
10 Object Recognition Using Locality-Sensitive

Hashing of Shape Contexts

Andrea Frome and Jitendra Malik

At the core of many computer vision algorithms lies the task of
finding a correspondence between image features local to a part of
an image. Once these features are calculated, matching is commonly
performed using a nearest-neighbor algorithm. In this chapter, we focus
on the topic of object recognition, and examine how the complexity of
a basic feature-matching approach grows with the number of object
classes. We use this as motivation for proposing approaches to feature-
based object recognition that grow sublinearly with the number of
object classes.

10.1 Regional Descriptor Approach

Our approach to object recognition relies on the matching of feature
vectors (also referred to here as features) which characterize a region of
a two-dimensional (2D) or 3D image, where by “3D image” we mean
the point cloud resulting from a range scan. We use the term descriptor

to refer to the method or “template” for calculating the feature vector.
There are several lines of work which develop descriptors for use in ob-
ject recognition. [15] introduced jet-based features; [12] introduced the
scale- and rotation-invariant feature transform (SIFT) descriptor for
recognition and matching in intensity images; [10] describes the spin

image descriptor for recognizing objects by shape in 3D range scans;
[3] describes a histogram-based descriptor for recognizing objects in 2D
images by shape, called the shape context, which is extended to the gen-

eralized shape context in [14]; and [6] presents the 3D shape context, an
extension of the shape context to three dimensions, and experimentally
evaluates its performance against the spin image descriptor in difficult
range image recognition tasks.

The spin image and shape context descriptors share a regional ap-
proach to feature calculation; the features incorporate information
within a support region of the image centered at a chosen basis point.
The locality of these regional descriptors make them robust to clutter
and occlusion, while at the same time each feature contains more infor-



222 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

mation than purely local descriptors due to their extended support. In
some recognition approaches the features are computed at particularly
salient locations in the image determined by an interest operator, such
as in [12]. In other approaches, including the cited works that make use
of spin images and shape contexts, the basis points at which features
are computed are chosen randomly and are not required to posses any
distinguishing characteristics.

Object recognition algorithms typically work by calculating features
from a query image and comparing those features to other features
previously calculated from a set of reference images, and return a
decision about which object or image from among the reference set
best matches the query image. We consider full object recognition to be
achieved when the algorithm returns the identity, location, and position
of an object occurring in a query image. Our discussion in this chapter
focuses on a relaxed version of the full recognition problem where the
algorithm returns a short list of objects, at least one of which occurs
somewhere in the image. An algorithm solving this relaxed recognition
problem can be used to prune a large field of candidate objects for a
more expensive algorithm which solves the full recognition problem. In
a more complex system it could be used as an early stage in a cascade
of object recognition algorithms which are increasingly more expensive
and discriminating, similar in spirit to the cascade of classifiers made
popular in the vision community by [16]. A pruning step or early
cascade stage is effective when it reduces the total computation required
for full recognition and does not reduce the recognition performance of
the system. To this end, we want a short-list recognition algorithm
which (1) minimizes the number of misses, that is, the fraction of
queries where the short list does not include any objects present in
the query image, and (2) minimizes its computational cost.

Object recognition algorithms based on features have been shown
to achieve high recognition rates in the works cited above and many
others, though often in a an easy or restricted recognition setting. We
will demonstrate methods for speeding a simple matching algorithm
while maintaining high recognition accuracy in a difficult recognition
task, beginning with an approach which uses an exhaustive k-nearest-
neighbor (k-NN) search to match the query features calculated from
a query image to the reference features calculated from the set of
reference images. Using the distances calculated between query and
reference features, we generate a short list of objects which might be
present in the query image.

It should be noted that the method we examine does not enforce
relative geometric constraints between the basis points in the query and
reference images, and that most feature-based recognition algorithms
do use this additional information. For example, for reference features



10.2 Shape Context Descriptors 223

centered at basis points p1 and p2 and query features centered at basis
points q1 and q2, if p1 is found to be a match for q1, p2 a match
for q2, and we are considering rigid objects, then it should be the
case that the distance in the image between p1 and p2 should be
similar to the distance between q1 and q2. There are many methods
for using these types of constraints, [8], RANSAC, and [5] to name a
few. We choose not to use these constraints in order to demonstrate the
power of matching feature vectors alone. A geometric-based pruning or
verification method could follow the matching algorithms described in
this chapter.

The drawback of an exhaustive search of stored reference features is
that it is expensive, and for the method to be effective as a pruning
stage, it needs to be fast. Many of the descriptors listed above are high-
dimensional; in the works cited, the scale-invariant feature transform
(SIFT) descriptor has 160 dimensions, the spin image has about 200,
the 2D shape context has 60 (the generalized version has twice as
many for the same number of bins), and the 3D shape context has
almost 2000. The best algorithms for exact nearest-neighbor search
in such high-dimensional spaces requires time linear in the number of
reference features. In addition, the number of reference features is linear
in the number of example objects the system is designed to recognize.
If we aim to build systems that can recognize hundreds or thousands of
example objects, then the system must be able to run in time sublinear
in the number of objects.

The goal of this chapter is to present ways to maintain the recog-
nition accuracy of this “short-list” algorithm while reducing its com-
putational cost. Locality-sensitive hashing (LSH) plays a key role in a
final approach that is both accurate and has complexity sublinear in
the number of objects being recognized. In our experiments we will be
evaluating variations on the basic matching method with the 3D shape
context descriptor.

10.2 Shape Context Descriptors

We will focus on a type of descriptor called the shape context. In their
original form, shape context features characterize shape in 2D images
as histograms of edge pixels (see [2]). In [14] the authors use the same
template as 2D shape contexts but capture more information about
the shape by storing aggregate edge orientation for each bin. In [4], the
authors developed the notion of geometric blur which is an analog to
the 2D shape context for continuous-valued images. We extended the
shape context to three dimensions in [6], where it characterizes shape
by histogramming the position of points in a range scan. In the rest



224 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

of this section, we describe the basics of the 2D and 3D shape context
descriptors in more detail, and introduce the experimental framework
used in the rest of the chapter.

10.2.1 Two-dimensional Shape Contexts

To calculate a 2D shape context feature from an image, first run your
favorite edge detector on the image. Next, choose a coordinate in the
edge map to be a basis point, and imagine a radar-like template like
the one in figure 10.1 laid down over the image, centered at that point.
The lines of this pattern divide the image into regions, each of which
corresponds to one dimension of the feature vector. The value for the
dimension is calculated as the number of edge pixels which fall into
the region. This feature vector can be thought of as a histogram which
summarizes the spatial distribution of edges in the image relative to the
chosen basis point. Each region in the template corresponds to one bin
in the histogram, and we use the term bin to refer to the region in the
image as well as the dimension in the feature vector. Note that if the
bins were small enough to each contain one pixel, then the histogram
would be an exact description of the shape in the support region.

This template has a few advantageous properties. The bins farther
from the center summarize a larger area of the image than those
close to the center. The gives a foveal effect; the feature more accu-
rately captures and weights more heavily information toward the cen-
ter. To accentuate this property of shape context descriptors, we use
equally spaced log-radius divisions. This causes bins to get “fuzzy”
more quickly as you move from the center of the descriptor.

When comparing two shape context features, even if the shapes from
which they are calculated are very similar, the following must also be
similar in order to register the two features as a good match:

• orientation of the descriptor relative to the object

• scale of the object

To account for different scales, we can search over scale space, e.g., by
calculating a Gaussian pyramid for our query image, calculating query
features in each of the down- and upscaled images, and finding the
best match at each scale. We could sidestep the issue of orientation by
assuming that objects are in a canonical orientation in the images, and
orient the template the same way for all basis points. Or, to make it
robust to variation, we could orient the template to the edge gradient
at the basis point or include in our training set images at different
orientations.



10.2 Shape Context Descriptors 225

(a) (b)

Figure 10.1 Example templates for the shape contexts: (a) for 2D, (b) for 3D. The
number of divisions shown are not the same as we used in our experiments.

10.2.2 Three-dimensional Shape Contexts

In order to apply the same idea to range images, we extended the
template to three dimensions (see figure 10.1 for a visualization). We
use a spherical support volume, and divide the sphere at regular angles
along the elevation and azimuth dimensions. Again we use the log-
radius division as with the 2D shape contexts. The value for a bin is
the count of the number of points in three dimensions from the raw
range image that fall into its region.

When working with 3D range scans, we do not need to consider
differences in scale since the scanner measurements in both the query
and reference scans are reported in real-world dimensions. In three
dimensions there are 2 degrees of freedom in the orientation of the
template. We solve half of the problem by aligning the north pole with
the surface normal calculated at the basis point. However, this still
leaves a free rotation in the azimuth dimension. We account for that
freedom with sampling; if we divide the azimuth into twelve sections,
then we include in the reference set twelve discrete rotations of the
feature vector. Since we are rotating the reference features, we do not
need to rotate the query features. We could just as easily rotate the
query features instead, but it should become clear why we rotate the
reference features when we discuss our use of LSH later in the chapter.

Spin images, another descriptor used for 3D object recognition pre-
sented in [10], is very similar to the 3D shape context. It differs primar-
ily in the shape of its support volume and its approach to the azimuth
degree of freedom in the orientation: the spin image sums the counts
over changes in azimuth. See [6] for a direct comparison between spin
images and 3D shape contexts in similar experiments.



226 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

Alfa

Romeo

Spider

Aston

Martin

Audi Avus

Quattro
BMW 325i BMW 502

Porsche

Boxter

Bugatti

EB 110

Buick

Century
1959

Cadillac
Porsche

Carrera

1954

Chevy

Corvette

1955

Chevy

Belair

Chevy

Corvette

1957

Chevy

Sport

Coupe

Citroen

DS 19

Citroen

XM

Citroen

ZR 1

Lamborghini

Diablo

Dodge

Viper
1962

Ferrari 250
Ferrari

348T

Ferrari F40 Ferrari F50 Fiat 500 Ford GT90

Ford

Mustang

GT

London

Taxi
Ford GT40

1984

Ferrari

GTO

Toyota

Land

Cruiser

BMW

Isetta 250
Jaguar

Jaguar XJ

220

1968 VW

Karmann

Ghia

Lamborghini

Countach

1995

Lancia

Aurelia

B24 Spider

Toyota

Lucida

Mercedes

300 SE

Mercedes

300 SL

Mercedes

A-Class

Mercedes

S600

Messerschmitt

KR 200

1964 Mini

Coopers
Mustang

Mark III

Nissan

Patrol GR

Honda

NSX

Porsche

356

Honda

Prelude

Renault

4CV

Skyline

GTR

Trabant

601S

Toyota

2000 GT
VW Beetle

Volkswagen

CMB

VW Golf I

GTI

Jeep

Wrangler

Figure 10.2 The fifty-six car models used in our experiments.

10.2.3 Experiments with Three-dimensional Shape Contexts

In this subsection, we introduce the data set that we use throughout
the chapter to evaluate recognition with 3D shape contexts. The 3D
shape contexts we calculate are the same as those used in [6]: they
have twelve azimuth divisions, eleven elevation divisions, and fifteen
radial divisions. These values were chosen after a small amount of
experimentation with a similar data set.

The range scans from which we calculate the features are simulated
from a set of fifty-six 3D car models, and are separated into reference
scans (our training set) and query scans. The full models are shown
in figure 10.2. The reference scans were generated from a viewpoint
at 45 degrees elevation (measured from the horizon) and from four
different azimuth positions, spaced 90 degrees apart around the car,
starting from an angle halfway between the front and side views of



10.3 Basic Matching Experiment 227

(a) (b) (c)

Figure 10.3 The top row shows scans from the 1962 Ferrari 250 model, and the bottom
scans are from the Dodge Viper. The scans in column (a) are the query scans at 30 degrees
elevation and 15 degrees azimuth with σ = 5 cm noise, and those in (b) are from the same
angle but with σ = 10 cm noise. With 10 cm noise, it is difficult to differentiate the
vehicles by looking at the 2D images of the point clouds. Column (c) shows the reference
scans closest in viewing direction to the query scans (45 degrees azimuth and 45 degrees
elevation).

the vehicle. The query scans were generated from a viewpoint at 30
degrees elevation and at one azimuth position 15 degrees different from
the nearest reference scan. We also added Gaussian noise to the query
scans along the viewing direction, with either a 5 cm or 10 cm standard
deviation. This amount of noise is comparable to or greater than the
noise one could expect from a quality scanner. An example of the noisy
query scans next to the nearest reference scan for two of the car models
is shown in figure 10.3.

From the reference scans, we calculated normals at the points, and
calculated 3D shape context features at basis points sampled uniformly
over the surface, an average of 373 features per scan. For each noisy
query scan, we calculated the normals, then calculated features at
300 randomly chosen basis points. Now we can describe our first
experiment.

10.3 Basic Matching Experiment

Experiment 1

Given a query scan, we want to return the best match from among
the reference scans. Each of the 300 query features from the query scan
casts a “vote” for one of the fifty-six car models, and the best match to
the query scan as a whole is the model which received the most votes.
We determine a query feature’s vote by finding its nearest neighbor
from among the reference features, and awarding the vote to the model
that produced that reference feature. We could also give the n best
matches by ordering the models by the number of votes received, and
returning the top n from that list. We run this procedure for all fifty-six
query scans and calculate the recognition rate as the percentage of the
fifty-six query scans which were correctly identified.



228 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 10.4 Confusion matrices for experiment 1 for (a) 5 cm and (b) 10 cm noise
queries. Each row corresponds to one query and each column to one reference model. A
square in the matrix represents the percentage of votes for the column’s reference models
by the row’s query, where each row sums to 100%. The scale at the far right maps the
colors to numbers. The strong diagonal in (a) means that most of the votes for each 5 cm
noise query went to the correct corresponding model, giving us 100% recognition in the
top choice. There was more confusion in the 10 cm query, with fifty-two of the fifty-six
models correctly identified in the top choice, and 100% recognition within the top four
choices.



10.3 Basic Matching Experiment 229

The results we get are shown as confusion matrices in figure 10.4 for
the 5 cm and 10 cm queries. Each row corresponds to the results for one
query scan, and each column to one car model (four reference scans).
Each square is a color corresponding to the number of votes that the
query gave for the model. If every query feature voted for the correct
model, then the matrix would have a dark red diagonal and otherwise
be dark blue. Perfect recognition is achieved when the diagonal has
the largest number from each row, which is the case here for the 5 cm
noise data set. In the 10 cm experiment, we got fifty-two out of fifty-six
queries correct, giving a recognition rate of 92.86%. The correct model
is always in the top four matches, so if we are want a short list of depth
four or greater, then our recognition is 100%.

10.3.1 Complexity and Computation Time

Take

• m to be the number of reference images (assume one object per
reference image),

• nr the number of features calculated per reference image,

• nq the number of features calculated per query image,

• d the dimensionality of the features,

• p the number of pixels or points in the query scene, and

• s the number of scales over which we need to search.

Let us first look at the cost of computing each query feature. For the
2D shape context, we need to compute edge features at all the pixels
that may lie in one of the descriptors’ support, and then count the
number of edge pixels in each bin. This gives us a preprocessing cost
of O(p) and a computation cost of O(p) for each query feature, for a
total of O(p) + O(p · nq) for the query image as a whole.

For the 3D shape context, we do not need to preprocess all the points
in the scan, just the neighborhood around the basis point to get the
normal at that point. We still need to look through the points in the
scene to calculate the bin contents, giving a cost of O(p · nq).

Once we have the query features, we need to search through the
m·nr reference features. If we are performing an exact nearest-neighbor
search as in experiment 1, we need to calculate the distance between
each of those reference features and each of the query features. The
cost for that is O(m · nr · nq · d). If we are working with 2D shape
contexts, then we may also have to search over scale, increasing the
cost to O(m · nr · nq · d · s).

For the 3D shape contexts, this gives us a total cost of O(p · nq) +
O(m · nr · nq · d). In experiment 1, nq = 300, m = 224, nr = 4476



230 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

(average of 373 features per reference scan times the twelve rotations
through the azimuth for each), and d = 1980 (11 × 12 × 15), so the
second term sums to 5.96×1011 pairs of floating point numbers we need
to examine in our search. On a 1.3 GHz 64-bit Itanium 2 processor,
the comparison of 300 query features to the full database of reference
features takes an average of 3.3 hours, using some optimization and
disk blocking. The high recognition rate we have seen comes at a high
computational cost.

The rest of this chapter focuses on reducing the cost of computing
these matches, first by reducing nq using the representative descriptor

method and then by reducing nr using LSH. The voting results for nq =
300 using exact nearest neighbor provides a baseline for performance,
to which we will compare our results.

10.4 Reducing Running Time with Representative Descriptors

If we densely sample features from the reference scans (i.e., choose a
large nr), then we can sparsely sample basis points at which to calculate
features from query scans. This is the case for a few reasons.

• Because the features are fuzzy, they are robust to small changes due
to noise, clutter, and shift in the center point location. This makes it
possible to match a feature from a reference object and a feature from
a query scene even if they are centered at slightly different locations
on the object or are oriented slightly differently. This also affects how
densely we need to sample the reference object.

• Since regional descriptors describe a large part of the scene in fuzzy
terms and a small part specifically, few are needed to describe a query
scene well.

• Finally, these features can be very discriminative. Even with the
data set we use below where we are distinguishing between several
very similar objects, the features are descriptive enough that only a
few are enough to tell apart very similar shapes.

We make use of these properties via the representative descriptor

method. The method was originally introduced in [13] as representative

shape contexts for the speeding search of 2D shape contexts, and were
renamed in [6] to encompass the use of other descriptors such as spin
images. Each of the few features calculated from the query scene is
referred to as a representative descriptor or RD. What we refer to as
the representative descriptor method really involves four aspects:

1. Using a reduced number of query points as centers for query features



10.4 Reducing Running Time with Representative Descriptors 231

2. A method for choosing which points to use as representative descrip-
tors

3. A method for calculating a score between an RD and a reference
object

4. A method for aggregating the scores for the RDs to give one score
for the match between the query scene and the reference object

In our experiments, we try a range of values for the number of RDs
and find that for simple matching tasks (e.g., low-noise queries), few
are needed to achieve near-perfect performance. As the matching task
becomes more difficult, the number required to get a good recognition
rate increases.

We choose the basis points for the RDs uniformly at random from
the 300 basis points from the query scans. This is probably the least
sophisticated way to make the choice, and we do so to provide a
baseline. Instead, we could use an interest operator such as those used
with SIFT descriptors.

We take the score between one RD and a particular car model to be
the smallest distance between the RD and a feature from one of the
four reference scans for the model. To calculate the score between the
query scene as a whole and the model, we sum the individual RD scores
for that model. The model with the smallest summation is determined
to be the best match. We have found this summation to be superior
to the “voting” method where we take a maximum over the scores;
the individual distances give a notion of the quality of the match, and
summing makes use of that information, whereas taking a maximum
discards it.

10.4.1 Experiment and Results

Experiment 2

Calculate nq features from the query scan, which will be our RDs.
Find the nearest neighbors to each of the RDs from each of the models,
and calculate the scores. The model with the smallest score is the best
match. Repeat for all queries and calculate the recognition rate as the
percentage of query models that were correctly matched. Repeat the
experiment several times with different randomly chosen sets of nq

features, and report the average recognition rate across these runs.
Perform the experiment for different values of nq.

The graphs in figure 10.5 show the results. Note that the number of
comparisons increases linearly with the number of RDs. For example,
if the voting method with 300 query features required n comparisons,
then using thirty RDs requires n × 30

300
comparisons. With the 5 cm



232 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of RDs

M
ea

n 
re

co
gn

iti
on

 r
at

e

In top 1
In top 3
In top 5
In top 7

0 20 40 60 80 100 120 140 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of RDs

M
ea

n 
re

co
gn

iti
on

 r
at

e

In top 1
In top 3
In top 5
In top 7

(a) (b)

Figure 10.5 Results from experiment 2, shown as the number of RDs vs. mean recog-
nition rate for the (a) 5 cm noise and (b) 10 cm noise queries. While our performance
has dropped when considering only the top match, our recognition within a short list of
matches is still very good, while we are performing a fraction of the feature comparisons.
Note that the number of feature comparisons increases linearly with the number of RDs.

queries, we achieve 100% recognition with thirty descriptors if we
consider the top seven matches. If we use forty RDs, we achieve 99.9%
in the top two matches and 100% in the top three. The performance
on the 10 cm noise query degrades quickly with fewer RDs. Because of
the noise, fewer of the original 300 query points are useful in matching,
so we randomly choose more RDs in the hopes that we will get more
of the distinctive query features. With the 10 cm queries, we achieve
97.8% mean recognition in the top seven results using eighty RDs. The
mean recognition within the top seven with 160 RDs is 98%.

When we consider only our top match, our performance has dropped
significantly with both query sets. However, we are primarily interested
in getting a short list of candidates, and for the 5 cm queries we can
reduce the number of computations required by 87% to 90% (depending
on the length of our short list) by using the RD method over voting.
And for almost all choices of the forty RDs, we find the correct
match in the top five returned. With the 10 cm set, we can reduce
our computation by 47% to 73%. Also keep in mind that these are
recognition rates averaged across 100 different random selections of the
RDs; for many choices of the RDs we are achieving perfect recognition.

10.5 Reducing Search Space with a Locality-Sensitive Hash

When comparing a query feature to the reference features, we could
save computation by computing distances only to the reference features
that are nearby. Call this the “1, 2, 3, many” philosophy: the few
close ones play a large role in the recognition; the rest of the features



10.5 Reducing Search Space with a Locality-Sensitive Hash 233

have little meaning for the query. One way to achieve this is to use an
algorithm for approximate k-NN search that returns a set of candidates
that probably lie close to the query feature. The method we will look
at is LSH, first introduced in [9].

We use a version of the simple LSH algorithm described in [7].
To create a hash, we first find the range of the data in each of the
dimensions and sum them to get the total range. Then choose k values
from that range. Each of those values now defines a cut in one of the
dimensions, which can be visualized as a hyperplane parallel to that
dimension’s axis. These planes divide the feature space into hypercubes,
and two features in the same hypercube hash to the same bucket in the
table. We represent each hypercube by an array of integers, and refer to
this array as the first-level hash or locality-sensitive hash. There are an
exponential number of these hashes, so we use a standard second-level
hash function on integer arrays to translate each to a single integer.
This is the number of the bucket in the table, also called the second-

level hash value. To decrease the probability that we will miss close
neighbors, we create l tables, independently generating the k cuts in
each. In most of our experiments in this section, we will use twenty
tables. We will use the notation b = hi(·) to refer to the hash function
for the ith table which takes a feature vector and returns a second-level
hash, or bucket, number. Ti(bi) will refer to the set of identifiers stored
in bucket bi in the ith table.

To populate the ith hash table, we calculate bi = hi(fj) for each
feature fj in the set of features calculated from the reference scans,
and store the unique integer identifier j for the feature fj in bucket
bi. Given a query feature q, we find matches in two stages. First, we
retrieve the set of identifiers which are the union of the matches from
the l tables: F =

⋃l

i=1
Ti(hi(q)). Second, we retrieve from a database on

disk the feature vectors for the identifiers, and calculate the distances
dist(q, fj) for all features fj where j ∈ F.

The first part is the LSH query overhead, and in our experiments
this takes 0.01 to 0.03 second to retrieve and sort all the identifiers
from twenty tables. This is small compared to the time required in
the second step, which ranges from an average of 1.12 to 2.96 seconds
per query feature, depending upon the number of matches returned.
Because the overhead for LSH is negligible compared to the time to do
the feature comparisons, we will compare the “speed” of our queries
across methods using the number of feature comparisons performed.
This avoids anomalies common in timing numbers due to network
congestion, disk speed, caching, and interference from other processes.

As we mentioned earlier, we are storing in the hash tables the azimuth
rotations of the reference features instead of performing the rotations
on the query features. If LSH returns only the features that are most



234 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

M
ea

n 
re

co
gn

iti
on

 r
at

e

20 tables, top 1
20 tables, top 3
20 tables, top 5
100 tables, top 1
100 tables, top 3
100 tables, top 5

200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

M
ea

n 
re

co
gn

iti
on

 r
at

e

5 cm noise 10 cm noise

Figure 10.6 Results for experiment 3 using the voting method with 300 query features.
The graph shows the recognition rate vs. the number of hash divisions (k) for 20 and 100
tables and for short lists of length one, three, and five (the legend applies to both graphs).
The left and right graphs show results for the 5 cm and 10 cm noise queries, respectively.
In general, as the number of hash divisions increases for a given number of tables, the
performance degrades, and if the number of tables is increased, for a given value of k,
performance increases. To see how the same factors affect the number of comparisons
performed, see figure 10.7. To visualize the tradeoff between the number of comparisons
and recognition rate, see section 10.8.

similar to a query q, it will effectively select for us the rotations to which
we should compare, which saves us a linear search over rotations.

10.5.1 LSH with Voting Method

We first examine the performance of LSH using the voting method
from subsection 10.2.3 to provide a comparison with the strong results
achieved using exact nearest neighbor.

Experiment 3

Given the number of hash divisions k and the number of LSH tables l,
perform LSH search with 300 features per query, and tabulate the best
matches using the voting scheme, as we did in experiment 1. Perform
for 5 cm and 10 cm noise queries.

We created 100 tables, and ran experiments using all 100 tables as
well as subsets of 20, 40, 60, and 80 tables. In figure 10.6, we show
how the recognition rate changes with variations in the number of
hash divisions for the 5 cm and 10 cm queries. We show results for
experiments with 20 and 100 tables, and show the recognition rate
within the top choice, top three choices, and top five choices. In the
5 cm experiment, we maintain 100% recognition with up to 600 hash
divisions when using twenty tables, and up to 800 hash divisions if
we use 100 tables and consider a short list of length five. Notice that
when using twenty tables, recognition degrades quickly as k increases,
whereas recognition is better maintained when using 100 tables.



10.5 Reducing Search Space with a Locality-Sensitive Hash 235

400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

6

k
N

um
be

r 
of

 c
om

pa
ris

on
s 

pe
r 

qu
er

y 
sc

en
e

20 tables
40 tables
60 tables
80 tables
100 tables

200 400 600 800 1000
0

0.5

1

1.5

2
x 10

7

k

N
um

be
r 

of
 c

om
pa

ris
on

s 
pe

r 
qu

er
y 

sc
en

e

20 tables
40 tables
60 tables
80 tables
100 tables

5 cm noise 10 cm noise

Figure 10.7 Results for experiment 3, showing the mean number of comparisons per
query scene vs. the number of hash divisions (k), using 20, 40, 60, 80, or 100 tables. The left
and right graphs show results for the 5 cm noise and 10 cm noise queries, respectively. The
scale of the y-axis in the 10 cm graph is larger than in the 5 cm graph to accommodate the
k = 300 results, though the number of comparisons required for each k and l combination
is fewer with the 10 cm queries.

In the 10 cm experiments, we only achieve 100% recognition looking
at the top five and using 300 or 400 hash divisions, with recognition
declining quickly for larger values of k. Also notice that recognition
falls with increasing k more quickly in the 10 cm experiments. As the
queries become more difficult, it is less likely we will randomly generate
a table with many divisions that performs well for many of our query
features.

The recognition rate is only one measure of the performance. In
figure 10.7, we show the mean number of comparisons per query scene
vs. the number of hash divisions. Here we show results for 20, 40, 60,
80, and 100 tables. In both the 5 cm and 10 cm queries, we see a
decline in the number of comparisons with increasing k, though the
decline quickly becomes asymptotic. We also see a linear increase in
the number of computations with a linear increase in the number of
tables used.

For the 10 cm query, we tried using 300 hash divisions, but for more
than forty tables, the queries were computationally too expensive. The
range on the y-axis is larger in the 10 cm graph than in the 5 cm
graph due to the jump at k = 300, but the number of computations
performed for all other combinations of k and l are fewer in the 10 cm
experiments. This seems to indicate that in general, the 10 cm query
features lie farther away from the reference features in feature space
than the 5 cm query features.

We see that as k decreases or the number of tables increases, the
recognition improves, but the number of comparisons increases. To eval-
uate the trade off between speed and accuracy, we show in figure 10.8
the number of comparisons vs. the recognition rate, varying k along



236 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

0 1 2 3 4 5

x 10
6

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of comparisons per query scene

M
ea

n 
re

co
gn

iti
on

 r
at

e

20 tables, top 1
20 tables, top 3
20 tables, top 5
40 tables, top 1
40 tables, top 3
40 tables, top 5

0 2 4 6 8 10 12

x 10
6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of comparisons per query scene

M
ea

n 
re

co
gn

iti
on

 r
at

e

20 tables, top 1
20 tables, top 3
20 tables, top 5
60 tables, top 1
60 tables, top 3
60 tables, top 5
100 tables, top 1
100 tables, top 3
100 tables, top 5

5 cm noise 10 cm noise

Figure 10.8 Results for experiment 3, where we vary the value of k along each line to
show the tradeoff between the number of comparisons performed and the mean recognition
rate. The ideal point is in the upper-left corner where the number of comparisons is low and
recognition is perfect. Exact nearest neighbor is off the graph in the upper-right corner,
and would lie at (3.0 × 108, 1) if it were plotted.

each line. The ideal point would be in the upper-left corner, where the
recognition rate is high and the number of comparisons is low. Exact
nearest neighbor gives us a point at (3.0 × 108, 1), off the graph in the
far upper-right corner. In the 5 cm graph, the leftmost point still at
100% recognition is from the experiment with 600 divisions and twenty
tables. We can see that there is little to gain in increasing the number
of divisions or the number of tables. The rightmost points in the 10 cm
graph correspond to the experiments with 300 divisions, showing that
the high recognition comes at a high computational cost. The points
closest to the upper-left corner are from experiments using twenty ta-
bles and either 400 or 500 hash divisions. Unless we require perfect
recognition for all queries, it makes little sense to use fewer than 400
divisions or more than twenty tables.

Lastly, while we are still achieving 100% mean recognition with
k = 600 on the 5 cm queries using the voting method, the confu-
sion matrix in figure 10.9 shows that we are not as confident about
the matches relative to the confusion matrix for exact nearest neighbor
(see figure 10.4). The RD method depends upon having several distin-
guishing query features, so if we combine LSH with RD, we expect a
decrease in the number of comparisons but also a further degradation
in recognition performance.

10.5.2 Using RDs with LSH

Experiment 4

Perform LSH search with varying numbers of RDs, values of k, and
numbers of tables. Using the model labels returned with each feature,



10.5 Reducing Search Space with a Locality-Sensitive Hash 237

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.9 Confusion matrix showing the results for the 5 cm query for k = 600 from
experiment 3. While we achieved 100% recognition with the top choice, comparing this
matrix to the one from experiment 1 using exact nearest neighbor (see figure 10.4) shows
that we are less certain of our choices.

tabulate scores as we did in experiment 2, with one exception: it is
possible that LSH does not return any matches corresponding to a
particular model, and in that case, we substitute for the RD model
score a number larger than any of the distances as a penalty.

The tradeoff for experiment 4 between number of comparisons and
mean recognition rate is shown in figure 10.10. Along each line we varied
the number of RDs, and show results for combinations of 400, 600, 800,
and 1000 divisions and 20 and 100 tables. For the 5 cm experiment,
we show recognition in a short list of five, and show results within the
top seven for the 10 cm experiment. The mean recognition in the 5 cm
experiment using 400 divisions and twenty tables reaches 80%, which
is much worse than before. With k = 600 and twenty tables, which
demonstrated a good tradeoff when we using the voting method with
300 query features, only a 45% mean recognition rate is achieved. We
do see however, that increasing the number of tables has helped us;
using k = 400 with 100 tables yields a mean recognition rate of 94%.
We see similar degradation with the 10 cm experiments, achieving only
83% mean recognition withing the top seven results using 400 divisions
and 100 tables.

Recognition performance is decreased when using LSH because LSH
misses many of the nearest neighbors to the query points, resulting in
a heavy penalty. We can improve performance by being more “forgiv-



238 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons (log scale)

M
ea

n 
re

co
gn

iti
on

 r
at

e

k=400, 20 tables
k=400, 100 tables
k=600, 20 tables
k=600, 100 tables
k=800, 20 tables
k=800, 100 tables
k=1000, 20 tables
k=1000, 100 tables

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons (log scale)

M
ea

n 
re

co
gn

iti
on

 r
at

e

k=400, 20 tables
k=400, 100 tables
k=600, 20 tables
k=600, 100 tables
k=800, 20 tables
k=800, 100 tables
k=1000, 20 tables
k=1000, 100 tables

5 cm noise (top 5) 10 cm noise (top 7)

Figure 10.10 Results for experiment 4, showing number of comparisons vs. recognition
rate with varying numbers of RDs along each line. We ran the experiment for different
values of k and different numbers of tables. In the left graph we show the recognition
within the top five results for the 5 cm queries, and in the right graph we show recognition
within the top seven results for the 10 cm queries.

ing” and including in the RD sum only the closest x percent of the RD
model matches, hopefully discarding the large values that arise because
LSH unluckily misses good matches. If we are using twenty RDs and
we are summing the top 50%, then for a given model, we would search
for the model’s closest reference features to each of the twenty RDs,
and include in the sum only the ten of those which are closest.

Experiment 5

We perform LSH search with varying numbers of RDs, values of k,
and numbers of tables. We tally the RD scores by including in the sum
the distances from only the best 50% of the RD model matches.

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons (log scale)

M
ea

n 
re

co
gn

iti
on

 r
at

e

k=400, 20 tables
k=400, 100 tables
k=600, 20 tables
k=600, 100 tables
k=800, 20 tables
k=800, 100 tables
k=1000, 20 tables
k=1000, 100 tables

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons (log scale)

M
ea

n 
re

co
gn

iti
on

 r
at

e

k=400, 20 tables
k=400, 100 tables
k=600, 20 tables
k=600, 100 tables
k=800, 20 tables
k=800, 100 tables
k=1000, 20 tables
k=1000, 100 tables

5 cm noise (top five) 10 cm noise (top seven)

Figure 10.11 Results from experiment 5, where we use the RD method but sum only
the top half of the RD scores. The graphs show the number of comparisons vs. the mean
recognition rate, with the number of RDs varying along each line. In the left graph we
show the recognition within the top 5 results for the 5 cm queries, and in the right graph
we show recognition with the top 7 results for the 10 cm queries. Note the logarithmic
scale along the x-axis.



10.6 Nearest-Neighbor Performance of LSH 239

The results for experiment 5 in figure 10.11 show that this method
improved performance significantly within the top five results for 5 cm
and top seven for 10 cm. In the 5 cm experiments, our sweet spot
appears to be forty RDs, 400 divisions, and twenty tables with a mean
recognition rate of 99.8% within the top five matches (and 95.3%
with the top match; 99.4% within the top three, not shown). In the
10 cm experiments we reach 96% mean recognition with 160 RDs, 400
divisions, and 100 tables within the top seven matches (and 93.6% in
the top five, not shown). We reach 90% mean recognition with 160
RDs, 400 divisions, and twenty tables within the top seven matches,
which requires less than one-sixth the number of comparisons as with
the same settings except with 100 tables.

The key to further improving performance lies primarily with getting
better results from our approximate nearest-neighbor algorithm. In the
next section, we examine the quality of the LSH results relative to exact
nearest neighbor, and use this to motivate the need for algorithms that
provide better nearest-neighbor performance.

10.6 Nearest-Neighbor Performance of LSH

In this section, we look at the performance of LSH as an approximate
nearest-neighbor algorithm, independent of any recognition procedure.
In most work on approximate nearest-neighbor algorithms, the per-
formance is measured using the effective distance error or a similar
measure [11, 7, 1], defined for the nth nearest neighbor as

E =
1

Q

∑

q∈Q

(

dalg,n

d∗

n

− 1

)

, (10.1)

where Q is the set of query features, d∗

n is the distance from the query
q to the nth true nearest neighbor, and dalg,n is the distance from q

to the nth best feature returned from the approximate algorithm. The
effective distance error with increasing rank depth n is shown for the
5 cm and 10 cm queries in the first row of figure 10.12. Each line of
the graphs represents one LSH query with a different number of hash
divisions (k).

The effective distance error does not capture whether an approximate
nearest-neighbor algorithm is returning the correct nearest neighbors,
only how close it gets to them. In a recognition setting, the identity

of the features returned is of primary interest, so we suggest a better
measure would be error by rank. If we want the n nearest neighbors,
the error by rank is the percentage of the true n nearest neighbors that
were missing in the list of n returned by the approximate algorithm.



240 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

The graphs in the second row of figure 10.12 show the error by rank
with increasing n for the 5 cm and 10 cm queries.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Depth

E
ffe

ct
iv

e 
D

is
ta

nc
e 

E
rr

or
k=1000
k=900
k=800
k=700
k=600
k=500
k=400

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Depth

E
ffe

ct
iv

e 
D

is
ta

nc
e 

E
rr

or

k=1000
k=900
k=800
k=700
k=600
k=500
k=400
k=300

(a) (c)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Depth

E
rr

or
 b

y 
ra

nk

k=1000
k=900
k=800
k=700
k=600
k=500
k=400

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Depth

E
rr

or
 b

y 
ra

nk

k=1000
k=900
k=800
k=700
k=600
k=500
k=400
k=300

(b) (d)

5 cm noise 10 cm noise

Figure 10.12 LSH performance, relative to exact nearest neighbor. The graphs in the
first column show the performance on the 5 cm queries, using effective distance error in (a)
and error by rank in (b). The second column shows results for the 10 cm query, with (c)
showing effective distance error and (d) showing error by rank. All results are for twenty
tables.

In the first column of figure 10.12 we see that for the 5 cm query,
the effective distance error reaches a maximum at 40% for 800, 900,
and 1000 hash divisions, but the same LSH results show almost 100%
error by rank, meaning that almost never are any of the correct nearest
neighbors returned. The second column of the figure shows results for
the 10 cm queries. Notice that, relative to the 5 cm queries, the ceiling
on the effective distance error is actually lower; the 900 and 1000 hash
division LSH queries level off around 0.32, and all queries except LSH
with 400 and 500 hash divisions are actually performing better by this
measure than in the 5 cm query. However, we know from our recognition
results that this should not be the case, that recognition results for the
10 cm queries were worse than the 5 cm queries for the same LSH
settings. Indeed, we can see in the error-by-rank graph that the 10 cm



10.6 Nearest-Neighbor Performance of LSH 241

queries are performing much worse than the 5 cm queries for all LSH
settings.

As an aside, the lines on these graphs are monotonically increasing,
which does not have to be the case in general. If an approximate
nearest-neighbor algorithm misses the first nearest neighbor, but then
correctly finds every nearest neighbor of deeper rank, than the error
by rank would decrease with increasing rank depth, from 100% to 50%
to 33%, etc. It is also true that the effective distance error need not
increase with increasing rank depth. It is a feature of LSH that we
get fewer correct results as we look further from the query, which
means that we cannot expect to increase our recognition performance
by considering a greater number of nearest neighbors.

In figure 10.13, we show the tradeoff for different numbers of tables
and hash divisions (l and k). Each line corresponds to a fixed number
of divisions, and we vary the number of tables along the line, with
the largest number of tables at the rightmost point on each line. As
expected, with a greater number of tables we see better performance
but we also perform more comparisons.

In general, recognition performance should increase as error by rank
decreases, though to what degree will depend upon the recognition
algorithm and data set. Next we introduce a variant of LSH which
will find the same or more of the nearest neighbors as LSH, but at a
computational cost between LSH and exact nearest neighbor.

0 2 4 6 8 10 12 14

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of comparisons

E
rr

or
 b

y 
ra

nk

5cm

k=400
k=500
k=600
k=700
k=800
k=900
k=1000

0 0.5 1 1.5 2

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of comparisons

E
rr

or
 b

y 
ra

nk

10cm

k=300
k=400
k=500
k=600
k=700
k=800
k=900
k=1000

5 cm noise 10 cm noise

Figure 10.13 Nearest-neighbor performance of LSH, shown as the tradeoff between the
number of comparisons and the error-by-rank for the 5 cm and 10 cm query sets. The
lower-right corner of the graph is the ideal result, where the number of comparisons and
the error by rank are low. The number of tables used is varied from 20 to 100 along each
line. With 400 divisions, we drive down the error by rank, but also dramatically increase
the number of comparisons required.

10.7 Associative LSH



242 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

p∗

p0

q

Figure 10.14 A 2D LSH example showing the space divided into bins by axis-parallel
lines. The solid lines represent the divisions from one hash table, and the dashed lines
represent divisions from another. Note that although p∗ is the nearest neighbor to q, they
do not occupy the same bin in either of the tables. It is the case, however, that p∗ can be
reached from q: q and p0 are binmates in the solid-line table and p0 and p∗ are binmates
in the dashed-line table.

In order to improve the error-by-rank and recognition performance, we
introduce a variation which we will refer to as associative LSH. This
algorithm begins with the results returned from LSH, and then uses
the LSH tables to further explore the neighborhood around the query
feature.

Consider the situation in figure 10.14 where we have a query q and
the closest point to it, p∗, where for all tables i, hi(q) 6= hi(p

∗). It may
be the case that there exists a point p0 such that for two different tables
i and j, hi(q) = hi(p0) and hj(p0) = hj(p

∗). This suggests that we could
use p0 to find p∗.

First, a word about the data structures necessary. We will need the l

LSH hash tables. To speed the algorithm we will also use precomputed
l reverse hashes bi = Ri(j), which take an integer feature identifier
and return the bucket in the ith table in which it is stored. Note that
this is the reverse of the Ti(bi) function. Note that these reverse hashes
are not necessary since we could retrieve the feature fj from disk and
calculate hi(fi).

Results will be written to a structure R that for each match found so
far stores the integer feature identifier j and the distance to the query,
dist(q, fj), sorted by distance. This is the same structure we used for
results when performing LSH queries. We will keep lists of the numbers
of the buckets we have visited, one for each of the tables. Call the ith
of these lists Bi. We will also have a set of integer identifiers A which
is initially empty.

The algorithm takes as input a rank depth r and a query feature q

and outputs the results structure R. Notice that the first three steps
below are identical to the original LSH algorithm as described earlier,
with the exception of the use of Bi for record-keeping.



10.7 Associative LSH 243

1. For all i, calculate bi = hi(q). Add bi to Bi so that we do not visit
the bucket bi in the ith table again.

2. Calculate F =
⋃l

i=1
Ti(bi).

3. For all j ∈ F, calculate dist(q, fj) and add to the results list R.

4. Find a feature identifier that is within the top r results in R and
that is not in the set A, call it a. If such a feature does not exist, then
terminate.

5. Add a to the set A. This, with the check above, ensures that we do
not iterate using this feature again.

6. For all i, find bi = Ri(a), the bucket in which a is stored in the ith
table.

7. For all i where bi 6∈ Bi (i.e., we have not already looked in bucket
bi in table i), retrieve F =

⋃

i Ti(bi), the identifiers in the buckets in
which a resides.

8. For all i, add bi to Bi.

9. For each identifier j ∈ F that is not already in R, calculate dist(q, fj)
and store the result in R.

10. Go to step 4.

This algorithm requires only one parameter, r, that LSH does not
require. In our experiments, we did not tune r, setting it only to
two. Setting it higher would result in more comparisons and perhaps
better results. The data structures for Ri(·) are l arrays, each with
an element for each reference feature stored in the LSH tables. This
roughly doubles the amount of memory required to hold the LSH
tables, though it does not need to be stored on disk as it can quickly be
generated when the tables are loaded from disk. Note that any variation
on LSH that randomly generates the hash divisions can be used with
this method as well.

The running time of the algorithm is dependent upon the number of
associative iterations performed and the number of features retrieved
on each iteration. The additional bookkeeping required for associative
LSH over regular LSH adds a negligible amount of overhead. Step 4
requires a O(r) search through the results list and comparison with
the hashed set A, but r will be set to a small constant (two in our
experiments). Steps 8 and 9 require additional bookkeeping using the
structure Bi, but the complexity in both cases is O(l) if we make Bi a
hashed set.

In figure 10.15 we show the tradeoff between the number of compar-
isons performed and the error by rank for our associative LSH queries.
We see a drop in the error by rank over regular LSH, especially when
comparing results using the same number of hash divisions, but we see
a corresponding increase in the number of comparisons.



244 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

0 0.5 1 1.5 2

x 10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons

E
rr

or
 b

y 
ra

nk

k=400
k=600
k=800
k=1000
k=1200
k=1600
k=2000

0 0.5 1 1.5 2 2.5

x 10
7

0

0.2

0.4

0.6

0.8

1

Number of comparisons

E
rr

or
 b

y 
ra

nk

k=400
k=600
k=800
k=1000
k=1200
k=1600
k=2000

5 cm noise 10 cm noise

Figure 10.15 Nearest-neighbor performance of associative LSH, shown as the tradeoff
between the number of comparisons and the error by rank for the 5 cm and 10 cm query
sets. Compare these graphs to those in figure 10.13 showing nearest-neighbor performance
of LSH. The number of tables used is varied from 20 to 100 along each line.

In figure 10.15 we show the tradeoff between comparisons and error
by rank using associative LSH. Comparing to the results for LSH in
figure 10.13 we see that we achieve a better tradeoff. For example, in
the 5 cm experiments using 400 divisions, associative LSH achieves a
slightly lower error and about the same number of comparisons using
twenty tables as LSH does using eighty tables. Similarly, using 600
divisions, associative LSH achieves 65% error in 5 × 106 comparisons
using twenty tables, whereas LSH reaches only 72% error in the same
number of comparisons using 100 tables. From these results we can see
that our search using associative LSH is more focused; we are finding
a comparable number of nearest neighbors with associative LSH but
with fewer comparisons. In the 10 cm experiments, this effect is more
dramatic as associative LSH is able to achieve much lower error rates
with a comparable number of comparisons.

Another important difference is that associative LSH is much less
sensitive to the choices of k and the number of tables. With LSH, error
changes dramatically with a change in the number of tables, and we
see a quick degradation with an increase in the number of divisions.

10.8 Summary

In this chapter, we have performed an analysis of methods for perform-
ing object recognition on a particular data set, with a focus on the
tradeoff between the speed of computation and the recognition perfor-
mance of the methods. We made use of LSH for improving the speed
of our queries, and demonstrated ways in which it could be made more
robust.



10.8 Summary 245

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)
R

ec
og

ni
tio

n 
or

 m
ea

n 
re

co
gn

iti
on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 40 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 40 RDs, takemin 0.5

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 40 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 40 RDs, takemin 0.5

Top choice Within top three choices

Figure 10.16 Summary of results for various methods on the 5 cm noise data set. For
each method, we show points for all the variations of number of RDs, number of hash
divisions, and number of tables discussed earlier in the chapter.

In figure 10.16 we display as a scatterplot results from the different
methods discussed earlier in the chapter on the 5 cm query data set. For
each method, we show points for all the variations of number of RDs,
number of hash divisions, and number of tables. In general, results
for associative LSH using voting lie between LSH and exact nearest
neighbor using voting, with the same true for all three methods using
RDs. Looking at the left graph showing results using the top choice,
the best associative LSH results using RDs is close both in recognition
and speed to LSH results using voting. If we can accept finding the
match in the top three results returned, all the methods presented can
get us to 100% recognition, with LSH with RDs achieving the lowest
number of comparisons by a small margin over LSH with voting and
associative LSH with RDs. We note again that the range of k using
in the associative LSH experiments is much larger than in the LSH
experiments, showing that we can achieve similar performance with
less precise tuning of the parameters.

In figure 10.17 we give a scatterplot of the results for the various
10 cm noise experiments. Again we see that the associative LSH results
lie between LSH and exact nearest neighbor, though as we see in the
first plot, LSH using 300 divisions and the voting method shows a
slightly higher recognition rate and lower comparisons than associative
LSH. In general, however, associative LSH yields a higher recognition
rate than LSH, though by performing more comparisons. We also note
that when using the voting method, the results for associative LSH are
more tightly packed than the LSH results, despite using a wider range
of parameters for associative LSH in the experiments. This indicates
that associative LSH can yield similar results on this data set with less
tuning of the parameters.

In conclusion, we have found that LSH is an effective method for
speeding nearest-neighbor search in a difficult object recognition task,



246 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 160 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 160 RDs, takemin 0.5

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 160 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 160 RDs, takemin 0.5

Top choice Top three choices

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 160 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 160 RDs, takemin 0.5

Top five choices

Figure 10.17 Summary of results for various methods on the 10 cm noise data set,
showing results for the top choice, top three, and top five choices. For each method, we
show points for all the variations of number of RDs, number of hash divisions, and number
of tables discussed earlier in the chapter.



10.8 Summary 247

but at the cost of some recognition performance. We have touched
upon the connection between the reduction in recognition performance
and the performance of LSH as a nearest-neighbor algorithm, and have
presented a variation, associative LSH, which gives an improvement
in nearest-neighbor performance on our data set. This increase in
nearest-neighbor performance translates only roughly into recognition
performance, showing small gains in recognition performance on this
data set for an additional computational cost.



248 Object Recognition Using Locality-Sensitive Hashing of Shape Contexts

References

1. S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM, 45(6):891–923, November 1998.

2. S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In Eighth IEEE
International Conference on Computer Vision, volume 1, pages 454–461, July 2001.

3. S. Belongie, J. Malik, and Jan Puzicha. Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4):509–522, April 2002.

4. A. Berg and J. Malik. Geometric blur for template matching. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages 607–614, 2001.

5. A.C. Berg, T.L. Berg, and J. Malik. Shape matching and object recognition using
low distortion correspondence. Technical Report UCB//CSD-04-1366, University of
California Berkeley, Computer Science Division, Berkeley, December 2004.

6. A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Recognizing objects in
range data using regional point descriptors. In Proceedings of the European
Conference on Computer Vision, volume 3, pages 224–237, May 2004.

7. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proceedings of Twenty-Fifth International Conference on Very Large
Data Bases (VLDB), pages 518–529, 1999.

8. D.P. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an
image. International Journal of Computer Vision, 5(2):195–212, November 1990.

9. P.Indyk and R.Motwani. Approximate nearest neighbor—towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Symposium on Theory of
Computing, pages 604–613, 1998.

10. A.E. Johnson and M. Hebert. Using spin images for efficient object recognition in
cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(5):433–449, 1999.

11. T. Liu, A.W. Moore, A. Gray, and K.Yang. An investigation of practical
approximate nearest neighbor algorithms. In Advances in Neural Information
Processing Systems, December 2004.

12. D.Lowe. Object recognition from local scale-invariant features. In Proceedings of
the International Conference on Computer Vision, pages 1000–1015, September 1999.

13. G. Mori, S. Belongie, and J. Malik. Shape contexts enable efficient retrieval of
similar shapes. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 723–730, 2001.

14. G. Mori and J. Malik. Recognizing objects in adversarial clutter: Breaking a visual
captcha. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

15. C.Schmid and R.Mohr. Combining greyvalue invariants with local constraints for
object recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 872–877, June 1996.

16. P. Viola and M.J. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):137–154, May 2004.


