topic and
all unselected topics are merged into a background topic (and their exemplars
and likely words are similarly pooled).

In the second stage, each image in the downloaded dataset is ranked according
to a voting method using the knowledge base collected in the training stage.
Voting uses image information in the form of shape, texture and color features
as well as word information based on words on the associated pages that are
located near the image.

Because exemplar-based voting incorporates multiple templates per category,
it allows image retrieval across different poses, aspects, and even species. The
top results returned by the composite classifier are in general quite good [7]: 81%
of the top 500 images, and 69% of the top 1000 are correct (Figure 11). Most
importantly, the images classified using both textual and visual features make
up a very large, high-quality dataset for further object recognition research.

4 Recommendations

Research on object detection and recognition in cluttered scenes requires large
image and video collections with ground truth labels. The labels should pro-
vide information about the object classes present in each image, as well as their
shape and locations, and possibly other attributes such as pose. Such data is use-
ful for testing, as well as for supervised learning. Even algorithms that require
little supervision need large databases with ground truth to validate the re-
sults.7 New algorithms that exploit context for object recognition [16,28] require
databases with many labeled object classes embedded in complex scenes. Such
databases should contain a wide variety of environments with annotated objects
that co-occur in the same images. Future databases should exercise the ability
of recognition systems to handle intra-class variability, varying size and pose,
partial occlusion, and contextual cues. They should also display different levels
of difficulty, including restricted viewpoints (e.g., cars will only be seen more or
less from the side), reasonable levels of occlusion and viewpoint variation (e.g.,
cars from all viewing angles), a higher degree of intra-class variability (chairs,
7 This is not to say that the annotations of future databases will be perfect: We

expect that segmentations may be inaccurate, and labellings questionable, but scale
will probably rescue us.
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Fig. 11. Example of a “monkey” dataset generated semi-automatically, starting from
a keyword search [7]. False positives are shown with a heavy border (dark red). The
first 10 rows are sampled every 4th image from the top 560 results, while the last two
rows are sampled every 250th image from the last 5,000-12,866 results. The dataset
is quite accurate, with a precision of 81% for the top 500 images, and a precision of
69% for the top 1000 images. Deciding what images are relevant to a query doesn’t
have a single interpretation. Here, primates like apes, lemurs, chimps and gibbons have
been included, but monkey figurines, people, monkey masks and monkey drawings
have been excluded. The results include a huge range of aspects and poses as well as
a depictions in different settings (e.g. trees, cages and indoor settings). The animal
image classifiers inherently take advantage of the fact that objects are often correlated
with their backgrounds (“monkeys” are often in trees and other greenery).
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churches, clocks, etc.), and classes which share “parts” and might thus be con-
fused (e.g., bikes/motorbikes, cars/lorries, etc.). Constructing large, annotated
datasets featuring this type of variability will be a difficult and time-consuming
task. It should also be one of the priorities of the object recognition commu-
nity. We believe that innovative approaches to data collection such as those dis-
cussed in the previous section will play a major role in fulfilling this objective.
A serious notion of object and/or scene category would help the data collec-
tion/organization process, since good/bad choices make problems easier/harder,
and we do not know how to model this effect.

A very important issue that has not not been addressed in this chapter is
the need of rigorous evaluation protocols for recognition algorithms on standard
datasets. Standard performance measures for information retrieval, such as in-
terpolated average precision, have been defined by the Text REtrieval Conference
(TREC), and the object recognition community would probably be well advised
to follow that example.8 Further, the (rather typical) restriction of experiments
to selected parts (e.g., “easy” or “hard” pictures) of the training and/or test set
may bias the evaluation of a given method. See Müller, Marchand-Maillet, and
Pun [20] for a discussion of this problem in the context of image retrieval.9 In
multi-class recognition tasks, gathering statistics over all test images instead of
averaging them over categories may also bias the results when there are many
more pictures for some “easy” classes than for some “hard” ones (this is the
case for the Caltech 101 dataset for example). As discussed by Philips and New-
ton [23] in the face recognition domain, it is actually possible for some datasets
to predict the performance of new algorithms from that of simple baseline meth-
ods (e.g., PCA plus nearest-neighbor classification, a.k.a. “eigenfaces”). This
indicates that face recognition experiments often test the difficulty of a dataset
instead of the effectiveness of new techniques. Conducting such a meta-analysis
of category-level object recognition algorithms could prove to be fruitful. In
this context, the “hardness” of different datasets is not well understood, and a
good pool of baseline methods would help. Designing and implementing tools
for testing specific aspects of recognition algorithms (e.g., robustness to view-
point or illumination changes, or to within-class shape or texture variations),
and correlating evaluation results across different standard datasets would also
be extremely useful.
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